Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis
Abstract
:1. Introduction
2. Microbial Keratitis
3. Microorganism Adhesion to Contact Lenses
3.1. History of Contact Lenses
3.2. Material Properties
3.3. Adherence Mechanisms
3.4. Pseudomonas Adherence to Contact Lenses
4. Methods to Evaluate Contact Lens Pseudomonas Adhesion
4.1. In Vitro Analyses
4.2. Animal Studies
5. Adhesion of other Microorganisms to Contact Lenses
6. Antimicrobial Contact Lenses
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye 2021, 35, 1084–1101. [Google Scholar] [CrossRef]
- Kimkes, T.E.P.; Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 2019, 44, 106–122. [Google Scholar] [CrossRef]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [Green Version]
- Ray, C.; Shenoy, A.T.; Orihuela, C.J.; González-Juarbe, N. Killing of serratia marcescens biofilms with chloramphenicol. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowakowska, J.; Landmann, R.; Khanna, N. Foreign body infection models to study host-pathogen response and antimicrobial tolerance of bacterial biofilm. Antibiotics 2014, 3, 378–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, A.B.; Nixon, A.D.; Rueff, E.M. Contact lens associated microbial keratitis: Practical considerations for the optometrist. Clin. Optom. 2016, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Apel, A.; Stapleton, F. Risk factors and causative organisms in microbial keratitis. Cornea 2008, 27, 22–27. [Google Scholar] [CrossRef]
- Hilliam, Y.; Kaye, S.; Winstanley, C. Pseudomonas aeruginosa and microbial keratitis. J. Med. Microbiol. 2020, 69, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niederkorn, J.Y.; Alizadeh, H.; Leher, H.; McCulley, J.P. The pathogenesis of acanthamoeba keratitis. Microbes Infect. 1999, 1, 437–443. [Google Scholar] [CrossRef]
- Lakhundi, S.; Siddiqui, R.; Khan, N.A. Pathogenesis of microbial keratitis. Microb. Pathog. 2017, 104, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.W.; Niederkorn, J.Y. The pathophysiology of acanthamoeba keratitis. Trends Parasitol. 2006, 22, 175–180. [Google Scholar] [CrossRef]
- Kuriakose, T.; Thomas, P.A. Keratomycotic malignant glaucoma. Indian J. Ophthalmol. 1991, 39, 118–121. [Google Scholar] [PubMed]
- Dutta, D.; Cole, N.; Willcox, M. Factors influencing bacterial adhesion to contact lenses. Mol. Vis. 2012, 18, 14–21. [Google Scholar] [PubMed]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. 2017. Available online: http://www.who.int/news-room/detail/27-02-2017-who-publisheslist-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded (accessed on 24 March 2022).
- Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of pseudomonas aeruginosa infections. Drugs 2007, 67, 351–368. [Google Scholar] [CrossRef]
- Pinna, A.; Usai, D.; Sechi, L.A.; Molicotti, P.; Zanetti, S.; Carta, A. Detection of virulence factors in pseudomonas aeruginosa strains isolated from contact lens-associated corneal ulcers. Cornea 2008, 27, 320–326. [Google Scholar] [CrossRef]
- Willcox, M.D.P. Pseudomonas aeruginosa infection and inflammation during contact lens wear: A review. Optom. Vis. Sci. 2007, 84, 273–278. [Google Scholar] [CrossRef]
- Suzuki, T.; Inoue, H. Mechanisms underlying contact lens-related keratitis caused by pseudomonas aeruginosa. Eye Contact Lens 2022, 48, 134–137. [Google Scholar] [CrossRef]
- Iglewski, B.H. Pseudomonas. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical: Galveston, TX, USA, 1996; Chapter 27. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8326/ (accessed on 16 November 2022).
- Pinna, A.; Usai, D.; Sechi, L.A.; Zanetti, S.; Jesudasan, N.C.; Thomas, P.A.; Kaliamurthy, J. An outbreak of post-cataract surgery endophthalmitis caused by pseudomonas aeruginosa. Ophthalmology 2009, 116, 2321–2326.e4. [Google Scholar] [CrossRef]
- Buttery, J.P.; Alabaster, S.J.; Heine, R.G.; Scott, S.M.; Crutchfield, R.A.; Garland, S.M. Multiresistant pseudomonas aeruginosa outbreak in a pediatric oncology ward related to bath toys. Pediatr. Infect. Dis. J. 1998, 17, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.; Floch, R.L.; Chamoux, C.; Pannier, M.; Espaze, E.; Richt, H. Pseudomonas aeruginosa outbreak in a burn unit: Role of antimicrobials in the emergence of multiply resistant strains. J. Infect. Dis. 1994, 170, 377–383. [Google Scholar] [CrossRef]
- Abo Elnour, A.; Negm, S.; Ismail, A.; Elhusseiny, M.A. An outbreak of post cataract pseudomonas aeruginosa acute endophthalmitis in egypt. Bull. Natl. Res. Cent. 2019, 43, 13. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Tangkitchot, T.; Silarug, N. An outbreak of pseudomonas aeruginosa postoperative endophthalmitis caused by contaminated intraocular irrigating solution. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 288. [Google Scholar] [CrossRef]
- Bert, F.; Maubec, E.; Bruneau, B.; Berry, P.; Lambert-Zechovsky, N. Multi-resistant pseudomonas aeruginosa outbreak associated with contaminated tap water in a neurosurgery intensive care unit. J. Hosp. Infect. 1998, 39, 53–62. [Google Scholar] [CrossRef]
- Boks, T.; van Dissel, J.T.; Teterissa, N.; Ros, F.; Mahmut, M.H.; Utama, E.D.; Rol, M.; van Asdonk, P.; Airiani, S.; van Meurs, J.C. An outbreak of endophthalmitis after extracapsular cataract surgery probably caused by endotoxin contaminated distilled water used to dissolve acetylcholine. Br. J. Ophthalmol. 2006, 90, 1094–1097. [Google Scholar] [CrossRef] [Green Version]
- Zapp, D.; Loos, D.; Feucht, N.; Khoramnia, R.; Tandogan, T.; Reznicek, L.; Mayer, C. Microbial keratitis-induced endophthalmitis: Incidence, symptoms, therapy, visual prognosis and outcomes. BMC Ophthalmol. 2018, 18, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malihi, M.; Li, X.; Patel, S.; Eck, T.; Chu, D.S.; Zarbin, M.A.; Bhagat, N. Infectious keratitis–associated endophthalmitis: A 14-year study. Retina 2017, 37, 662–666. [Google Scholar] [CrossRef]
- Kashkouli, M.B.; Salimi, S.; Aghaee, H.; Naseripour, M. Bilateral pseudomonas aeruginosa endophthalmitis following bilateral simultaneous cataract surgery. Indian J. Ophthalmol. 2007, 55, 374–375. [Google Scholar] [CrossRef]
- Pan, U.; Jain, A.; Gubert, J.; Kumari, B.; Sindal, M.D. Antibiotic sensitivity trends of pseudomonas endophthalmitis in a tertiary eye care center in south india: A 12-year retrospective study. Indian J. Ophthalmol. 2020, 68, 627. [Google Scholar] [PubMed]
- Eifrig, C.W.; Scott, I.U.; Flynn, H.W., Jr.; Miller, D. Endophthalmitis caused by pseudomonas aeruginosa. Ophthalmology 2003, 110, 1714–1717. [Google Scholar] [CrossRef]
- Hellemans, A.; Bunch, B.H. The Timetables of Science; Simon & Schuster: New York, NY, USA, 1988; p. 367. ISBN 0671621300. [Google Scholar]
- Adolf Eugen Fick (1852–1937). The Science Museum. Available online: https://web.archive.org/web/20150517070106/http://www.sciencemuseum.org.uk/broughttolife/people/adolfeugenfick.aspx (accessed on 28 March 2022).
- Mandell, R.B. Contact Lens Practice, 4th ed.; Charles, C., Ed.; Thomas: Springfield, IL, USA, 1988. [Google Scholar]
- Bier, N. Corneal Contact Lenses. The Optician, 9 September 1949; p. 185. [Google Scholar]
- Terry, R.; Schnider, C.; Holden, B.A. Rigid gas permeable lenses and patient management. CLAO J. 1989, 15, 305–309. [Google Scholar] [PubMed]
- “Types of Contact Lenses”. Insights Optical. Available online: https://www.insightsoptical.com/resource/contact-lenses/types-of-contact-lenses/#:~:text=Soft%20Contact%20Lenses,soft%20plastic%20polymers%20and%20water (accessed on 3 June 2022).
- Zhang, X.; Zhang, Q.; Yan, T.; Jiang, Z.; Zhang, X.; Zuo, Y.Y. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environ. Sci. Technol. 2015, 49, 6164–6171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Saha, M.; Ehrmann, K. Mechanical properties of contact lens materials. Eye Contact Lens 2018, 44 (Suppl. 2), S148–S156. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Ren, D. Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells. Langmuir 2014, 30, 10354–10362. [Google Scholar] [CrossRef]
- Straub, H.; Bigger, C.M.; Valentin, J.; Abt, D.; Qin, X.H.; Eberl, L.; Maniura-Weber, K.; Ren, Q. Bacterial adhesion on soft materials: Passive physicochemical interactions or active bacterial mechanosensing? Adv. Healthc. Mater. 2019, 8, e1801323. [Google Scholar] [CrossRef]
- Valentin, J.D.P.; Qin, X.H.; Fessele, C.; Straub, H.; van der Mei, H.C.; Buhmann, M.T.; Maniura-Weber, K.; Ren, Q. Substrate viscosity plays an important role in bacterial adhesion under fluid flow. J. Colloid Interface Sci. 2019, 552, 247–257. [Google Scholar] [CrossRef]
- Kolewe, K.W.; Zhu, J.; Mako, N.R.; Nonnenmann, S.S.; Schiffman, J.D. Bacterial adhesion is affected by the thickness and stiffness of poly(ethylene glycol) hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 2275–2281. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Wang, H.; Sauer, K.; Ren, D. Cyclic-di-gmp and oprf are involved in the response of pseudomonas aeruginosa to substrate material stiffness during attachment on polydimethylsiloxane (pdms). Front. Microbiol. 2018, 9, 110. [Google Scholar] [CrossRef]
- Klotz, S.A.; Butrus, S.I.; Misra, R.P.; Osato, M.S. The contribution of bacterial surface hydrophobicity to the process of adherence of pseudomonas aeruginosa to hydrophilic contact lenses. Curr. Eye Res. 1989, 8, 195–202. [Google Scholar] [CrossRef]
- Salerno, M.B.; Logan, B.E.; Velegol, D. Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. Langmuir 2004, 20, 10625–10629. [Google Scholar] [CrossRef]
- Garcia-Saenz, M.C.; Arias-Puente, A.; Fresnadillo-Martinez, M.J.; Paredes-Garcia, B. Adherence of two strains of staphylococcus epidermidis to contact lenses. Cornea 2002, 21, 511–515. [Google Scholar] [CrossRef]
- Miller, M.J.; Ahearn, D.G. Adherence of pseudomonas aeruginosa to hydrophilic contact lenses and other substrata. J. Clin. Microbiol. 1987, 25, 1392–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.J.; Wilson, L.A.; Ahearn, D.G. Effects of protein, mucin, and human tears on adherence of pseudomonas aeruginosa to hydrophilic contact lenses. J. Clin. Microbiol. 1988, 26, 513–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahanotu, E.N.; Hyatt, M.D.; Graham, M.J.; Ahearn, D.G. Comparative radiolabel and atp analyses of adhesion of pseudomonas aeruginosa and staphylococcus epidermidis to hydrogel lenses. CLAO J. 2001, 27, 89–93. [Google Scholar] [PubMed]
- Kodjikian, L.; Casoli-Bergeron, E.; Malet, F.; Janin-Manificat, H.; Freney, J.; Burillon, C.; Colin, J.; Steghens, J.-P. Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 267–273. [Google Scholar] [CrossRef]
- Cook, A.D.; Sagers, R.D.; Pitt, W.G. Bacterial adhesion to protein-coated hydrogels. J. Biomater. Appl. 1993, 8, 72–89. [Google Scholar] [CrossRef] [PubMed]
- An, Y.H.; Friedman, R.J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998, 43, 338–348. [Google Scholar] [CrossRef]
- Di Martino, P. Bacterial adherence: Much more than a bond. AIMS Microbiol. 2018, 4, 563–566. [Google Scholar] [CrossRef]
- Shen, Y.; Siryaporn, A.; Lecuyer, S.; Gitai, Z.; Stone, H.A. Flow directs surface-attached bacteria to twitch upstream. Biophys. J. 2012, 103, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Klockgether, J.; Cramer, N.; Wiehlmann, L.; Davenport, C.F.; Tümmler, B. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2011, 2, 150. [Google Scholar] [CrossRef]
- Zolfaghar, I.; Evans, D.J.; Fleiszig, S.M. Twitching motility contributes to the role of pili in corneal infection caused by pseudomonas aeruginosa. Infect. Immun. 2003, 71, 5389–5393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damron, F.H.; Napper, J.; Teter, M.A.; Yu, H.D. Lipotoxin f of pseudomonas aeruginosa is an algu-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to a549 human lung epithelia. Microbiology 2009, 155, 1028–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, S.K.; Ritchings, B.W.; Almira, E.C.; Lory, S.; Ramphal, R. The pseudomonas aeruginosa flagellar cap protein, flid, is responsible for mucin adhesion. Infect. Immun. 1998, 66, 1000–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol. Spectr. 2015, 3, 163–199. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.J.; Schneider, R.P.; Willcox, M.D.P. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria. Curr. Eye Res. 2003, 27, 227–235. [Google Scholar] [CrossRef]
- Nikolaidis, M.; Mossialos, D.; Oliver, S.G.; Amoutzias, G.D. Comparative analysis of the core proteomes among the pseudomonas major evolutionary groups reveals species-specific adaptations for pseudomonas aeruginosa and pseudomonas chlororaphis. Diversity 2020, 12, 289. [Google Scholar] [CrossRef]
- Tran, V.B.; Fleiszig, S.M.; Evans, D.J.; Radke, C.J. Dynamics of flagellum- and pilus-mediated association of pseudomonas aeruginosa with contact lens surfaces. Appl. Environ. Microbiol. 2011, 77, 3644–3652. [Google Scholar] [CrossRef] [Green Version]
- George, M.; Ahearn, D.; Pierce, G.; Gabriel, M. Interactions of pseudomonas aeruginosa and staphylococcus epidermidis in adhesion to a hydrogel. Eye Contact Lens 2003, 29, S105–S109. [Google Scholar] [CrossRef]
- Butrus, S.I.; Klotz, S.A. Contact lens surface deposits increase the adhesion of pseudomonas aeruginosa. Curr. Eye Res. 1990, 9, 717–724. [Google Scholar] [CrossRef]
- Simmons, P.A.; Tomlinson, A.; Seal, D.V. The role of pseudomonas aeruginosa biofilm in the attachment of acanthamoeba to four types of hydrogel contact lens materials. Optom. Vis. Sci. 1998, 75, 860–866. [Google Scholar] [CrossRef]
- Lakkis, C.; Fleiszig, S.M. Resistance of pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity. J. Clin. Microbiol. 2001, 39, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Abidi, S.H.; Sherwani, S.K.; Siddiqui, T.R.; Bashir, A.; Kazmi, S.U. Drug resistance profile and biofilm forming potential of pseudomonas aeruginosa isolated from contact lenses in karachi-pakistan. BMC Ophthalmol. 2013, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Szczotka-Flynn, L.B.; Imamura, Y.; Chandra, J.; Yu, C.; Mukherjee, P.K.; Pearlman, E.; Ghannoum, M.A. Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 2009, 28, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, M.; Sousa, C.; Lira, M.; Elisabete, M.; Oliveira, R.; Oliveira, R.; Azeredo, J. Adhesion of pseudomonas aeruginosa and staphylococcus epidermidis to silicone-hydrogel contact lenses. Optom. Vis. Sci. 2005, 82, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiszig, S.M.; Efron, N.; Pier, G.B. Extended contact lens wear enhances pseudomonas aeruginosa adherence to human corneal epithelium. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2908–2916. [Google Scholar]
- ISO 18259:2001/2014; Ophthalmic Optics–Contact Lens Care Products–Method to Assess Contact Lens Care Products with Contact Lenses in a Lens Case, Challenged with Bacterial and Fungal Organisms. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 14729:2001/A1:2010; International Organization for Standardization. Ophthalmic Optics—Contact Lens Care Products—Method to Assess Contact Lens Care Products and Regimens for Hygienic Management of Contact lenses. International Organization for Standardization: Geneva, Switzerland, 2010.
- Hinojosa, J.A.; Patel, N.B.; Zhu, M.; Robertson, D.M. Antimicrobial efficacy of contact lens care solutions against neutrophil-enhanced bacterial biofilms. Transl. Vis. Sci. Technol. 2017, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Arciola, C.R.; Maltarello, M.C.; Cenni, E.; Pizzoferrato, A. Disposable contact lenses and bacterial adhesion. In vitro comparison between ionic/high-water-content and non-ionic/low-water-content lenses. Biomaterials 1995, 16, 685–690. [Google Scholar] [CrossRef]
- Haworth, K.; Belair, C. Effect of uv-absorbing contact lenses on conjunctival ultraviolet autofluorescence. Curr. Eye Res. 2020, 45, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bandara, M.B.; Vijay, A.K.; Masoudi, S.; Wu, D.; Willcox, M.D. Importance of rub and rinse in use of multipurpose contact lens solution. Optom. Vis. Sci. 2011, 88, 967–972. [Google Scholar] [CrossRef]
- Dantam, J.; Subbaraman, L.N.; Jones, L. Adhesion of pseudomonas aeruginosa, achromobacter xylosoxidans, delftia acidovorans, stenotrophomonas maltophilia to contact lenses under the influence of an artificial tear solution. Biofouling 2020, 36, 32–43. [Google Scholar] [CrossRef]
- Andrews, C.S.; Denyer, S.P.; Hall, B.; Hanlon, G.W.; Lloyd, A.W. A comparison of the use of an atp-based bioluminescent assay and image analysis for the assessment of bacterial adhesion to standard hema and biomimetic soft contact lenses. Biomaterials 2001, 22, 3225–3233. [Google Scholar] [CrossRef]
- Olafsdottir, L.B.; Wright, S.B.; Smithey, A.; Heroux, R.; Hirsch, E.B.; Chen, A.; Lane, B.; Sawhney, M.S.; Snyder, G.M. Adenosine triphosphate quantification correlates poorly with microbial contamination of duodenoscopes. Infect. Control Hosp. Epidemiol. 2017, 38, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Cole, N.; Hume, E.B.H.; Vijay, A.K.; Sankaridurg, P.; Kumar, N.; Willcox, M.D.P. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of clare and clpu. Investig. Ophthalmol. Vis. Sci. 2010, 51, 390–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Zhu, M.; Petroll, W.M.; Robertson, D.M. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5890–5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathews, S.M.; Spallholz, J.E.; Grimson, M.J.; Dubielzig, R.R.; Gray, T.; Reid, T.W. Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea. Cornea 2006, 25, 806–814. [Google Scholar] [CrossRef]
- Metruccio, M.M.E.; Wan, S.J.; Horneman, H.; Kroken, A.R.; Sullivan, A.B.; Truong, T.N.; Mun, J.J.; Tam, C.K.P.; Frith, R.; Welsh, L.; et al. A novel murine model for contact lens wear reveals clandestine il-1r dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with pseudomonas aeruginosa. Ocul. Surf. 2019, 17, 119–133. [Google Scholar] [CrossRef]
- Kang, H.; Sohn, H.-J.; Park, A.Y.; Ham, A.J.; Lee, J.-H.; Oh, Y.-H.; Chwae, Y.-J.; Kim, K.; Park, S.; Yang, H.; et al. Establishment of an acanthamoeba keratitis mouse model confirmed by amoebic DNA amplification. Sci. Rep. 2021, 11, 4183. [Google Scholar] [CrossRef]
- Abou Shousha, M.; Santos, A.R.C.; Oechsler, R.A.; Iovieno, A.; Maestre-Mesa, J.; Ruggeri, M.; Echegaray, J.J.; Dubovy, S.R.; Perez, V.L.; Miller, D.; et al. A novel rat contact lens model for fusarium keratitis. Mol. Vis. 2013, 19, 2596–2605. [Google Scholar]
- Szliter, E.A.; Barrett, R.P.; Gabriel, M.M.; Zhang, Y.; Hazlett, L.D. Pseudomonas aeruginosa–induced inflammation in the rat extended-wear contact lens model. Eye Contact Lens 2006, 32, 12–18. [Google Scholar] [CrossRef]
- Marquart, M.E. Animal models of bacterial keratitis. J. Biomed. Biotechnol. 2011, 2011, 680642. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Lee, C.S. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater. 2020, 113, 101–118. [Google Scholar] [CrossRef] [PubMed]
- ISO 14729:2001/A1:2010; Ophthalmic Optics–Contact Lens Care Products–Microbiological Requirements and Test Methods for Products and Regimens for Hygienic Management of Contact Lenses. International Organization for Standardization: Geneva, Switzerland, 2010.
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef]
- Parment, P.A. The role of serratia marcescens in soft contact lens associated ocular infections. A review. Acta Ophthalmol. Scand. 1997, 75, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Pinna, A.; Usai, D.; Sechi, L.A.; Carta, A.; Zanetti, S. Detection of virulence factors in serratia strains isolated from contact lens-associated corneal ulcers. Acta Ophthalmol. 2011, 89, 382–387. [Google Scholar] [CrossRef]
- Fleiszig, S.M.; Evans, D.J.; Mowrey-McKee, M.F.; Payor, R.; Zaidi, T.S.; Vallas, V.; Muller, E.; Pier, G.B. Factors affecting staphylococcus epidermidis adhesion to contact lenses. Optom. Vis. Sci. 1996, 73, 590–594. [Google Scholar] [CrossRef]
- Butrus, S.I.; Klotz, S.A. Blocking candida adherence to contact lenses. Curr. Eye Res. 1986, 5, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Chandra, J.; Mukherjee, P.K.; Lattif, A.A.; Szczotka-Flynn, L.B.; Pearlman, E.; Lass, J.H.; O’Donnell, K.; Ghannoum, M.A. Fusarium and candida albicans biofilms on soft contact lenses: Model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob. Agents Chemother. 2008, 52, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willcox, M.D.P. Microbial adhesion to silicone hydrogel lenses: A review. Eye Contact Lens 2013, 39, 61–66. [Google Scholar] [CrossRef]
- Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis in england and wales: Incidence, outcome, and risk factors. Br. J. Ophthalmol. 2002, 86, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Lee, J.E.; Lee, D.I.; Yu, H.S. Adhesion of acanthamoeba on cosmetic contact lenses. J. Korean Med. Sci. 2018, 33, e26. [Google Scholar] [CrossRef]
- Padzik, M.; Chomicz, L.; Bluszcz, J.; Maleszewska, K.; Grobelny, J.; Conn, D.B.; Hendiger, E.B. Tannic acid-modified silver nanoparticles in conjunction with contact lens solutions are useful for progress against the adhesion of acanthamoeba spp. To contact lenses. Microorganisms 2022, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention: Healthy Contact Lens Wear and Care. Available online: https://www.cdc.gov/contactlenses/fast-facts.html#:~:text=Between%2040%25%2D90%25%20of,eye%20infection%20or%20inflammation%201 (accessed on 18 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campolo, A.; Pifer, R.; Shannon, P.; Crary, M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens 2022, 11, 1383. https://doi.org/10.3390/pathogens11111383
Campolo A, Pifer R, Shannon P, Crary M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens. 2022; 11(11):1383. https://doi.org/10.3390/pathogens11111383
Chicago/Turabian StyleCampolo, Allison, Reed Pifer, Paul Shannon, and Monica Crary. 2022. "Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis" Pathogens 11, no. 11: 1383. https://doi.org/10.3390/pathogens11111383
APA StyleCampolo, A., Pifer, R., Shannon, P., & Crary, M. (2022). Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens, 11(11), 1383. https://doi.org/10.3390/pathogens11111383