A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy
Abstract
:1. Introduction
2. Effects of Helminth Infections on Vaccine Efficacy
2.1. Human Studies
2.2. Animal Models
3. Immunological Mechanisms of Helminth Infections Affecting Vaccination Efficacy
3.1. Immune Shift Caused by Helminth Infections
3.2. Immune Regulation of Helminths
3.3. Other Related Immunological Mechanisms
4. Do helminth Infections Interfere with COVID-19 Vaccine Efficacy?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berche, P. Life and death of smallpox. Presse Med. 2022, 51, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Arístegui, J.U.V.; Coovadia, H.; Riedemann, S.; Win, K.M.; Gatchalian, S.; Bock, H.L. Facilitating the WHO expanded program of immunization: The clinical profile of a combined diphtheria, tetanus, pertussis, hepatitis B and Haemophilus influenzae type b vaccine Int. J. Infect. Dis. 2003, 7, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Kabagenyi, J.; Natukunda, A.; Nassuuna, J.; Sanya, R.E.; Nampijja, M.; Webb, E.L.; Elliott, A.M.; Nkurunungi, G. Urban-rural differences in immune responses to mycobacterial and tetanus vaccine antigens in a tropical setting: A role for helminths? Parasitol. Int. 2020, 78, 102132. [Google Scholar] [CrossRef] [PubMed]
- Nono, J.K.; Kamdem, S.D.; Musaigwa, F.; Nnaji, C.A.; Brombacher, F. Influence of schistosomiasis on host vaccine responses. Trends Parasitol. 2022, 38, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Olivieri, R.; Lazzeri, E.; Medaglini, D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front. Microbiol. 2019, 10, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [Green Version]
- Nkurunungi, G.; Zirimenya, L.; Nassuuna, J.; Natukunda, A.; Kabuubi, P.N.; Niwagaba, E.; Oduru, G.; Kabami, G.; Amongin, R.; Mutebe, A.; et al. Effect of intensive treatment for schistosomiasis on immune responses to vaccines among rural Ugandan island adolescents: Randomised controlled trial protocol A for the ‘POPulation differences in VACcine responses’ (POPVAC) programme. BMJ Open 2021, 11, e040426. [Google Scholar] [CrossRef] [PubMed]
- Qadri, F.; Bhuiyan, T.R.; Sack, D.A.; Svennerholm, A.M. Immune responses and protection in children in developing countries induced by oral vaccines. Vaccine 2013, 31, 452–460. [Google Scholar] [CrossRef]
- Elias, D.W.D.; Akuffo, H.; Petros, B.; Bronner, U.; Britton, S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin. Exp. Immunol. 2001, 123, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Tweyongyere, R.; Nassanga, B.R.; Muhwezi, A.; Odongo, M.; Lule, S.A.; Nsubuga, R.N.; Webb, E.L.; Cose, S.C.; Elliott, A.M. Effect of Schistosoma mansoni infection and its treatment on antibody responses to measles catch-up immunisation in pre-school children: A randomised trial. PLoS Negl. Trop. Dis. 2019, 13, e0007157. [Google Scholar] [CrossRef]
- Flugge, J.; Adegnika, A.A.; Honkpehedji, Y.J.; Sandri, T.L.; Askani, E.; Manouana, G.P.; Massinga Loembe, M.; Bruckner, S.; Duali, M.; Strunk, J.; et al. Impact of Helminth Infections during Pregnancy on Vaccine Immunogenicity in Gabonese Infants. Vaccines 2020, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Wait, L.F.; Dobson, A.P.; Graham, A.L. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 2020, 38, 5582–5590. [Google Scholar] [CrossRef]
- Natukunda, A.; Zirimenya, L.; Nassuuna, J.; Nkurunungi, G.; Cose, S.; Elliott, A.M.; Webb, E.L. The effect of helminth infection on vaccine responses in humans and animal models: A systematic review and meta-analysis. Parasite Immunol. 2022, 44, e12939. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Larrotta, C.; Arango, E.M.; Carmona-Fonseca, J. Negative immunomodulation by parasitic infections in the human response to vaccines. J. Infect. Dev. Ctries. 2018, 12, 812–823. [Google Scholar] [CrossRef]
- Inclan-Rico, J.M.; Ponessa, J.J.; Valero-Pacheco, N.; Hernandez, C.M.; Sy, C.B.; Lemenze, A.D.; Beaulieu, A.M.; Siracusa, M.C. Basophils prime group 2 innate lymphoid cells for neuropeptide-mediated inhibition. Nat. Immunol. 2020, 21, 1181–1193. [Google Scholar] [CrossRef]
- Su, Z.; Segura, M.; Stevenson, M.M. Reduced protective efficacy of a blood-stage malaria vaccine by concurrent nematode infection. Infect Immun. 2006, 74, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Elias, D.; Akuffo, H.; Pawlowski, A.; Haile, M.; Schon, T.; Britton, S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005, 23, 1326–1334. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.Q.; Lei, J.H.; Guan, F.; Li, M.J.; Song, W.J.; Li, Y.L.; Wang, T. Chronic Schistosoma japonicum infection reduces immune response to vaccine against hepatitis B in mice. PLoS ONE 2012, 7, e51512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haseeb, M.A.C.J.P. Suppression of the immune response to diphtheria toxoid in murine schistosomiasis. Vaccine 1997, 15, 45–50. [Google Scholar] [CrossRef]
- Nono, J.K.; Kamdem, S.D.; Netongo, P.M.; Dabee, S.; Schomaker, M.; Oumarou, A.; Brombacher, F.; Moyou-Somo, R. Schistosomiasis Burden and Its Association With Lower Measles Vaccine Responses in School Children From Rural Cameroon. Front. Immunol. 2018, 9, 2295. [Google Scholar] [CrossRef]
- Riner, D.K.; Ndombi, E.M.; Carter, J.M.; Omondi, A.; Kittur, N.; Kavere, E.; Korir, H.K.; Flaherty, B.; Karanja, D.; Colley, D.G. Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid. PLoS Negl. Trop. Dis. 2016, 10, e0005180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSorley, H.J.; Maizels, R.M. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 2012, 25, 585–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, V.; Mogaka, S. Effect of Helminth Infections on the Immunogenicity and Efficacy of Vaccines: A Classical Review. Am. J. Biomed. Life Sci. 2018, 6, 113–117. [Google Scholar] [CrossRef]
- Akelew, Y.; Andualem, H.; Ebrahim, E.; Atnaf, A.; Hailemichael, W. Immunomodulation of COVID-19 severity by helminth co-infection: Implications for COVID-19 vaccine efficacy. Immun. Inflamm. Dis. 2022, 10, e573. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.J.; Ndao, M. Promising Technologies in the Field of Helminth Vaccines. Front. Immunol. 2021, 12, 711650. [Google Scholar] [CrossRef] [PubMed]
- Helminthiasis. Available online: https://www.afro.who.int/health-topics/helminthiasis (accessed on 1 July 2022).
- Gazzinelli-Guimaraes, P.H.; Nutman, T.B. Helminth parasites and immune regulation. F1000Res 2018, 7, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzinelli-Guimaraes, P.H.; de Freitas, L.F.; Gazzinelli-Guimaraes, A.C.; Coelho, F.; Barbosa, F.S.; Nogueira, D.; Amorim, C.; Dhom-Lemos, L.C.; Oliveira, L.M.; da Silveira, A.B.; et al. Concomitant helminth infection downmodulates the Vaccinia virus-specific immune response and potentiates virus-associated pathology. Int. J. Parasitol. 2017, 47, 1–10. [Google Scholar] [CrossRef]
- Lang, R.; Schick, J. Review: Impact of Helminth Infection on Antimycobacterial Immunity-A Focus on the Macrophage. Front. Immunol. 2017, 8, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambura, A.G.; Mwanga, G.G.; Luboobi, L.; Kuznetsov, D. Modeling the Effects of Helminth Infection on the Transmission Dynamics of Mycobacterium tuberculosis under Optimal Control Strategies. Comput. Math. Methods Med. 2020, 2020, 8869377. [Google Scholar] [CrossRef]
- Fernandez-Nino, J.A.; Idrovo, A.J.; Cucunuba, Z.M.; Reyes-Harker, P.; Guerra, A.P.; Moncada, L.I.; Lopez, M.C.; Barrera, S.M.; Cortes, L.J.; Olivera, M.; et al. Paradoxical associations between soil-transmitted helminths and Plasmodium falciparum infection. Trans. R Soc. Trop. Med. Hyg. 2012, 106, 701–708. [Google Scholar] [CrossRef]
- Sripa, B.; Tangkawattana, S.; Brindley, P.J. Update on Pathogenesis of Opisthorchiasis and Cholangiocarcinoma. Adv. Parasitol. 2018, 102, 97–113. [Google Scholar] [CrossRef] [PubMed]
- New TB Vaccine Research. Available online: https://www.who.int/teams/global-tuberculosis-programme/research-innovation/vaccines (accessed on 12 July 2022).
- Galvani, A.P. Age-dependent epidemiological patterns and strain diversity in helminth parasites. J. Parasitol. 2005, 91, 24–30. [Google Scholar] [CrossRef]
- Wajja, A.; Kizito, D.; Nassanga, B.; Nalwoga, A.; Kabagenyi, J.; Kimuda, S.; Galiwango, R.; Mutonyi, G.; Vermaak, S.; Satti, I.; et al. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial. PLoS Negl. Trop. Dis. 2017, 11, e0005440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, P.J.; Chico, M.E.; Losonsky, G.; Sandoval, C.; Espinel, I.; Sridhara, R.; Aguilar, M.; Guevara, A.; Guderian, R.H.; Levine, M.M.; et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J. Infect. Dis. 2000, 182, 1199–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musaigwa, F.; Kamdem, S.D.; Mpotje, T.; Mosala, P.; Abdel Aziz, N.; Herbert, D.R.; Brombacher, F.; Nono, J.K. Schistosoma mansoni infection induces plasmablast and plasma cell death in the bone marrow and accelerates the decline of host vaccine responses. PLoS Pathog. 2022, 18, e1010327. [Google Scholar] [CrossRef] [PubMed]
- Nouatin, O.; Mengue, J.B.; Dejon-Agobe, J.C.; Fendel, R.; Ibanez, J.; Ngoa, U.A.; Edoa, J.R.; Adegbite, B.R.; Honkpehedji, Y.J.; Zinsou, J.F.; et al. Exploratory analysis of the effect of helminth infection on the immunogenicity and efficacy of the asexual blood-stage malaria vaccine candidate GMZ2. PLoS Negl. Trop. Dis. 2021, 15, e0009361. [Google Scholar] [CrossRef]
- Esen, M.; Mordmuller, B.; de Salazar, P.M.; Adegnika, A.A.; Agnandji, S.T.; Schaumburg, F.; Hounkpatin, A.B.; Bruckner, S.; Theisen, M.; Belard, S.; et al. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura. Vaccine 2012, 30, 7621–7624. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Crease, I.A.; Blackwell, A.D.; Kraft, T.S.; Emery Thompson, M.; Maldonado Suarez, I.; Cummings, D.K.; Stieglitz, J.; Snyder-Mackler, N.; Gurven, M.; Kaplan, H.; et al. Helminth infection is associated with dampened cytokine responses to viral and bacterial stimulations in Tsimane forager-horticulturalists. Evol. Med. Public Health 2021, 9, 349–359. [Google Scholar] [CrossRef]
- Wammes, L.J.; Hamid, F.; Wiria, A.E.; de Gier, B.; Sartono, E.; Maizels, R.M.; Luty, A.J.; Fillie, Y.; Brice, G.T.; Supali, T.; et al. Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur. J. Immunol. 2010, 40, 437–442. [Google Scholar] [CrossRef]
- Elias, D.; Britton, S.; Aseffa, A.; Engers, H.; Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 2008, 26, 3897–3902. [Google Scholar] [CrossRef]
- Apiwattanakul, N.; Thomas, P.G.; Iverson, A.R.; McCullers, J.A. Chronic helminth infections impair pneumococcal vaccine responses. Vaccine 2014, 32, 5405–5410. [Google Scholar] [CrossRef] [PubMed]
- Bobat, S.; Darby, M.; Mrdjen, D.; Cook, C.; Logan, E.; Auret, J.; Jones, E.; Schnoeller, C.; Flores-Langarica, A.; Ross, E.A.; et al. Natural and vaccine-mediated immunity to Salmonella Typhimurium is impaired by the helminth Nippostrongylus brasiliensis. PLoS Negl. Trop. Dis. 2014, 8, e3341. [Google Scholar] [CrossRef] [PubMed]
- Dzhivhuho, G.A.; Rehrl, S.A.; Ndlovu, H.; Horsnell, W.G.C.; Brombacher, F.; Williamson, A.L.; Chege, G.K. Chronic schistosomiasis suppresses HIV-specific responses to DNA-MVA and MVA-gp140 Env vaccine regimens despite antihelminthic treatment and increases helminth-associated pathology in a mouse model. PLoS Pathog. 2018, 14, e1007182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, V.; Waihenya, R.; Kamau, L.; Nyakundi, R.; Ambala, P.; Kariuki, T.; Ochola, L. An investigation into the role of chronic Schistosoma mansoni infection on Human Papillomavirus (HPV) vaccine induced protective responses. PLoS Negl. Trop. Dis. 2019, 13, e0007704. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, W.; Brunn, M.L.; Stetter, N.; Gagliani, N.; Muscate, F.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Rep. 2019, 29, 2243–2256 e2244. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, W.; Brunn, M.L.; Stetter, N.; Gabriel, G.; Breloer, M. Pre-existing helminth infection impairs the efficacy of adjuvanted influenza vaccination in mice. PLoS ONE 2022, 17, e0266456. [Google Scholar] [CrossRef] [PubMed]
- Stetter, N.; Hartmann, W.; Brunn, M.L.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. A Combination of Deworming and Prime-Boost Vaccination Regimen Restores Efficacy of Vaccination Against Influenza in Helminth-Infected Mice. Front. Immunol. 2021, 12, 784141. [Google Scholar] [CrossRef] [PubMed]
- Menegon, Y.A.; Pinheiro, N.B.; Santos, L.M.; Rodrigues, P.R.C.; Avila, L.F.C.; Conceicao, F.R.; Leite, F.P.L. Toxocara canis infection may impair bovine herpesvirus type 5 immunization. Res. Vet. Sci. 2020, 132, 268–270. [Google Scholar] [CrossRef]
- Kolbaum, J.; Tartz, S.; Hartmann, W.; Helm, S.; Nagel, A.; Heussler, V.; Sebo, P.; Fleischer, B.; Jacobs, T.; Breloer, M. Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. Eur. J. Immunol. 2012, 42, 890–900. [Google Scholar] [CrossRef]
- Haben, I.; Hartmann, W.; Breloer, M. Nematode-induced interference with vaccination efficacy targets follicular T helper cell induction and is preserved after termination of infection. PLoS Negl. Trop Dis. 2014, 8, e3170. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Classon, C.; Teran, G.; Yang, Y.; Li, L.; Chan, S.; Ribacke, U.; Rothfuchs, A.G.; Coquet, J.M.; Nylen, S. Atrophy of skin-draining lymph nodes predisposes for impaired immune responses to secondary infection in mice with chronic intestinal nematode infection. PLoS Pathog 2018, 14, e1007008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, F.E. History of human parasitology. Clin Microbiol Rev 2002, 15, 595–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maizels, R.M. Regulation of immunity and allergy by helminth parasites. Allergy 2020, 75, 524–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakeri, A.; Hansen, E.P.; Andersen, S.D.; Williams, A.R.; Nejsum, P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front. Immunol. 2018, 9, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Ruiter, K.; Jochems, S.P.; Tahapary, D.L.; Stam, K.A.; Konig, M.; van Unen, V.; Laban, S.; Hollt, T.; Mbow, M.; Lelieveldt, B.P.F.; et al. Helminth infections drive heterogeneity in human type 2 and regulatory cells. Sci. Transl. Med. 2020, 12, eaaw3703. [Google Scholar] [CrossRef] [Green Version]
- Nausch, N.; Mutapi, F. Group 2 ILCs: A way of enhancing immune protection against human helminths? Parasite Immunol. 2018, 40, e12450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, P.J.; Chico, M.; Sandoval, C.; Espinel, I.; Guevara, A.; Levine, M.M.; Griffin, G.E.; Nutman, T.B. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect. Immun. 2001, 69, 1574–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Guan, F.; Sun, L.; Zhang, Y.; Zhang, X.; Lu, S.; Liu, W. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4(+) T cell response. Parasites Vectors 2020, 13, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maizels, R.M.; McSorley, H.J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 2016, 138, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, I.; LaBeaud, A.D.; Morris, N.; McKibben, M.; Mungai, P.; Muchiri, E.; King, C.L.; King, C.H. Cord Blood Antiparasite Interleukin 10 as a Risk Marker for Compromised Vaccine Immunogenicity in Early Childhood. J. Infect. Dis. 2018, 217, 1426–1434. [Google Scholar] [CrossRef]
- Merad, M.B.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Chen, C.; Shi, Q.; Dong, X.-P. SARS-CoV-2 Lambda Variant: Spatiotemporal Distribution and Potential Public Health Impact. Zoonoses 2021, 1, 5. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 19 August 2022).
- Yildirim, Z.; Sahin, O.S.; Yazar, S.; Bozok Cetintas, V. Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol. Int. 2021, 45, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, R.S.; Piedrafita, D.; Greenhill, A.; Mahanty, S. Will helminth co-infection modulate COVID-19 severity in endemic regions? Nat. Rev. Immunol. 2020, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, A. Helminths and COVID-19 Co-Infections: A Neglected Critical Challenge. ACS Pharm. Transl. Sci. 2020, 3, 1039–1041. [Google Scholar] [CrossRef]
- Oyeyemi, O.T.; Okunlola, O.A.; Adebayo, A.D. Assessment of schistosomiasis endemicity and preventive treatment on coronavirus disease 2019 outcomes in Africa. New Microbes New Infect. 2020, 38, 100821. [Google Scholar] [CrossRef]
- Wolday, D.; Gebrecherkos, T.; Arefaine, Z.G.; Kiros, Y.K.; Gebreegzabher, A.; Tasew, G.; Abdulkader, M.; Abraha, H.E.; Desta, A.A.; Hailu, A.; et al. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine 2021, 39, 101054. [Google Scholar] [CrossRef]
- Egwang, T.G.; Owalla, T.J.; Kemigisha, M. COVID-19 vaccine trials must include helminth-infected cohorts. Nat. Immunol. 2022, 23, 148. [Google Scholar] [CrossRef] [PubMed]
- Fonte, L.; Acosta, A.; Sarmiento, M.E.; Ginori, M.; Garcia, G.; Norazmi, M.N. COVID-19 Lethality in Sub-Saharan Africa and Helminth Immune Modulation. Front. Immunol. 2020, 11, 574910. [Google Scholar] [CrossRef]
- Whitehead, B.; Christiansen, S.; Østergaard, L.; Nejsum, P. Helminths and COVID-19 susceptibility, disease progression, and vaccination efficacy. Trends Parasitol. 2022, 38, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Parasites and Parasitology in this SARS-CoV-2, COVID-19 World: An American Society of Parasitologists Presidential Address. J. Parasitol. 2020, 106, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Castells, M.C.; Phillips, E.J. Maintaining Safety with SARS-CoV-2 Vaccines. N Engl. J. Med. 2021, 384, 643–649. [Google Scholar] [CrossRef]
- Bell, R.G. IgE, allergies and helminth parasites: A new perspective on an old conundrum. Immunol. Cell Biol. 1996, 74, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Interim Statement on Dose-Sparing Strategies for COVID-19 Vaccines (Fractionated Vaccine Doses). Available online: https://www.who.int/news/item/10-08-2021-interim-statement-on-dose-sparing-strategies-for-covid-19-vaccines-(fractionated-vaccine-doses) (accessed on 1 July 2022).
Helminth Species | Vaccine Types, Study Subjects and Country | Major Findings | Immunological Mechanisms | References (Year) |
---|---|---|---|---|
Schistosoma mansoni and Schistosoma haematobium | Measles vaccine; Ugandan and Cameroonian children | Decreased antibody production | [10] (2019); [20] (2018) | |
Schistosoma mansoni | Hepatitis B and Tetanus toxoid vaccines; Kenyan adults | Antibody production decreases during long-term protection | IL-5 in PBMC cell culture supernatant ↑ | [21] (2016) |
Ascaris lumbricoides | Live attenuated oral cholera vaccine CVD 103-HgR; Ecuadorian children | Decreased immunogenicity and can be restored by albendazole | IFN-γ and IL-2 in PBMC cell culture supernatant ↓ | [36] (2000) |
Strongyloides stercoralis and Trichuris trichiura | GMZ2 malaria vaccine; Gabonese adults and children | Decreased antibody production and immunogenicity | [38] (2021); [39] (2012) | |
Ascaris lumbricoides | H1N1 vaccine; Tsimané adults | Decreased immunogenicity | IL-1β and IL-2 in PBMC cell culture supernatant ↓ | [40] (2021) |
Geohelminth | BCG; Indonesian children | Decreased immunogenicity | T cell proliferation and IFN-γ concentration ↓; Treg activity ↑ | [41] (2010) |
Intestinal helminth | BCG; Ethiopian adults Ethiopian college students | Decreased immunogenicity and can be restored by albendazole | IFN-γ and IL-12 in PBMC cell culture supernatant↓; IL-4 and TGF-β in PBMC cell culture supernatant ↑ | [9] (2001); [42] (2008) |
Helminth Species | Vaccine Types and Animals Involved | Major Findings | Immunological Mechanisms | References (Year) |
---|---|---|---|---|
Heligmosomoides polygyrus | Plasmodium chabaudi AS antigen; C57BL/6 and BALB/c mice | Decreased antibody production | The levels of IFN-γ in spleen lymphocyte culture supernatants ↓; The levels of IL-4, IL-13, IL-10, and TGF-β ↑ | [16] (2006) |
Schistosoma mansoni | BCG; C57BL mice | Decreased immunogenicity | The concentration of IFN-γ and NO secretion in the culture supernatant of spleen cells ↓; IL-4 and IL-5 in the culture supernatant of spleen cells ↑ | [17] (2005) |
Schistosoma japonicum | HBV vaccine; BALB/c mice | Decreased antibody production and can be improved by praziquantel treatment | The concentrations of IFN-γ and IL-2 and mRNA levels ↓; The concentrations of IL-4 and IL-5 and mRNA levels ↑ | [18] (2012) |
Schistosoma mansoni | Diphtheria toxoid vaccine; CF-1 mice | Decreased antibody production | [19] (1997) | |
Schistosoma mansoni | Hexavalent (DTPa-hepB-IPV-Hib) vaccine; BALB/c mice | Antibody production decreases during long-term protection, which can be restored with praziquantel | B cell numbers and death of bone marrow plasmablasts and plasma cells ↓ | [37] (2022) |
Taenia crassiceps Nippostrongylus brasiliensis | Pneumococcal vaccine PCV13 and PPV23; Porin proteins OmpC, D, and F immunogen; BALB/c mice | Decreased antibody production | B cell numbers in the germinal center of the spleen ↓ | [43] (2014); [44] (2014) |
Schistosoma mansoni | HIV vaccine (SAAVI DNA-C2 (DNA), SAAVI MVA-C (MVA), HIV-1 gp140 Env protein); BALB/c mice | During long-term protection, antibody production decreases, and praziquantel partially restores cellular but not humoral immune responses | The ratio of IFN-γ/IL-4 in the supernatant of spleen cell cultures ↓, IL-10 levels ↑; The levels of IFN-γ and IL-2 ↓; The frequency of cytokine CD4+ and CD8+ T cells production ↓ | [45] (2018) |
Schistosoma mansoni | HPV vaccine; Subadult Papio anubis | Decreased antibody production | [46] (2019) | |
Litomosoides sigmodontis | Influenza season vaccine; C57BL/6 and BALB/c mice | Decreased antibody production | IL-10+ CD49b+ LAG3+ Tr1 cells and IL-10 production ↑ | [47] (2019) |
Toxocara canis | Inactivated BoHV–5 strain SV507/99; BALB/c mice and Cattle | Decreased antibody production | The mRNA levels of IL-12, IL-17 and IL-23 in spleen cells ↓ | [50] (2020) |
Litomosoides sigmodontis | ACT-CSP toxoid construct and the live bacterial oral vaccine; BALB/c mice and Wistar rats and cotton rats | Decreased immunogenicity | The number and function of CD8+ T cells ↓ IFN-γ and TNF-α production ↓ | [51] (2012) |
Litomosoides sigmodontis | DNP-KLH TD antigen; BALB/c mice | Decreased antibody production | The number of B cells and Tfh cells ↓ | [52] (2014) |
Heligmosomides polygyrus | BCG; C57BL/6 mice | Immunogenicity decreased | Peripheral lymph node lymphocytes ↓ | [53] (2018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Liu, W.; Liu, T.; Shi, L.; Zheng, W.; Guan, F.; Lei, J. A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens 2022, 11, 1163. https://doi.org/10.3390/pathogens11101163
Zhu F, Liu W, Liu T, Shi L, Zheng W, Guan F, Lei J. A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens. 2022; 11(10):1163. https://doi.org/10.3390/pathogens11101163
Chicago/Turabian StyleZhu, Feifan, Wenyi Liu, Tong Liu, Linpeng Shi, Wenwen Zheng, Fei Guan, and Jiahui Lei. 2022. "A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy" Pathogens 11, no. 10: 1163. https://doi.org/10.3390/pathogens11101163
APA StyleZhu, F., Liu, W., Liu, T., Shi, L., Zheng, W., Guan, F., & Lei, J. (2022). A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens, 11(10), 1163. https://doi.org/10.3390/pathogens11101163