Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, and Plasmids
2.2. Generation of Reassortant-, Mutant-, and Wild-Type Strains
2.3. In Vitro Replication Efficiency of Reassortant and Wild-Type Strains
2.4. Luciferase Reporter Assay
2.5. Ethical Statement and Biosafety
3. Results
3.1. Genetic Compatibility among Wild-Type and Mutated PB2 Segments in the Genetic Background of H5N1EGY
3.2. The Adaptive 591K Can Compensate for the 627K in the Genetic Background of H5N1EGY in Different Mammalian Systems
3.3. Replication Efficiency of PB2_591K H5N1 Variants Is Associated with Enhanced In Vitro Polymerase Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mostafa, A.; Abdelwhab, E.M.; Mettenleiter, T.C.; Pleschka, S. Zoonotic potential of influenza a viruses: A comprehensive overview. Viruses 2018, 10, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.; Zürcher, T.; Ortín, J. Identification of two separate domains in the influenza virus pb1 protein involved in the interaction with the pb2 and pa subunits: A model for the viral rna polymerase structure. Nucleic Acids Res. 1996, 24, 4456–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, A.; Bouvier, D.; Crépin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W. The cap-snatching endonuclease of influenza virus polymerase resides in the pa subunit. Nature 2009, 458, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Bartlam, M.; Lou, Z.; Chen, S.; Zhou, J.; He, X.; Lv, Z.; Ge, R.; Li, X.; Deng, T.; et al. Crystal structure of an avian influenza polymerase pan reveals an endonuclease active site. Nature 2009, 458, 909–913. [Google Scholar] [CrossRef]
- Fodor, E.; Devenish, L.; Engelhardt, O.G.; Palese, P.; Brownlee, G.G.; García-Sastre, A. Rescue of influenza a virus from recombinant DNA. J. Virol. 1999, 73, 9679–9682. [Google Scholar] [CrossRef] [Green Version]
- Pleschka, S.; Jaskunas, R.; Engelhardt, O.G.; Zürcher, T.; Palese, P.; García-Sastre, A. A plasmid-based reverse genetics system for influenza a virus. J. Virol. 1996, 70, 4188–4192. [Google Scholar] [CrossRef] [Green Version]
- Kanrai, P.; Mostafa, A.; Madhugiri, R.; Lechner, M.; Wilk, E.; Schughart, K.; Ylösmäki, L.; Saksela, K.; Ziebuhr, J.; Pleschka, S. Identification of specific residues in avian influenza a virus ns1 that enhance viral replication and pathogenicity in mammalian systems. J. Gen. Virol. 2016, 97, 2135–2148. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Mostafa, A.; El-Shesheny, R.; Seddik, M.Z.; Khalafalla, G.; Shehata, M.; Kandeil, A.; Pleschka, S.; Kayali, G.; Webby, R.; et al. Evolution of h5-type avian influenza a virus towards mammalian tropism in egypt, 2014 to 2015. Pathogens 2019, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.; Mahmoud, S.H.; Shehata, M.; Müller, C.; Kandeil, A.; El-Shesheny, R.; Nooh, H.Z.; Kayali, G.; Ali, M.A.; Pleschka, S. Pa from a recent h9n2 (g1-like) avian influenza a virus (aiv) strain carrying lysine 367 confers altered replication efficiency and pathogenicity to contemporaneous h5n1 in mammalian systems. Viruses 2020, 12, 1046. [Google Scholar] [CrossRef]
- Mostafa, A.; Blaurock, C.; Scheibner, D.; Müller, C.; Blohm, U.; Schäfer, A.; Gischke, M.; Salaheldin, A.H.; Nooh, H.Z.; Ali, M.A.; et al. Genetic incompatibilities and reduced transmission in chickens may limit the evolution of reassortants between h9n2 and panzootic h5n8 clade 2.3.4.4 avian influenza virus showing high virulence for mammals. Virus Evol. 2020, 6, veaa077. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.; Gao, R.; Zhang, X.; Tan, Y.; Wu, A.; Zhu, W.; Zhou, J.; Zou, S.; Li, X.; et al. Genetic tuning of the novel avian influenza a(h7n9) virus during interspecies transmission, china, 2013. Eurosurveillance 2014, 19, 20836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.S.; Guan, Y.; Wang, J.; Smith, G.J.; Xu, K.M.; Duan, L.; Rahardjo, A.P.; Puthavathana, P.; Buranathai, C.; Nguyen, T.D.; et al. Genesis of a highly pathogenic and potentially pandemic h5n1 influenza virus in eastern asia. Nature 2004, 430, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, C.J.; Rajao, D.S.; Perez, D.R. Airborne transmission of avian origin h9n2 influenza a viruses in mammals. Viruses 2021, 13, 1919. [Google Scholar] [CrossRef] [PubMed]
- Hatta, M.; Hatta, Y.; Kim, J.H.; Watanabe, S.; Shinya, K.; Nguyen, T.; Lien, P.S.; Le, Q.M.; Kawaoka, Y. Growth of h5n1 influenza a viruses in the upper respiratory tracts of mice. PLoS Pathog. 2007, 3, e133. [Google Scholar] [CrossRef]
- Steel, J.; Lowen, A.C.; Mubareka, S.; Palese, P. Transmission of influenza virus in a mammalian host is increased by pb2 amino acids 627k or 627e/701n. PLoS Pathog. 2009, 5, e1000252. [Google Scholar] [CrossRef]
- Watanabe, T.; Kiso, M.; Fukuyama, S.; Nakajima, N.; Imai, M.; Yamada, S.; Murakami, S.; Yamayoshi, S.; Iwatsuki-Horimoto, K.; Sakoda, Y.; et al. Characterization of h7n9 influenza a viruses isolated from humans. Nature 2013, 501, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Mehle, A.; Doudna, J.A. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 21312–21316. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Hatta, M.; Staker, B.L.; Watanabe, S.; Imai, M.; Shinya, K.; Sakai-Tagawa, Y.; Ito, M.; Ozawa, M.; Watanabe, T.; et al. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog. 2010, 6, e1001034. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.M.; Ulrich, R.; Kasbohm, E.; Eng, C.L.P.; Hoffmann, D.; Grund, C.; Beer, M.; Harder, T.C.; García-Sastre, A. Natural reassortants of potentially zoonotic avian influenza viruses h5n1 and h9n2 from egypt display distinct pathogenic phenotypes in experimentally infected chickens and ferrets. J. Virol. 2017, 91, e01300-17. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Obermann, W.; Schulte, F.W.; Lange-Grünweller, K.; Oestereich, L.; Elgner, F.; Glitscher, M.; Hildt, E.; Singh, K.; Wendel, H.-G.; et al. Comparison of broad-spectrum antiviral activities of the synthetic rocaglate cr-31-b (−) and the eif4a-inhibitor silvestrol. Antivir. Res. 2020, 175, 104706. [Google Scholar] [CrossRef]
- Mostafa, A.; Kanrai, P.; Ziebuhr, J.; Pleschka, S. Improved dual promotor-driven reverse genetics system for influenza viruses. J. Virol. Methods 2013, 193, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Petersen, H.; Mostafa, A.; Tantawy, M.A.; Iqbal, A.A.; Hoffmann, D.; Tallam, A.; Selvakumar, B.; Pessler, F.; Beer, M.; Rautenschlein, S.; et al. Ns segment of a 1918 influenza a virus-descendent enhances replication of h1n1pdm09 and virus-induced cellular immune response in mammalian and avian systems. Front. Microbiol. 2018, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.; Kanrai, P.; Petersen, H.; Ibrahim, S.; Rautenschlein, S.; Pleschka, S. Efficient generation of recombinant influenza a viruses employing a new approach to overcome the genetic instability of ha segments. PLoS ONE 2015, 10, e0116917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, C.K.P.; Yen, H.L.; Yu, M.Y.M.; Yuen, K.M.; Sia, S.F.; Chan, M.C.W.; Qin, G.; Tu, W.W.; Peiris, J.S.M. Amino acid residues 253 and 591 of the pb2 protein of avian influenza virus a h9n2 contribute to mammalian pathogenesis. J. Virol. 2011, 85, 9641–9645. [Google Scholar] [CrossRef] [Green Version]
- Herfst, S.; Schrauwen, E.J.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J. Airborne transmission of influenza a/h5n1 virus between ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef] [Green Version]
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S. Experimental adaptation of an influenza h5 ha confers respiratory droplet transmission to a reassortant h5 ha/h1n1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.D.; Stephens, R.M. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 1990, 18, 6097–6100. [Google Scholar] [CrossRef]
- Wang, C.; Lee, H.H.Y.; Yang, Z.F.; Mok, C.K.P.; Zhang, Z. Pb2-q591k mutation determines the pathogenicity of avian h9n2 influenza viruses for mammalian species. PLoS ONE 2016, 11, e0162163. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.L.; Bui, C.T.; Mok, C.K.; Ng, M.M.; Nicholls, J.M.; Peiris, J.; Chan, M.C.; Chan, R.W. Evaluation of the human adaptation of influenza a/h7n9 virus in pb2 protein using human and swine respiratory tract explant cultures. Sci. Rep. 2016, 6, 35401. [Google Scholar] [CrossRef] [Green Version]
- Hudjetz, B.; Gabriel, G. Human-like pb2 627k influenza virus polymerase activity is regulated by importin-α1 and-α7. PLoS Pathog. 2012, 8, e1002488. [Google Scholar] [CrossRef]
Segment_Mutation | Primer | Mutagenesis Primer Sequence |
---|---|---|
H9N2_PB2_K591Q | K591Q_F | 5′-CCTAAGGCTGCCAGAGGTCAGTATAGTGGATTTGTGAG-3′ |
K591Q_R | 5′-CTCACAAATCCACTATACTGACCTCTGGCAGCCTTAGG-3′ | |
H5N1_PB2_K627E | K627E_F | 5′-GCAGCAGCCCCACCGGAACAAAGCAGAATG-3′ |
K627E_R | 5′-CATTCTGCTTTGTTCCGGTGGGGCTGCTGC-3′ | |
H5N1_PB2_K627E | K627E_F | 5′-GCAGCAGCCCCACCGGAACAAAGCAGAATG-3′ |
K627E_R | 5′-CATTCTGCTTTGTTCCGGTGGGGCTGCTGC-3′ | |
H5N1_PB2_591K | 591K_F | 5′-CCTAAAGCTGCCAGAGGTAAATACAGTGGATTTGTGAG-3′ |
591K_R | 5′-CCTAAAGCTGCCAGAGGTAAATACAGTGGATTTGTGAG-3′ | |
H5N1_PB2_591K | 591K_F | 5′-CCTAAAGCTGCCAGAGGTAAATACAGTGGATTTGTGAG-3′ |
591K_R | 5′-CCTAAAGCTGCCAGAGGTAAATACAGTGGATTTGTGAG-3′ |
RG/Reassortant/Mutant | Genome Composition of Rescued Viruses | |||||||
---|---|---|---|---|---|---|---|---|
PB2 | PB1 | PA | HA | NP | NA | M | NS | |
H5N1EGY | wt (627K) | wt | wt | wt | wt | wt | wt | wt |
H9N2EGY | wt (591K) | wt | wt | wt | wt | wt | wt | wt |
H5N1PB2-H9N2EGY | wt (951K) | wt | wt | wt | wt | wt | wt | wt |
H5N1PB2-H9N2EGY_K591Q | (+) K591Q | wt | wt | wt | wt | wt | wt | wt |
H5N1PB2_K627E | (+) K627E | wt | wt | wt | wt | wt | wt | wt |
H5N1PB2_K627E/591K | (+) K627E/591K | wt | wt | wt | wt | wt | wt | wt |
H5N1PB2_627K/591K | (+) 591K/627K | wt | wt | wt | wt | wt | wt | wt |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashaal, D.; Mahmoud, S.H.; Müller, C.; Abo Shama, N.M.; Kamer, A.A.; Abdelaziz, A.A.; Ali, M.A.; Pleschka, S.; Mostafa, A. Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems. Pathogens 2022, 11, 1385. https://doi.org/10.3390/pathogens11111385
Mashaal D, Mahmoud SH, Müller C, Abo Shama NM, Kamer AA, Abdelaziz AA, Ali MA, Pleschka S, Mostafa A. Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems. Pathogens. 2022; 11(11):1385. https://doi.org/10.3390/pathogens11111385
Chicago/Turabian StyleMashaal, Dayly, Sara H. Mahmoud, Christin Müller, Noura M. Abo Shama, Amal Abo Kamer, Ahmed A. Abdelaziz, Mohamed A. Ali, Stephan Pleschka, and Ahmed Mostafa. 2022. "Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems" Pathogens 11, no. 11: 1385. https://doi.org/10.3390/pathogens11111385
APA StyleMashaal, D., Mahmoud, S. H., Müller, C., Abo Shama, N. M., Kamer, A. A., Abdelaziz, A. A., Ali, M. A., Pleschka, S., & Mostafa, A. (2022). Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems. Pathogens, 11(11), 1385. https://doi.org/10.3390/pathogens11111385