Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities
Abstract
:1. Introduction
2. Results
2.1. Fungal Statistics
2.2. Physical, Chemical and Biological Descriptional Statistics
2.3. Questionnaire
3. Discussion
3.1. Statistical Relationship of Fungi and Bacteria in BWDs
3.2. Fungi in Water Samples, on Drip Trays and on Taps
3.3. Health Considerations
4. Materials and Methods
4.1. Study Design
4.2. Questionnaire
4.3. Sampling
4.4. Physical Analyses
4.5. Chemical Analyses
4.6. Microbiology
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- European Council. Council Directive 98/83/Ec of 3 November 1998 on the Quality Of Water Intended For Human Consumption; Official Journal L 330; Publication Office of the European Union: Luxembourg, 1998; pp. 32–54. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31998L0083 (accessed on 9 July 2021).
- Babič, M.N.; Gunde-Cimerman, N.; Vargha, M.; Tischner, Z.; Magyar, D.; Veríssimo, C.; Sabino, R.; Viegas, C.; Meyer, W.; Brandão, J. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int. J. Environ. Res. Public Health 2017, 14, 636. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. Government Decree 201/2001 on the Quality and Monitoring Requirements of Drinking Water, 1st ed.; Ministry of Health: Budapest, Hungary, 2001.
- González, C.; Gutiérrez, C.; Grande, T. Bacterial flora in bottled uncarbonated mineral drinking water. Can. J. Microbiol. 1987, 33, 1120–1125. [Google Scholar] [CrossRef]
- Bartram, J.; Cotruvo, J.; Exner, M.; Fricker, C.; Glasmacher, A. Heterotrophic plate counts and drinking-water safety: The significance of HPCs for water quality and human health. Water Intell. Online 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- European Federation of Bottled Waters (EFBW). Guide to Good Hygienic Practices for Packaged Water in Europe; Luxembourg, Brussels. 2012. Available online: https://ec.europa.eu/food/system/files/2016-11/biosafety_fh_guidance_eu_guide_hygiene_packaged_water_en.pdf (accessed on 9 July 2021).
- Pierson, M.D. HACCP: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tischner, Z.; Kredics, L.; Marik, T.; Vörös, K.; Kriszt, B.; Péter, B.; Magyar, N. Environmental characteristics and taxonomy of microscopic fungi isolated from washing machines. Fungal Biol. 2019, 123, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalar, P.; Novak, M.; De Hoog, G.S.; Gunde-Cimerman, N. Dishwashers—A man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol. 2011, 115, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, J.; Babič, M.N.; Zalar, P.; Gunde-Cimerman, N. The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS ONE 2016, 11, e0148166. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.U.; Rampazzo, R.D.C.P.; Yamada-Ogatta, S.F.; Nakamura, C.V.; Ueda-Nakamura, T.; Filho, B.P.D. Yeasts and filamentous fungi in bottled mineral water and tap water from municipal supplies. Braz. Arch. Biol. Technol. 2007, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cabral, D.; Pinto, V.E.F. Fungal spoilage of bottled mineral water. Int. J. Food Microbiol. 2002, 72, 73–76. [Google Scholar] [CrossRef]
- Otterholt, E.; Charnock, C. Microbial quality and nutritional aspects of Norwegian brand waters. Int. J. Food Microbiol. 2011, 144, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Ameen, F.; Albejad, A.; Gashgari, R.; Murialdo, S.; Al-Sabri, A.; Albejad, H. Diversity of fungi in bottled water in Jeddah, Saudi Arabia. Water Supply 2017, 18, 1664–1673. [Google Scholar] [CrossRef]
- Da Silva, P.R.; De Mesquita, A.R.C.; De Lima, M.A.B.; Pires, E.F. Fungi in bottled water. J. Environ. Anal. Prog. 2018, 3, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Muittari, A.; Kuusisto, P.; Virtanen, P.; Sovijärvi, A.; Grönroos, P.; Harmoinen, A.; Antila, P.; Kellomäki, L. An epidemic of ex-trinsic allergic alveolitis caused by tap water. Clin. Allergy 1980, 10, 77–90. [Google Scholar] [CrossRef]
- Niemi, R.M.; Knuth, S.; Lundström, K. Actinomycetes and fungi in surface waters and in potable water. Appl. Environ. Microbiol. 1982, 43, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Antoniadou, A. Outbreaks of zygomycosis in hospitals. Clin. Microbiol. Infect. 2009, 15, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Hageskal, G.; Lima, N.; Skaar, I. The study of fungi in drinking water. Mycol. Res. 2009, 113, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caggiano, G.; Diella, G.; Triggiano, F.; Bartolomeo, N.; Apollonio, F.; Campanale, C.; Lopuzzo, M.; Montagna, M.T. Occurrence of fungi in the potable water of hospitals: A public health threat. Pathogens 2020, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, H.; Sutton, D.A.; Garcia, D.; Fothergill, A.W.; Cano-Lira, J.F.; Gene, J.; Summerbell, R.C.; Rinaldi, M.G.; Guarro, J. Spectrum of clinically relevant Acremonium species in the United States. J. Clin. Microbiol. 2010, 49, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Jurjevic, Z.; Peterson, S.W.; Horn, B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012, 3, 59–79. [Google Scholar] [CrossRef]
- Harrington, T.C.; McNew, D.; Steimel, J.; Hofstra, D.; Farrell, R. Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia 2001, 93, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.; Crous, P.; Boekhout, T.; et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
- Zalar, P.; de Hoog, G.; Schroers, H.-J.; Crous, P.; Groenewald, J.; Gunde-Cimerman, N. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 2007, 58, 157–183. [Google Scholar] [CrossRef]
- Scorzetti, G.; Fell, J.W.; Fonseca, A.; Statzell-Tallman, A. Systematics of basidiomycetous yeasts: A comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res. 2002, 2, 495–517. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
- De Hoog, G.; Vicente, V.; Najafzadeh, M.J.; Harrak, M.; Badali, H.; Seyedmousavi, S. Waterborne Exophiala species causing disease in cold-blooded animals. Pers. Mol. Phylogeny Evol. Fungi 2011, 27, 46–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prenafeta-Boldu, F.X.; Summerbell, R.; De Hoog, G.S. Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiol. Rev. 2006, 30, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Schroers, H.-J.; O’Donnell, K.; Lamprecht, S.C.; Kammeyer, P.L.; Johnson, S.; Sutton, D.A.; Rinaldi, M.G.; Geiser, D.M.; Summerbell, R.C. Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 2009, 101, 44–70. [Google Scholar] [CrossRef] [PubMed]
- Kiyuna, T.; An, K.-D.; Kigawa, R.; Sano, C.; Miura, S.; Sugiyama, J. Molecular assessment of fungi in “black spots” that deface murals in the Takamatsuzuka and Kitora Tumuli in Japan: Acremonium sect. Gliomastix including Acremonium tumulicola sp. nov. and Acremonium felinum comb. nov. Mycoscience 2011, 52, 1–17. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.; Seifert, K.A.; Overy, D.P.; Tuthill, D.M.; Valdez, J.G.; Samson, R. New penicillin-producing Penicillium species and an overview of section Chrysogena. Pers. Mol. Phylogeny Evol. Fungi 2012, 29, 78–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonaka, K.; Kaifuchi, S.; Ōmura, S.; Masuma, R. Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 2013, 54, 42–53. [Google Scholar] [CrossRef]
- Pinto, M.; Langer, T.M.; Hüffer, T.; Hofmann, T.; Herndl, G.J. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE 2019, 14, e0217165. [Google Scholar] [CrossRef] [Green Version]
- Gaitán, A.C.R.; Moret, A.; Hontangas, J.L.L.; Molina, J.M.; López, A.I.A.; Cabezas, A.H.; Maseres, J.M.; Arcas, R.C.; Ruiz, M.D.G.; Chiveli, M.Á.; et al. Nosocomial fungemia by Candida auris: First four reported cases in continental Europe. Rev. Iberoam. Micol. 2017, 34, 23–27. [Google Scholar] [CrossRef]
- Tian, S.; Rong, C.; Nian, H.; Li, F.; Chu, Y.; Cheng, S.; Shang, H. First cases and risk factors of super yeast Candida auris infection or colonization from Shenyang, China. Emerg. Microbes Infect. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kojic, E.M.; Darouiche, R.O. Candida infections of medical devices. Clin. Microbiol. Rev. 2004, 17, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Horton, M.V.; Nett, J.E. Candida auris infection and biofilm formation: Going beyond the surface. Curr. Clin. Microbiol. Rep. 2020, 7, 51–56. [Google Scholar] [CrossRef]
- Tischner, Z.; Kredics, L.; Vargha, M.; Sebestyén, Á.; Marik, T.; Vörös, K.; Magyar, D. A háztartási vizes berendezésekben előforduló gombák egészségügyi vonatkozásai. AMEGA 2017, 24, 13–18. [Google Scholar]
- Mille-Lindblom, C.; Fischer, H.; Tranvik, L.J. Antagonism between bacteria and fungi: Substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 2006, 113, 233–242. [Google Scholar] [CrossRef]
- Magyar, D.; Stefán, G.; Körmöczi, P.; Kredics, L.; Varró, M.J.; Balogh, K.; Nékám, K. Species composition of indoor fungi in Hungary. Egészségtudomány 2017, 60, 13–37. [Google Scholar]
- Páldy, A.; Bobvos, J.; Málnási, T. The impact of climate change on human health and health care system in Hungary [with English abstract]. Magy. Tudomány 2018, 179, 1336–1348. [Google Scholar]
- Magyar, D.; Vass, M.; Li, D.-W. Dispersal Strategies of Microfungi. In Fungal Biology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 315–371. [Google Scholar]
- Peñalva, M.A.; Arst, H.N. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 2002, 66, 426–446. [Google Scholar] [CrossRef] [Green Version]
- Silvestrini, M.C.; Galeotti, C.L.; Gervais, M.; Schininà, E.; Barra, D.; Bossa, F.; Brunori, M. Nitrite reductase from Pseudomonas aeruginosa: Sequence of the gene and the protein. FEBS Lett. 1989, 254, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study, 5th ed.; Elsevier BV: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Tintelnot, K.; De Hoog, G.S.; Thomas, E.; Steudel, W.I.; Huebner, K.; Seeliger, H.P.R. Cerebral phaeohyphomycosis caused by an Exophiala species. Mycoses 1991, 34, 239–244. [Google Scholar] [CrossRef] [PubMed]
- De Hoog, G.; Matsumoto, T.; Matsuda, T.; Uijthof, J. Exophiala jeanselmei var. lecanii-corni, an aetiologic agent of human phaeohyphomycosis, with report of a case. Med. Mycol. 1994, 32, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Environmental Microbiology of Anaerobes; John Wiley and Sons: New York, NY, USA, 1988; pp. 179–244. [Google Scholar]
- Ariole, C.N.; Ofuase, N. Anaerobic denitrification and biotechnological potentials of filamentous fungi isolated from coastal marine sediment. Int. J. Microbiol. Mycol. 2016, 4, 8–15. [Google Scholar]
- Han, Y.W.; Cheeke, P.R.; Anderson, A.W.; Lekprayoon, C. Growth of Aureobasidium pullulans on straw hydrolysate. Appl. Environ. Microbiol. 1976, 32, 799–802. [Google Scholar] [CrossRef] [Green Version]
- Borneman, A.R.; Zeppel, R.; Chambers, P.J.; Curtin, C.D. Insights into the Dekkera bruxellensis genomic landscape: Comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates. PLoS Genet. 2014, 10, e1004161. [Google Scholar] [CrossRef] [Green Version]
- Leber, A.L. Clinical Microbiology Procedures Handbook, 4th ed.; American Society for Microbiology: Washington, DC, USA, 2016. [Google Scholar]
- Barathikannan, K.; Khusro, A.; Agastian, P. Isolation and molecular characterization of xylitol producing wild yeast strains from different fermented fruit juices. South Indian J. Biol. Sci. 2016, 2, 415. [Google Scholar] [CrossRef]
- Guerrero, M.G.; Gutierrez, M. Purification and properties of the NAD(P)H:nitrate reductase of the yeast Rhodotorula glutinis. Biochim. Biophys. Acta BBA Enzym. 1977, 482, 272–285. [Google Scholar] [CrossRef]
- Tachiki, T.; Sakai, K.; Yamamoto, K.; Hatanaka, M.; Tochikura, T. Conversion of nitrite to nitrate by nitrite-resistant yeasts. Agric. Biol. Chem. 1988, 52, 1999–2005. [Google Scholar] [CrossRef] [Green Version]
- Robertson, E.J.; Wolf, J.M.; Casadevall, A. EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl. Environ. Microbiol. 2012, 78, 7977–7984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, L.F.; Cobine, P.A.; De La Fuente, L. Calcium increases surface attachment, biofilm formation, and twitching motility in Xylella fastidiosa. Appl. Environ. Microbiol. 2012, 78, 1321–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, G.; Logman, T.J.; E Boerrigter, M.; Kijne, J.W.; Lugtenberg, B.J. Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J. Bacteriol. 1989, 171, 4054–4062. [Google Scholar] [CrossRef] [Green Version]
- Patrauchan, M.A.; Sarkisova, S.; Sauer, K.; Franklin, M.J. Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology 2005, 151, 2885–2897. [Google Scholar] [CrossRef] [Green Version]
- Patrauchan, M.A.; Sarkisova, S.A.; Franklin, M.J. Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology 2007, 153, 3838–3851. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; De La Fuente, L.; Arias, C.R. Biofilm formation by the fish pathogen Flavobacterium columnare: Development and parameters affecting surface attachment. Appl. Environ. Microbiol. 2013, 79, 5633–5642. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gil, M.; Romero, D.; Kolter, R.; Espinosa-Urgel, M. Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J. Bacteriol. 2012, 194, 6782–6789. [Google Scholar] [CrossRef] [Green Version]
- Hijnen, W.A.M.; Schultz, F.; Harmsen, D.J.H.; Brouwer-Hanzens, A.H.; van der Wielen, P.; Cornelissen, E.R. Calcium removal by softening of water affects biofilm formation on PVC, glass and membrane surfaces. Water Supply 2016, 16, 888–895. [Google Scholar] [CrossRef]
- Júnior, M.C.; Arantes, A.D.M.; Silva, H.M.; Costa, C.R.; Silva, M.D.R.R. Acremonium kiliense: Case report and review of published studies. Mycopathologia 2013, 176, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.S.; Sutton, D.A.; Fothergill, A.W.; Rinaldi, M.G.; Harrak, M.J.; de Hoog, G.S. Spectrum of clinically relevant Exophiala species in the United States. J. Clin. Microbiol. 2007, 45, 3713–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hoog, G.S.; Zeng, J.S.; Harrak, M.J.; Sutton, D.A. Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Anton. Leeuw. Int. J. G. 2006, 90, 25–268. [Google Scholar] [CrossRef] [PubMed]
- Najafzadeh, M.J.; Suh, M.K.; Lee, M.H.; Ha, G.Y.; Kim, J.R.; Kim, T.H.; Lee, H.J.; Choi, J.S.; Meis, J.; De Hoog, G.S. Subcutaneous phaeohyphomycosis caused by Exophiala equina, with susceptibility to eight antifungal drugs. J. Med Microbiol. 2013, 62, 797–800. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.; Mendez, M.; Kibbler, C.; Erzsebet, P.; Chang, S.-C.; Gibbs, D.L.; Newell, V.A.; The Global Antifungal Surveillance Group. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: Geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J. Clin. Microbiol. 2006, 44, 3551–3556. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, A.C.; Antunes, A.G.V.; Severo, L.C. Candida guilliermondii as the aetiology of candidosis. Rev. Do Inst. Med. Trop. São Paulo 2006, 48, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Babič, M.N.; Zalar, P.; Ženko, B.; Schroers, H.-J.; Džeroski, S.; Gunde-Cimerman, N. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol. 2015, 119, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.; Sutton, D.A.; García, D.; Gené, J.; Thomson, P.; Wiederhold, N.; Guarro, J. Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol. 2016, 120, 1458–1467. [Google Scholar] [CrossRef]
- Guevara-Suarez, M.; Sutton, D.A.; Cano-Lira, J.F.; García, D.; Martin-Vicente, A.; Wiederhold, N.; Guarro, J.; Gené, J. Identification and antifungal susceptibility of Penicillium-like fungi from clinical samples in the United States. J. Clin. Microbiol. 2016, 54, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Denis, M.; Sutton, D.A.; Martin-Vicente, A.; Cano-Lira, J.F.; Wiederhold, N.; Guarro, J.; Gené, J. Cladosporium species recovered from clinical samples in the United States. J. Clin. Microbiol. 2015, 53, 2990–3000. [Google Scholar] [CrossRef] [Green Version]
- MSZ EN ISO 8199:2005. Water Quality—General Requirements and Guidance for Microbiological Examinations by Culture, “Vízminőség. Általános Útmutatás a Mikroorganizmusok Megszámlálására Tenyésztéssel”; Magyar Szabványügyi Testület: Budapest, Hungary, 2008. [Google Scholar]
- MSZ EN ISO 16266:2006. Water Quality—Detection and Enumeration of Pseudomonas aeruginosa—Method by Membrane Filtration, “Vízminőség. Pseudomonas Aeruginosa Kimutatása és Megszámlálása. Membránszűréses Módszer”; Magyar Szabványügyi Testület: Budapest, Hungary, 2008. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, a Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Liu, D. Molecular Detection of Human Fungal Pathogens, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 17–18. [Google Scholar] [CrossRef]
- Hatvani, L.; Antal, Z.; Manczinger, L.; Szekeres, A.; Druzhinina, I.S.; Kubicek, C.P.; Nagy, A.; Nagy, E.; Vágvölgyi, C.; Kredics, L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 2007, 97, 532–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kosár, P. Microbiological and Chemical Safety of Drinking Water Derived from Bottled Water Dispenser. Bachelor’s Thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2014. (In Hungarian). [Google Scholar]
Pearson Correlation with Benjamini-Hochberg Correction | ||||
---|---|---|---|---|
Parameter A | Parameter B [CFU/100 mL] | p | R | Corrected p |
pH | Total Fungi a | 0.0005 | 0.41 | 0.007 |
* Yeasts a | 0.0054 | 0.33 | 0.0252 | |
* Filamentous Fungi a | 0.02 | 0.28 | 0.04 | |
Time since the last disinfection or maintenance (days) | Total Fungi a | 0.0064 | 0.62 | 0.0448 |
* Filamentous Fungi a | 0.0056 | 0.62 | 0.0196 | |
Temperature of water [°C] | Total Fungi a | 0.0079 | −0.32 | 0.0369 |
* Filamentous Fungi a | 0.0086 | −0.32 | 0.0241 |
Identification | ID | Type | Identification Type | GenBank Accession Number of: | Relative Frequency in the Sample | Reference | |
---|---|---|---|---|---|---|---|
ITS | tef1α | ||||||
Acremonium egyptiacum | B2131C | cold water | Molecular | MT320780 | - | 0.27 | [22] Perdomo et al., 2011 (FN706550) |
Acremonium sclerotigenum | B2078 | cold water | Molecular | - | MZ190340 | - | |
Acremonium sclerotigenum | B2080 | cold water | Molecular | MT320766 | - | 0.97 | [22] (NR_149332) |
Acremonium sclerotigenum | B2131B | cold water | Molecular | MT320775 | MZ190338 | 0.2 | [22] (NR_149332) |
Acremonium sclerotigenum | B2081 | hot water | Molecular | MT320773 | - | 0.98 | [22] (NR_149332) |
Acremonium sclerotigenum | B03TB | tray swab | Molecular | - | MZ190332 | - | - |
Acremonium sp. | B20A | cold water | Morphological | - | - | 0.33 | - |
Acremonium sp. | B2242B | cold water | Morphological | - | - | 0.27 | - |
Acremonium sp. | B4003B | cold water | Morphological | - | - | 0.02 | - |
Acremonium sp. | B4005A | cold water | Morphological | - | - | 1 | - |
Acremonium sp. | B4402A | cold water | Morphological | - | - | 0.94 | - |
Acremonium sp. | B11CB | tap swab | Morphological | - | - | - | - |
Acremonium sp. | B22TD | tray swab | Morphological | - | - | - | - |
Acremonium sp. | B33TA | tray swab | Morphological | - | - | - | - |
Aspergillus jensenii | B19CSA | tap swab | Molecular | MT320779 | - | - | [23] (NR_135444) |
Aspergillus steynii | B2132B | cold water | Molecular | - | MZ190334 | 0.02 | - |
Aspergillus sp. | B2132C | cold water | Morphological | - | - | 0.53 | - |
Aspergillus sp. | B2245D | cold water | Morphological | - | 0.04 | - | |
Aureobasidium sp. | B2245G | cold water | Morphological | - | - | - | |
Aureobasidium sp. | B14TD | tray swab | Molecular | - | MZ190333 | - | - |
Blastobotrys sp. | B4008C | cold water | Morphological | - | - | 0.08 | - |
Cadophora malorum | B2130D | cold water | Molecular | MT320771 | - | 0.07 | [24] (NR_145268) |
Candida oleophila | B37TC | tray swab | Molecular | MT320774 | - | - | [25] (NR_155224) |
Chaetothyriales sp. | B2244E | cold water | Molecular | - | MZ190326 | 0.13 | - |
Cladosporium cladosporioides | B16HA | cold water | Morphological | - | - | 0.29 | - |
Cladosporium cladosporioides | B19TA | tray swab | Morphological | - | - | - | |
Cladosporium halotolerans | B2130A | cold water | Molecular | MT320762 | - | 0.79 | [26] (NR_119605/DQ780364) |
Cladosporium sp. | B2132F | cold water | Morphological | - | - | 0.07 | - |
Cladosporium sp. | B05TB | tray swab | Morphological | - | - | - | - |
Cladosporium sp. | B09TB | tray swab | Morphological | - | - | - | - |
Cladosporium sp. | B09TC | tray swab | Morphological | - | - | - | - |
Cladosporium sp. | B19TB | tray swab | Morphological | - | - | - | - |
Cladosporium sp. | B23TC | tray swab | Morphological | - | - | - | - |
Cladosporium sp. | B30T | tray swab | Morphological | - | - | - | - |
Cryptococcus sp. | B4009A | cold water | Morphological | - | - | 0.93 | - |
Cylindrocarpon sp. | B4390B | cold water | Morphological | - | - | 0.47 | - |
Cystobasidium minutum | B15TB | tray swab | Molecular | - | MZ190335 | - | - |
Cystobasidium slooffiae | B2242A | cold water | Molecular | MT320776 | - | 0.04 | [27] (NR_103568/AF444627) |
Cystobasidium slooffiae | B14TC | tray swab | Molecular | MT320767 | - | - | [27] (NR_103568/AF444627) |
Cystobasidium slooffiae | B2130B | cold water | Molecular | MW166334 | - | 0.13 | [27] (NR_103568/AF444627) |
Didymella protuberans | B2245A | cold water | Molecular | MT320764 | - | 0.02 | [28] (NR_135993/GU237853) |
Exophiala alcalophila | B0708C | tap swab | Molecular | MT320777 | - | - | [29] (NR_111624) |
Exophiala equina | B4003A | cold water | Molecular | MT320769 | - | 0.7 | [29] (NR_111627) |
Exophiala lecanii-corni | B2242C | cold water | Molecular | MT320770 | MZ190330 | 0.63 | [30] (NR_145351/AY857528) |
Exophiala lecanii-corni | B4003D | cold water | Molecular | MT320768 | - | 0.14 | [30] (NR_145351/AY857528) |
Exophiala sp. | B11CA | tap swab | Molecular | - | MZ190337 | - | - |
Fusariumdimerum | B02TC | tray swab | Molecular | MT320778 | - | - | [31] (NR_137706) |
Fusarium sp. | B2132G | cold water | Morphological | - | - | 0.16 | - |
Geotrichum sp. | B2244B | cold water | Morphological | - | - | 0.07 | - |
Gliomastix polychroma | B2245B | cold water | Molecular | MT320759 | - | 0.02 | [32] (NR_119408) |
Gliomastix sp. | B33TB | tray swab | Morphological | - | - | - | - |
Meyerozyma guilliermondii | B02TA | tray swab | Molecular | MT320761 | - | - | [25] (KY104252) |
Oidiodendron sp. | B31TA | tray swab | Morphological | - | - | - | - |
Paecilomyces sp. | B19CSA | tap swab | Morphological | - | - | - | - |
Penicilliumchrysogenum | B2132A | cold water | Molecular | MT320763 | MZ190336 | 0.05 | [33] (NR_111815) |
Penicillium sp. | B4008A | cold water | Morphological | - | - | 0.82 | - |
Penicillium sp. | B15CSA | tap swab | Morphological | - | - | - | - |
Penicillium sp. | B20TA | tray swab | Morphological | - | - | - | - |
Penicillium sp. | B23TA | tray swab | Morphological | - | - | - | - |
Penicillium sp. | B23TB | tray swab | Morphological | - | - | - | - |
Phaeoramularia sp. | B4397MA | hot water | Morphological | - | - | 0.5 | - |
Purpureocillium lilacinum | B32TA | tray swab | Molecular | - | MZ190328 | - | - |
Purpureocillium lilacinum | B2130C | cold water | Molecular | - | MZ190339 | - | |
Pyricularia sp. | B34CSA | tap swab | Morphological | - | - | - | - |
Rhodotorula sp. | B2245E | cold water | Morphological | - | - | 0.14 | - |
Rhodotorula sp. | B2245F | cold water | Morphological | - | - | 0.07 | - |
Rhodotorula sp. | B02TB | tray swab | Morphological | - | - | - | - |
Rhodotorula sp. | B0708T | tray swab | Morphological | - | - | - | - |
Rhodotorula sp. | B09TA | tray swab | Morphological | - | - | - | - |
Rhodotorula sp. | B14TB | tray swab | Morphological | - | - | - | - |
Rhodotorula sp. | B15TC | tray swab | Morphological | - | - | - | - |
Rhodotorula sp. | B28TA | tray swab | Morphological | - | - | - | - |
Sarocladium kiliense | B2244D | cold water | Molecular | - | MZ190325 | 0.36 | - |
Scopulariopsis sp. | B22TE | tray swab | Morphological | - | - | - | - |
Simplicillium cylindrosporum | B2132E | cold water | Molecular | MT320760 | - | 0.33 | [34] (NR_111023) |
Simplicilliumlanosoniveum | B4009B | cold water | Molecular | MT320765 | MZ190331 | 0.05 | [34] (NR_111025) |
Simplicillium minatense | B2132D | cold water | Molecular | - | MZ190329 | 0.27 | - |
Simplicillium minatense | B22TA | tray swab | Molecular | - | MZ190327 | - | - |
Simplicillium sp. | B4008B | cold water | Morphological | - | - | 0.003 | - |
Talaromyces sp. | B23TD | tray swab | Morphological | - | - | - | - |
Trichosporon sp. | B37TA | tray swab | Morphological | - | - | - | - |
Unidentified filamentous sp. | B09TD | tray swab | Morphological | - | - | - | - |
Unidentified filamentous sp. | B2131A | cold water | Morphological | - | - | 0.1 | - |
Unidentified filamentous sp. | B2244A | cold water | Morphological | - | - | 0.07 | - |
Unidentified filamentous sp. | B4007A | cold water | Morphological | - | - | 0.08 | - |
Unidentified filamentous sp. | B4390A | cold water | Morphological | - | - | 0.50 | - |
Unidentified filamentous sp. | B14MA | hot water | Morphological | - | - | 0.8 | - |
Unidentified yeast sp. | B03TA | tray swab | Morphological | - | - | - | - |
Unidentified yeast sp. | B05TA | tray swab | Morphological | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tischner, Z.; Sebők, R.; Kredics, L.; Allaga, H.; Vargha, M.; Sebestyén, Á.; Dobolyi, C.; Kriszt, B.; Magyar, D. Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities. Pathogens 2021, 10, 871. https://doi.org/10.3390/pathogens10070871
Tischner Z, Sebők R, Kredics L, Allaga H, Vargha M, Sebestyén Á, Dobolyi C, Kriszt B, Magyar D. Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities. Pathogens. 2021; 10(7):871. https://doi.org/10.3390/pathogens10070871
Chicago/Turabian StyleTischner, Zsófia, Rózsa Sebők, László Kredics, Henrietta Allaga, Márta Vargha, Ágnes Sebestyén, Csaba Dobolyi, Balázs Kriszt, and Donát Magyar. 2021. "Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities" Pathogens 10, no. 7: 871. https://doi.org/10.3390/pathogens10070871
APA StyleTischner, Z., Sebők, R., Kredics, L., Allaga, H., Vargha, M., Sebestyén, Á., Dobolyi, C., Kriszt, B., & Magyar, D. (2021). Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities. Pathogens, 10(7), 871. https://doi.org/10.3390/pathogens10070871