To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents
Abstract
:1. Introduction
2. Results
2.1. Assessment of Human Protection
2.2. Assessment of Mosquito Mortality
2.3. Assessment of Human and Environmental Health Risks
3. Discussion
4. Materials and Methods
4.1. Assessment of Human Protection
4.2. Assessment of Mosquito Mortality
4.3. Assessment of Risks to Human and Environmental Health
4.3.1. Characterising Human Health Risks
4.3.2. Characterising Environmental Health Risks
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Delatte, H.; Desvars, A.; Bouétard, A.; Bord, S.; Gimonneau, G.; Vourc’h, G.; Fontenille, D. Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on la Réunion. Vector Borne Zoonotic Dis. 2010, 10, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M.; Schneider, D. Neighborhood quality, environmental hazards, personality traits, and resident actions. Risk Anal. 1997, 17, 169–175. [Google Scholar] [CrossRef]
- Halasa, Y.A.; Shepard, D.S.; Fonseca, D.M.; Farajollahi, A.; Healy, S.; Gaugler, R.; Bartlett-Healy, K.; Strickman, D.A.; Clark, G.G. Quantifying the impact of mosquitoes on quality of life and enjoyment of yard and porch activities in New Jersey. PLoS ONE 2014, 9, e89221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.; Tyrväinen, L.; Sievänen, T.; Pröbstl, U.; Simpson, M. Outdoor recreation and nature tourism: A european perspective. Living Rev. Landsc. Res. 2007, 1. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Draft: Guidelines on the Management of Public Health Pesticides: Report of the WHO Interregional Consultation, Chiang Mai, Thailand 25–28 February 2003; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- van den Berg, H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global trends in the use of insecticides to control vector-borne diseases. Environ. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.A.; O’Neill, S.L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 2018, 16, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Gratz, N.G.; Jany, W.C. What role for insecticides in vector control programs? Am. J. Trop. Med. Hyg. 1994, 50, 11–20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Plan For Insecticide Resistance Manageme; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Reglamento (UE) 2018/1472 de la Comisión. Available online: https://members.wto.org/crnattachments/2018/SPS/EEC/18_5638_00_s.pdf (accessed on 29 July 2021).
- Moreno-Gómez, M.; Bueno-Marí, R.; Miranda, M.A. A three-pronged approach to studying sublethal insecticide doses: Characterising mosquito fitness, mosquito biting behaviour, and human/environmental health risks. Insects 2021, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Ogoma, S.B.; Moore, S.J.; Maia, M.F. A systematic review of mosquito coils and passive emanators: Defining recommendations for spatial repellency testing methodologies. Parasit. Vectors 2012, 5, 287. [Google Scholar] [CrossRef] [Green Version]
- Kawada, H.; Maekawa, Y.; Tsuda, Y.; Takagi, M. Trial of spatial repellency of metofluthrin-impregnated paper strip against Anopheles and Culex in shelters without walls in Lombok, Indonesia. J. Am. Mosq. Control Assoc. 2004, 20, 434–437. [Google Scholar]
- Achee, N.L.; Bangs, M.J.; Farlow, R.; Killeen, G.F.; Lindsay, S.; Logan, J.G.; Moore, S.J.; Rowland, M.; Sweeney, K.; Torr, S.J.; et al. Spatial repellents: From discovery and development to evidence-based validation. Malar. J. 2012, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Bibbs, C.S.; Kaufman, P.E. Volatile pyrethroids as a potential mosquito abatement tool: A review of pyrethroid-containing spatial repellents. J. Integr. Pest Manag. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Efficacy Testing of Spatial Repellents; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- ECHA. Guidance on the Biocidal Products Regulation. Volume II Efficacy—Assessment and Evaluation (Parts B+C). Available online: https://echa.europa.eu/-/bpr-guidance-volume-ii-efficacy-assessment-and-evaluation-parts-b-c- (accessed on 29 July 2021).
- Syafruddin, D.; Asih, P.B.S.; Rozi, I.E.; Permana, D.H.; Hidayati, A.P.N.; Syahrani, L.; Zubaidah, S.; Sidik, D.; Bangs, M.J.; Bøgh, C.; et al. Efficacy of a spatial repellent for control of malaria in Indonesia: A cluster-randomized controlled trial. Am. J. Trop. Med. Hyg. 2019, 103, 344. [Google Scholar] [CrossRef]
- Logan, J.; O’Halloran, V.C.-H. An Expert Review of Spatial Repellents for Mosquito Control. 2020. Available online: https://www.ivcc.com/wp-content/uploads/2020/08/An-Expert-Review-of-Spatial-Repellents-for-Mosquito-Control.pdf (accessed on 10 September 2021).
- Lucas, J.R.; Shono, Y.; Iwasaki, T.; Ishiwatari, T.; Spero, N.; Benzon, G.U.S. Laboratory and field trials of metofluthrin (SumiOne®) emanators for reducing mosquito biting outdoors. J. Am. Mosq. Control Assoc. 2007, 23, 47–54. [Google Scholar] [CrossRef]
- Choi, D.B.; Grieco, J.P.; Apperson, C.S.; Schal, C.; Ponnusamy, L.; Wesson, D.M.; Achee, N.L. Effect of spatial repellent exposure on dengue vector attraction to oviposition sites. PLoS Negl. Trop. Dis. 2016, 10, e0004850. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.J.; Nam, V.S.; Lover, A.A.; Phong, T.V.; Tu, T.C.; Mendenhall, I.H. The impact of transfluthrin on the spatial repellency of the primary malaria mosquito vectors in Vietnam: Anopheles dirus and Anopheles minimus. Malar. J. 2020, 19, 9. [Google Scholar] [CrossRef] [Green Version]
- Masalu, J.P.; Finda, M.; Killeen, G.F.; Ngowo, H.S.; Pinda, P.G.; Okumu, F.O. Creating mosquito-free outdoor spaces using transfluthrin-treated chairs and ribbons. Malar. J. 2020, 19, 109. [Google Scholar] [CrossRef] [PubMed]
- Buhagiar, T.S.; Devine, G.J.; Ritchie, S.A. Metofluthrin: Investigations into the use of a volatile spatial pyrethroid in a global spread of dengue, chikungunya and Zika viruses. Parasit. Vectors 2017, 10, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revay, E.E.; Junnila, A.; Xue, R.-D.; Kline, D.L.; Bernier, U.R.; Kravchenko, V.D.; Qualls, W.A.; Ghattas, N.; Müller, G.C. Evaluation of commercial products for personal protection against mosquitoes. Acta Trop. 2013, 125, 226–230. [Google Scholar] [CrossRef]
- Alten, B.; Caglar, S.S.; Simsek, F.M.; Kaynas, S.; Perich, M.J. Field evaluation of an area repellent system (Thermacell) against Phlebotomus papatasi (Diptera: Psychodidae) and Ochlerotatus caspius (Diptera: Culicidae) in Sanlıurfa Province, Turkey. J. Med. Entomol. 2003, 40, 930–934. [Google Scholar] [CrossRef]
- Dye-Braumuller, K.C.; Haynes, K.F.; Brown, G.C. Quantitative analysis of Aedes albopictus movement behavior following sublethal exposure to prallethrin. J. Am. Mosq. Control Assoc. 2017, 33, 282–292. [Google Scholar] [CrossRef]
- Bernier, U.R.; Clark, G.G.; Gurman, P.; Elman, N.M. The use of microdispensers with spatial repellents for personal protection against mosquito biting. J. Med. Entomol. 2016, 53, 470–472. [Google Scholar] [CrossRef]
- Shen, Y.; Xue, R.-D.; Bibbs, C.S. Relative insecticidal efficacy of three spatial repellent integrated light sources against Aedes aegypti. J. Am. Mosq. Control Assoc. 2017, 33, 348–351. [Google Scholar] [CrossRef]
- Lukwa, N.; Mduluza, T.; Nyoni, C.; Zimba, M. To what extent does salt (NaCl) affect Anopheles gambiae sensu lato mosquito larvae survival? J. Entomol. Acarol. Res. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Kawada, H.; Nakazawa, S.; Shimabukuro, K.; Ohashi, K.; Kambewa, E.A.; Foster Pemba, D. Effect of metofluthrin-impregnated spatial repellent devices combined with new long-lasting insecticidal nets (Olyset® Plus) on pyrethroid-resistant malaria vectors and malaria prevalence: Field trial in south-eastern malawi. Jpn. J. Infect. Dis. 2020, 73, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogoma, S.B.; Ngonyani, H.; Simfukwe, E.T.; Mseka, A.; Moore, J.; Killeen, G.F. Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage. Parasit. Vectors 2012, 5, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogoma, S.B.; Ngonyani, H.; Simfukwe, E.T.; Mseka, A.; Moore, J.; Maia, M.F.; Moore, S.J.; Lorenz, L.M. The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto. PLoS ONE 2014, 9, e110433. [Google Scholar] [CrossRef] [Green Version]
- Darbro, J.M.; Muzari, M.O.; Giblin, A.; Adamczyk, R.M.; Ritchie, S.A.; Devine, G.J. Reducing biting rates of Aedes aegypti with metofluthrin: Investigations in time and space. Parasit. Vectors 2017, 10, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, A.M.; Farooq, M.; Diclaro, J.W.; Kline, D.L.; Estep, A.S. Field evaluation of commercial off-the-shelf spatial repellents against the Asian tiger mosquito, Aedes Albopictus (Skuse), and the potential for use during deployment. US Army Med. Dep. J. 2013, 80–86. [Google Scholar]
- ECHA. Product Type 18—Insecticides, Acaricides and Products to Control Other Product Type 19—Repellents and Attractants (Only Concerning Arthropods). Available online: https://echa.europa.eu/documents/10162/16960215/bpd_guid_tnsg_efficacy_pt18-19_final_en.pdf/9c72241e-0eea-4f23-8e5f-f52d00a83382 (accessed on 29 July 2021).
- Townson, H.; Nathan, M.; Zaim, M.; Guillet, P.; Manga, L.; Bos, R.; Kindhauser, M. Exploiting the potential of vector control for disease prevention. Bull. World Health Organ. 2005, 83, 942–947. [Google Scholar] [PubMed]
- Hénault-Ethier, L. Health and Environmental Impacts of Pyrethroid Insecticides: What We Know, What We Don’t Know and What We Should Do about It; 2016. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork-Targets. Available online: https://ec.europa.eu/food/plants/pesticides/sustainable-use-pesticides/farm-fork-targets-progress_en (accessed on 25 August 2021).
- Sougoufara, S.; Ottih, E.C.; Tripet, F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit. Vectors 2020, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Bayoh, M.N.; Mathias, D.K.; Odiere, M.R.; Mutuku, F.M.; Kamau, L.; Gimnig, J.E.; Vulule, J.M.; Hawley, W.A.; Hamel, M.J.; Walker, E.D. Anopheles gambiae: Historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 2010, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugoro, H.; Iro’ofa, C.; Mackenzie, D.O.; Apairamo, A.; Hevalao, W.; Corcoran, S.; Bobogare, A.; Beebe, N.W.; Russell, T.L.; Chen, C.-C. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malar. J. 2011, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Manguin, S. Anopheles Mosquitoes: New Insights into Malaria Vectors; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Macdonald, G. Epidemiologic models in studies of vetor-borne diseases: The re dyer lecture. Public Health Rep. 1961, 76, 753. [Google Scholar] [CrossRef]
- Maia, M.F.; Kliner, M.; Richardson, M.; Lengeler, C.; Moore, S.J. Mosquito repellents for malaria prevention. Cochrane Database Syst. Rev. 2018, 2, CD011595. [Google Scholar] [CrossRef] [Green Version]
- Hul, N.V.; Braks, M.; Bortel, W.V. A Systematic Review to Understand the Value of Entomological Endpoints for Assessing the Efficacy of Vector Control Interventions. External Scientific Report. 2021. Available online: https://www.efsa.europa.eu/sites/default/files/2021-07/en-9984.pdf (accessed on 10 September 2021).
- World Health Organization. How to Design Vector Control. Efficacy Trials: Guidance on Phase III Vector Control. Field Trial Design Provided by the Vector Control. Advisory Group; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ten Bosch, Q.A.; Wagman, J.M.; Castro-Llanos, F.; Achee, N.L.; Grieco, J.P.; Perkins, T.A. Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes. PLoS Comput. Biol. 2020, 16, e1008190. [Google Scholar] [CrossRef] [PubMed]
- Wagman, J.M.; Achee, N.L.; Grieco, J.P. Insensitivity to the spatial repellent action of transfluthrin in Aedes aegypti: A heritable trait associated with decreased insecticide susceptibility. PLoS Negl. Trop. Dis. 2015, 9, e0003726. [Google Scholar] [CrossRef] [Green Version]
- Collins, E.; Vaselli, N.M.; Sylla, M.; Beavogui, A.H.; Orsborne, J.; Lawrence, G.; Wiegand, R.E.; Irish, S.R.; Walker, T.; Messenger, L.A. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci. Rep. 2019, 9, 8846. [Google Scholar] [CrossRef] [Green Version]
- Implications of Insecticide Resistance Consortium. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: Trends in pyrethroid resistance during a WHO-coordinated multi-country prospective study. Parasit. Vectors 2018, 11, 550. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.F.; Kreppel, K.; Mbeyela, E.; Roman, D.; Mayagaya, V.; Lobo, N.F.; Ross, A.; Moore, S.J. A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasit. Vectors 2016, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Gordon, U.; Ruther, J.; Bernier, U.R.; Rose, A.; Geier, M. Development and evaluation of push-pull control strategies against Aedes aegypti (Diptera: Culicidae). In Advances in the Biorational Control of Medical and Veterinary Pests; ACS Publications: Washington, DC, USA, 2018; pp. 187–204. [Google Scholar]
- Tambwe, M.M.-G.; Moore, S.J.; Chilumba, H.; Swai, J.K.; Moore, J.D.; Stica, C.; Saddler, A. Semi-field evaluation of freestanding transfluthrin passive emanators and the BG sentinel trap as a “push-pull control strategy” against Aedes aegypti mosquitoes. Parasit. Vectors 2020, 13, 392. [Google Scholar] [CrossRef]
- Mmbando, A.S.; Batista, E.P.A.; Kilalangongono, M.; Finda, M.F.; Mwanga, E.P.; Kaindoa, E.W.; Kifungo, K.; Njalambaha, R.M.; Ngowo, H.S.; Eiras, A.E.; et al. Evaluation of a push-pull system consisting of transfluthrin-treated eave ribbons and odour-baited traps for control of indoor- and outdoor-biting malaria vectors. Malar. J. 2019, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, M.M.-G.; Fillinger, U.; Saddler, A.; Moore, S.; Takken, W.; van Loon, J.J.A.; Hiscox, A. Evaluating putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit. Vectors 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.R.; Overgaard, H.J.; Abaga, S.; Reddy, V.P.; Caccone, A.; Kiszewski, A.E.; Slotman, M.A. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 2011, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Grisenti, M.; Vázquez, A.; Herrero, L.; Cuevas, L.; Perez-Pastrana, E.; Arnoldi, D.; Rosà, R.; Capelli, G.; Tenorio, A.; Sánchez-Seco, M.P.; et al. Wide detection of Aedes flavivirus in north-eastern Italy—A European hotspot of emerging mosquito-borne diseases. J. Gen. Virol. 2015, 96, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcos, D.; Mazzon, L.; Cerretti, P.; Mei, M.; Giussani, E.; Drago, A.; Marini, L. Effects of natural pyrethrum and synthetic pyrethroids on the tiger mosquito, Aedes albopictus (Skuse) and non-target flower-visiting insects in urban green areas of Padua, Italy. Int. J. Pest Manag. 2019, 66, 215–221. [Google Scholar] [CrossRef]
- Marini, L.; Baseggio, A.; Drago, A.; Martini, S.; Manella, P.; Romi, R.; Mazzon, L. Efficacy of two common methods of application of residual insecticide for controlling the Asian tiger mosquito, Aedes albopictus (Skuse), in urban areas. PLoS ONE 2015, 10, e0134831. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Gómez, M.; Bueno-Marí, R.; Drago, A.; Miranda, M.A. From the field to the laboratory: Quantifying outdoor mosquito landing rate to better evaluate topical repellents. J. Med. Entomol. 2021, 58, 1287–1297. [Google Scholar] [CrossRef]
- ECHA. Guidance on the Biocidal Products Regulation: Volume II Parts B + C. Available online: https://echa.europa.eu/documents/10162/23036412/biocides_guidance_micro_organisms_en.pdf/4d028d38-6d3c-4f2d-80f7-3aa2118ca49a (accessed on 29 July 2021).
- World Health Organization. Guidelines for Efficacy Testing of Mosquito Repellents for Human Skin; World Health Organization: Geneva, Switzerland, 2009; pp. 1–6. [Google Scholar]
- Reisen, W.K. Using “Mulla’s Formula” to estimate percent control. In Vector Biology, Ecology and Control; Springer: Dordrecht, The Netherlands, 2010; pp. 127–137. [Google Scholar]
- National Institute for Public Health and the Environment. ConsExpo Website. Available online: https://www.rivm.nl/en/consexpo (accessed on 29 July 2021).
- European Aerosol Federation (FEA). Guide on Inhalation Safety Assessment for Spray Products; European Aerosol Federation (FEA): Zurich, Switzerland, 2013. [Google Scholar]
- European Chemicals Agency. Biocides Human Health Exposure Methodology; European Chemicals Agency: Helsinki, Finland, 2015; p. 355. [Google Scholar]
- National Institute for Public Health and the Environment. ConsExpo Web. Consumer Exposure Models Documentation; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2017; p. 70.
- ECHA. Recommendation no. 14 of the BPC Ad hoc Working Group on Human Exposure. Available online: https://echa.europa.eu/documents/10162/21664016/recom_14+_default+human_factor_values_biocidal+products_en.pdf/88354d31-8a3a-475a-9c7d-d8ef8088d004 (accessed on 29 July 2021).
- Organisation for Economic Cooperation and Development. OECD Series on Emission Scenario Documents Number 18 Emission Scenario Document for Insecticides, Acaricides and Products to Control Other Arthropods for Household and Professional Uses. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2008)14.
- ECHA/EFSA. Guidance on the Biocidal Products Regulation: Volume IV Environment—Assessment and Evaluation (Parts B + C). Available online: https://echa.europa.eu/documents/10162/23036412/bpr_guidance_ra_vol_iv_part_b-c_en.pdf/e2622aea-0b93-493f-85a3-f9cb42be16ae (accessed on 29 July 2021).
- ECHA. Technical Agreements for Biocides Human Health (TOX). Available online: https://webgate.ec.europa.eu/s-circabc/sd/d/0428d181-3849-4fe7-806e-936ceb32f693/TOX-TAB_version_2_0.pdf (accessed on 29 July 2021).
- RMS. Concerning the Making Available on the Market and Use of Biocidal Products Transfluthrin (Insecticides, Acaricides and Products to Control Other Arthropods) Evaluation of Active Substances Assessment Report; RMS: Hague, The Netherlands, 2014; Volume 18, Available online: https://circabc.europa.eu/sd/a/910c7533-aba6-4a93-87c3-31c5f2b04445/Transfluthrin%20-%20PT18 (accessed on 10 September 2021).
- ECHA. TFLPAI Version 9 2015 Relevant Endpoints and PNEC Derivation Environment & Ecotoxicity Substance. Available online: https://echa.europa.eu/documents/10162/a57424ff-942c-31fb-c651-fc754a4f04b5 (accessed on 29 July 2021).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 29 July 2021).
- Authority, E.F.S.; Buist, H.; Craig, P.; Dewhurst, I.; Hougaard Bennekou, S.; Kneuer, C.; Machera, K.; Pieper, C.; Court Marques, D.; Guillot, G. Guidance on dermal absorption. EFSA J. 2017, 15, e04873. [Google Scholar]
- National Institute for Public Health and the Environment. Cleaning Products Fact. Sheet; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2018; p. 262.
- European Commission; DG Environment. Technical Notes for Guidance. Human Exposure to Biocidal Products. Guidance on Exposure Estimation; 2002; p. 409. Available online: https://echa.europa.eu/documents/10162/16960215/bpd_guid_tnsg+human+exposure+2002_en.pdf/af2020f7-6cd2-471a-8cf2-efd1a0500fa8 (accessed on 10 September 2021).
- ter Burg, W.; Bremmer, H.J.; van Engelen, J.G.M.; ter Burg, W.; Bremmer, H.J.; van Engelen, J.G.M. RIVM Rapport 320104007 Do-It-Yourself Products Fact. Sheet; RIVM Report 320104007/2007; 2007; Available online: https://www.rivm.nl/bibliotheek/rapporten/320104007.pdf (accessed on 10 September 2021).
- Camann, D.E.; Majumdar, T.K.; Geno, P.W. Evaluation of Saliva and Artificial Salivary Fluids for Removal of Pesticide Residues from Human Skin; Report EPA/600/R-00/041; U.S. Environmental Protection Agency, National Expo-sure Research Laboratory: Durham, NC, USA, 2000.
Scenario | AEL (mg/kg BM/d) | Estimated Uptake (mg/kg BM/d) | Estimated Uptake/AEL (%) | Acceptable? (Yes/No) |
---|---|---|---|---|
[1] Adults | 0.01 | 2.02 × 10−4 | 2 | Yes |
[2] Adults | 0.01 | 1.6 × 10−6 | <1 | Yes |
[2] Toddlers | 0.01 | 4.80 × 10−6 | <1 | Yes |
[3] Adults | 0.01 | 1.33 × 10−3 | 13 | Yes |
[3] Toddlers | 0.01 | 2.02 × 10−3 | 20 | Yes |
[4] Toddlers | 0.01 | 4.30 × 10−4 | 5 | Yes |
Compartments | |||||
---|---|---|---|---|---|
STP | Aquatic Habitats | Soil | Groundwater | ||
Environment | PEC [mg/L] | PECwater [mg/L] | PECsediment [mg/kg ww *] | PEC [mg/kg ww *] | PEC [μg/L] |
Urban | 1.14 × 10−2 | 1.06 × 10−6 | 1.16 × 10−3 | 2.65 × 10−4 | 2.99 × 10−4 |
Rural | NA | NA | NA | 2.92 × 10−3 | 3.30 × 10−3 |
STP | Aquatic Habitats | Soil | Groundwater | ||
---|---|---|---|---|---|
Environment | PEC/PNEC | PEC/PNECwater | PEC/PNECsediment | PEC/PNEC | PEC/PNEC |
Urban | 2.00 × 10−3 | 0.61 | 0.65 | 3.01 × 10−3 | NA * |
Rural | NA | NA | NA | 3.32 × 10−2 | NA * |
Exposure Scenario | PEC [mg/kg] * | PEC [mg/kg] * | PEC/PNEC | |
---|---|---|---|---|
Acute Oral Exposure | Short-Term Oral Exposure | Acute Oral Exposure | Short-Term Oral Exposure | |
Vermivorous mammals | 1.52 × 10−1 | 2.28 × 10−2 | ||
Insectivorous mammals | 1.01 × 10−8 | 3.70 × 10−9 | 1.52 × 10−9 | 5.54 × 10−10 |
Scenario Number | Scenario Description | Primary or Secondary Exposure—Description | Population |
---|---|---|---|
1 | Application to outdoor surfaces | Primary exposure Low-pressure spraying of the ready-to-use formula | Adults |
2 | Inhalation of volatilised residues | Secondary exposure General public exposed during the post-application period via residue inhalation | Adults, toddlers |
3 | Dermal contact with residues on surfaces | Secondary exposure General public exposed during the post-application period via dermal contact | Adults, toddlers |
4 | Ingestion of residues on surfaces | Secondary exposure Children exposed during the post-application period via dermal and oral contact (hand-to-mouth behaviour) | Toddlers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Gómez, M.; Miranda, M.A.; Bueno-Marí, R. To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens 2021, 10, 1171. https://doi.org/10.3390/pathogens10091171
Moreno-Gómez M, Miranda MA, Bueno-Marí R. To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens. 2021; 10(9):1171. https://doi.org/10.3390/pathogens10091171
Chicago/Turabian StyleMoreno-Gómez, M., M. A. Miranda, and R. Bueno-Marí. 2021. "To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents" Pathogens 10, no. 9: 1171. https://doi.org/10.3390/pathogens10091171
APA StyleMoreno-Gómez, M., Miranda, M. A., & Bueno-Marí, R. (2021). To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens, 10(9), 1171. https://doi.org/10.3390/pathogens10091171