Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Isolation of Genomic DNA from Candida Strains
2.3. Isolation of Candida Genomic DNA from Whole Blood
2.4. Primer Design
2.5. The Candida Pan/IC LAMP Assay
2.6. Real-Time PCR
2.7. Limit of Detection (LOD) Tests
2.8. Statistical Analysis
3. Results
3.1. Optimization of the Chelex-100/Boiling Method for Nucleic Acid Extraction
3.2. Comparison of Detection Limits of the Candida Pan/IC LAMP Assay and Two qPCR (Pan and Candida Species) against Candida Species
3.3. Sensitivity and Specificity of the Candida Pan/IC LAMP Assay with Two qPCR Assays against Candida Clinical Sample DNA Extracted by QIAamp UCP Pathogen Mini Kit and Chelex-100/Boiling Method
3.4. Cross-Reactivity Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Sader, H.S.; Fluit, A.C.; Hollis, R.J.; Messer, S.A. International surveillance of bloodstream infections due to Candida species: Frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J. Clin. Microbiol. 2001, 39, 3254–3259. [Google Scholar] [CrossRef] [Green Version]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.R.; Tian, G.; Ding, Y.H.; Yang, K.; Liu, J.B.; Deng, J. Surveillance study of the prevalence, species distribution, antifungal susceptibility, risk factors and mortality of invasive candidiasis in a tertiary teaching hospital in Southwest China. BMC Infect. Dis. 2019, 19, 939. [Google Scholar] [CrossRef] [PubMed]
- Kibbler, C.C.; Seaton, S.; Barnes, R.A.; Gransden, W.R.; Holliman, R.E.; Johnson, E.M.; Perry, J.D.; Sullivan, D.J.; Wilson, J.A. Management and outcome of bloodstream infections due to Candida species in England and Wales. J. Hosp. Infect. 2003, 54, 18–24. [Google Scholar] [CrossRef]
- Kami, M.; Machida, U.; Okuzumi, K.; Matsumura, T.; Mori Si, S.; Hori, A.; Kashima, T.; Kanda, Y.; Takaue, Y.; Sakamaki, H.; et al. Effect of fluconazole prophylaxis on fungal blood cultures: An autopsy-based study involving 720 patients with haematological malignancy. Br. J. Haematol. 2002, 117, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, J.; Buck, M.; Witebsky, F.; Stock, F.; Pizzo, P.A.; Walsh, T.J. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn. Microbiol. Infect. Dis. 1993, 17, 103–109. [Google Scholar] [CrossRef]
- Morris, A.J.; Byrne, T.C.; Madden, J.F.; Reller, L.B. Duration of incubation of fungal cultures. J. Clin. Microbiol. 1996, 34, 1583–1585. [Google Scholar] [CrossRef] [Green Version]
- Wahyuningsih, R.; Freisleben, H.J.; Sonntag, H.G.; Schnitzler, P. Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J. Clin. Microbiol. 2000, 38, 3016–3021. [Google Scholar] [CrossRef] [Green Version]
- Lefort, A.; Chartier, L.; Sendid, B.; Wolff, M.; Mainardi, J.L.; Podglajen, I.; Desnos-Ollivier, M.; Fontanet, A.; Bretagne, S.; Lortholary, O. Diagnosis, management and outcome of Candida endocarditis. Clin. Microbiol. Infect. 2012, 18, E99–E109. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.H.; Wissel, M.C.; Shields, R.K.; Salomoni, M.A.; Hao, B.; Press, E.G.; Shields, R.M.; Cheng, S.; Mitsani, D.; Vadnerkar, A.; et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin. Infect. Dis. 2012, 54, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Luo, Y.; Zhang, W.; Xie, S.; Yan, P.; Liu, Y.; Li, Y.; Ma, X.; Xiao, K.; Fu, H.; et al. Diagnostic value of Candida mannan antigen and anti-mannan IgG and IgM antibodies for Candida infection. Mycoses 2020, 63, 181–188. [Google Scholar] [CrossRef]
- Mikulska, M.; Calandra, T.; Sanguinetti, M.; Poulain, D.; Viscoli, C. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: Recommendations from the Third European Conference on Infections in Leukemia. Crit. Care 2010, 14, R222. [Google Scholar] [CrossRef] [Green Version]
- Inácio, J.; Flores, O.; Spencer-Martins, I. Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J. Clin. Microbiol. 2008, 46, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Widjojoatmodjo, M.N.; Borst, A.; Schukkink, R.A.; Box, A.T.; Tacken, N.M.; Van Gemen, B.; Verhoef, J.; Top, B.; Fluit, A.C. Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J. Microbiol. Methods 1999, 38, 81–90. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, F.; Sorrell, T.C.; Wang, H.; Duan, Y.; Chen, S.C. Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J. Clin. Microbiol. 2008, 46, 2423–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahi, S.; Babaei, M.; Rostami, A.; Mirahmadi, H.; Arab-Mazar, Z.; Sepahvand, A. Diagnosis of Candida albicans: Conventional diagnostic methods compared to the loop-mediated isothermal amplification (LAMP) assay. Arch. Microbiol. 2020, 202, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.; Wang, Y.; Gao, J.; Bai, J.; Zhang, Q.; Shi, L.; Wang, X.; Wang, C. Rapid detection of Salmonella based on loop-mediated isothermal amplification. Ann. Palliat. Med. 2021, 10, 6850–6858. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [Green Version]
- Woźniakowski, G.; Kozdruń, W.; Samorek-Salamonowicz, E. Loop-mediated isothermal amplification for the detection of goose circovirus. Virol. J. 2012, 9, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredricks, D.N.; Smith, C.; Meier, A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 2005, 43, 5122–5128. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, E.; Ramage, G.; Jones, B.; Warn, P.; Kirkpatrick, W.R.; Patterson, T.F.; Williams, C. Don’t throw your blood clots away: Use of blood clot may improve sensitivity of PCR diagnosis in invasive aspergillosis. J. Clin. Pathol. 2009, 62, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.; Morton, C.O.; Perry, M.; Heinz, W.J.; Paholcsek, M.; Alzheimer, M.; Rogers, T.R.; Barnes, R.A.; Einsele, H.; Loeffler, J.; et al. Multicenter comparison of serum and whole-blood specimens for detection of Aspergillus DNA in high-risk hematological patients. J. Clin. Microbiol. 2013, 51, 1445–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakousis, A.; Tan, L.; Ellis, D.; Alexiou, H.; Wormald, P.J. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J. Microbiol. Methods 2006, 65, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Vingataramin, L.; Frost, E.H. A single protocol for extraction of gDNA from bacteria and yeast. BioTechniques 2015, 58, 120–125. [Google Scholar] [CrossRef]
- Haugland, R.A.; Brinkman, N.; Vesper, S.J. Evaluation of rapid DNA extraction methods for the quantitative detection of fungi using real-time PCR analysis. J. Microbiol. Methods 2002, 50, 319–323. [Google Scholar] [CrossRef]
- Avni, T.; Leibovici, L.; Paul, M. PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. J. Clin. Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Menu, E.; Landier, J.; Prudent, E.; Ranque, S.; L’Ollivier, C. Evaluation of 11 DNA Automated Extraction Protocols for the Detection of the 5 Mains Candida Species from Artificially Spiked Blood. J. Fungi 2021, 7, 228. [Google Scholar] [CrossRef]
- Brinkman, N.E.; Haugland, R.A.; Wymer, L.J.; Byappanahalli, M.; Whitman, R.L.; Vesper, S.J. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water. Appl. Environ. Microbiol. 2003, 69, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.; Widen, R.; Vestal, G.; Uy, D.; Silbert, S. A TaqMan Probe-Based Real-Time PCR Assay for the Rapid Identification of the Emerging Multidrug-Resistant Pathogen Candida auris on the BD Max System. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [Green Version]
- McCarty, T.P.; Pappas, P.G. Invasive Candidiasis. Infect. Dis. Clin. North Am. 2016, 30, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.K.; Golan, Y.; Ruthazer, R.; Karchmer, A.W.; Carmeli, Y.; Lichtenberg, D.A.; Chawla, V.; Young, J.A.; Hadley, S. Risk factors for albicans and non-albicans candidemia in the intensive care unit. Crit. Care Med. 2008, 36, 1993–1998. [Google Scholar] [CrossRef]
- Edmond, M.B.; Wallace, S.E.; McClish, D.K.; Pfaller, M.A.; Jones, R.N.; Wenzel, R.P. Nosocomial bloodstream infections in United States hospitals: A three-year analysis. Clin. Infect. Dis. 1999, 29, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Toda, M.; Williams, S.R.; Berkow, E.L.; Farley, M.M.; Harrison, L.H.; Bonner, L.; Marceaux, K.M.; Hollick, R.; Zhang, A.Y.; Schaffner, W.; et al. Population-Based Active Surveillance for Culture-Confirmed Candidemia-Four Sites, United States, 2012–2016. MMWR. Surveill. Summ. 2019, 68, 1–15. [Google Scholar] [CrossRef]
- Velegraki, A.; Kambouris, M.; Kostourou, A.; Chalevelakis, G.; Legakis, N.J. Rapid extraction of fungal DNA from clinical samples for PCR amplification. Med. Mycol. 1999, 37, 69–73. [Google Scholar] [CrossRef]
- Griffiths, L.J.; Anyim, M.; Doffman, S.R.; Wilks, M.; Millar, M.R.; Agrawal, S.G. Comparison of DNA extraction methods for Aspergillus fumigatus using real-time PCR. J. Med. Microbiol. 2006, 55, 1187–1191. [Google Scholar] [CrossRef] [Green Version]
- Glee, P.M.; Russell, P.J.; Welsch, J.A.; Pratt, J.C.; Cutler, J.E. Methods for DNA extraction from Candida albicans. Anal. Biochem. 1987, 164, 207–213. [Google Scholar] [CrossRef]
- Panda, B.B.; Meher, A.S.; Hazra, R.K. Comparison between different methods of DNA isolation from dried blood spots for determination of malaria to determine specificity and cost effectiveness. J. Parasit. Dis. 2019, 43, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Sepp, R.; Szabó, I.; Uda, H.; Sakamoto, H. Rapid techniques for DNA extraction from routinely processed archival tissue for use in PCR. J. Clin. Pathol. 1994, 47, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 1991, 10, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Name | Sequence (5′-3′) | Length (mer) | Reference |
---|---|---|---|---|
Candida Pan (Ca Pan, partial ITS1, 5.8S rRNA gene and partial ITS2) | Ca Pan F3 | AAA ACT TTC AAC GGA T | 19 | Present study |
Ca Pan B3 | ACG CTC AAA CAG GCA | 15 | ||
Ca Pan FIP | CAA KTC ARA YTA WKT ATC GCA STT CCT CTT GGT TCT CGC ATC G | 43 | ||
Ca Pan BIP | CGT GAA TCA TCG AAR YYT TT TTC GCT GCG CTC TTC ATT GGC GCA ATG TGC GT | 53 | ||
Ca Pan FLP | ACG TAT CGC ATT TCG CTG C | 19 | ||
Ca Pan BLP | TTC GCT GCG CTC TTC A | 16 | ||
Ca Pan BLP_CY5 probe1 | [CY5]-GTC AGT GCA GGC TCC CGT GTT AGG ACG AGG GTA GGT TCG CTG CGC TCT TCA | 51 | ||
Internal control (IC, G6PD) | IC G6PD F3 | TGT CAC CAG CAA CAT CTC GA | 20 | Present study |
IC G6PD B3 | TCC TCA GGG AAG CAA ATG AC | 18 | ||
IC G6PD FIP | ATA GCA GAG AGG CTG CCT ACG GTT TTG ATG TCC CCT GTC CCA | 45 | ||
IC G6PD BIP | AAG AAA AGC AGA CGC AGC TTT TTG GGG CTG TTT GCG GAT T | 43 | ||
IC G6PD FLP | GGG GTG GCC ATG GAG TGC | 18 | ||
IC G6PD BLP | TCC CAA CCT CAA TGC CCT GC | 20 | ||
IC G6PD BLP TEX probe 2 | [Texas red] –CGG GCC CGT ACA AAG GGA ACA CCC ACA CTC CGT CCC AAC CTC AAT GCC CTG C | 52 | ||
Quencher probe 1 | CCT ACC CTC GTC CTA ACA CGG GAG CCT GCA CTG AC-BHQ2 | 35 | ||
Quencher probe 2 | GAG TGT GGG TGT TCC CTT TGT ACG GGC CCG-BHQ1 | 30 | ||
Candida Pan (Ca Pan) RT-PCR | CP PCR F | CCT GTTT GAG CGT CRT TT | 17 | [27] |
CP PCR R | TCC GCT TAT TGA TAT | 18 | ||
C. albicans (CA) RT-PCR | CA PCR F | CTT GGT ATT TTG CAT GTT GCT CTC | 24 | [28] |
CA PCR R | GTC AGA GGC TAT AAC ACA CAG CAG | 24 | ||
CA PCR probe | [FAM] - TTT ACC GGG CCA GCA TCG GTT T – BHQ1 | 22 | ||
C. glabrata (CG) RT-PCR | CF PCR F | GCG CCC CTT GCC TCT C | 16 | [28] |
CF PCR R | CCC AGG GCT ATA ACA CTC TAC ACC | 24 | ||
CF PCR probe | [HEX] – TGG GCT TGG GAC TCT CGC AGC – BHQ1 | 21 | ||
C. tropicalis (CT) RT-PCR | CT PCR F | GCG GTA GGA GAA TTG CGT T | 19 | [28] |
CT PCR R | TCA TTA TGC CAA CAT CCT AGG TTT A | 25 | ||
CT PCR probe | [CY5] – CGC AGT CCT CAG TCT AGG CTG GCA G – BHQ2 | 25 | ||
C. krusei (CK) RT-PCR | CK PCR F | CTCA GAT TTG AAA TCG TGC TTT G | 23 | [28] |
CK PCR R | GGG GCT CTC ACC CTC CTG | 18 | ||
CK PCR probe | [TEX] – CAC GAG TTG TAG ATT GCA GGT TGG AGT CTG – BHQ1 | 30 | ||
C. parapsilosis (CP) RT-PCR | CP PCR F | GAT CAG ACT TGG TAT TTT GTA TGT TAC TCT C | 31 | [28] |
CP PCR R | CAG AGC CAC ATT TCT TTG CAC | 21 | ||
CP PCR probe | [FAM] – CCT CTA CAG TTT ACC GGG CCA GCA TCA – BHQ1 | 27 | ||
C. auris (CR) RT-PCR | CR PCR F | CGT GAT GTC TTC TCA CCA ATC T | 22 | [29] |
CR PCR R | TAC CTG ATT TGA GGC GAC AAC | 21 |
DNA Extraction Method | PCR Analysis | Primer Sets | Total Concentration (cells/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
107 | 106 | 105 | 104 | 103 | 102 | 101 | DW * | |||
QIAamp UCP Pathogen Mini Kit | qPCR | C. albicans | 22.48 | 26.15 | 31.29 | 36.27 | N/A | N/A | N/A | N/A |
Multiplex RT LAMP | Cy5 (c. pan) | 15.80 | 16.53 | 18.35 | 22.54 | 25.14 | N/A | N/A | N/A | |
Tex (IC) | 25.01 | 27.20 | 27.01 | 24.53 | 25.10 | N/A | N/A | N/A | ||
Chelex-100/boiling | qPCR | C. albicans | 24.12 | 28.11 | 31.99 | N/A | N/A | N/A | N/A | N/A |
Multiplex RT LAMP | Cy5 (c. pan) | 16.36 | 17.78 | 21.04 | 23.43 | N/A | N/A | N/A | N/A | |
Tex (IC) | 23.43 | 22.25 | 18.63 | 18.59 | N/A | N/A | N/A | N/A |
Candida Species | Primer Sets | Total Concentration (cells/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
107 | 106 | 105 | 104 | 103 | 102 | 101 | DW * | |||
C. albicans | qPCR | Candida Pan | 24.17 | 32.71 | 36.66 | N/A | N/A | N/A | N/A | N/A |
C. albicans | 22.50 | 26.60 | 31.35 | 39.78 | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 15.20 | 16.75 | 22.45 | 27.44 | 28.01 | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
C. glabrata | qPCR | Candida Pan | 22.02 | 31.08 | N/A | N/A | N/A | N/A | N/A | N/A |
C. glabrata | 21.07 | 28.25 | 35.50 | N/A | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 15.04 | 17.4. | 23.76 | N/A | N/A | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
C. tropicalis | qPCR | Candida Pan | 22.27 | 30.38 | N/A | N/A | N/A | N/A | N/A | N/A |
C. tropicalis | 23.69 | 29.22 | 36.38 | N/A | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 15.76 | 18.36 | 26.04 | N/A | N/A | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
C. krusei | qPCR | Candida Pan | 20.60 | 28.44 | N/A | N/A | N/A | N/A | N/A | N/A |
C. krusei | 22.46 | 28.42 | 38.84 | N/A | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 17.00 | 19.31 | 25.34 | 34.45 | N/A | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
C. parapsilosis | qPCR | Candida Pan | 20.38 | 24.85 | 34.73 | N/A | N/A | N/A | N/A | N/A |
C. parapsilosis | 21.34 | 25.80 | 31.48 | 36.97 | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 17.80 | 20.34 | 28.92 | N/A | N/A | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | ||
C. auris | qPCR | Candida Pan | 35.51 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
C. auris | 21.59 | 25.14 | 30.21 | 36.63 | N/A | N/A | N/A | N/A | ||
LAMP | Cy5 (c. pan) | 15.97 | 17.54 | 21.58 | N/A | N/A | N/A | N/A | N/A | |
Tex (IC) | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Clinical Samples | QIAamp UCP Pathogen Mini Kit | Boiling and Filtering Method | |||||||
---|---|---|---|---|---|---|---|---|---|
qPCR | Multiplex LAMP | qPCR | Multiplex LAMP | ||||||
Candida pan | Candida Species | Cy5 (C. pan) | Tex (IC) | Candida pan | Candida Species | Cy5 (C. pan) | Tex (IC) | ||
Candida Spp. (n = 36) | P/N | 31/5 | 31/5 | 36/0 | 27/9 | 8/28 | 16/20 | 36/0 | 28/8 |
Sensitivity (95% CI- | 86.11% [70.50–95.33] | 86.11% [70.50–95.33] | 100% [90.26–100.00] | 75.00% [57.80–87.88] | 22.22% [10.12–39.15] | 44.44% [27.94–61.90] | 100% [90.26–100.00] | 77.77% [60.85–89.88] | |
C. albicans (n = 9) | P/N | 8/1 | 8/1 | 9/0 | 6/3 | 1/8 | 5/4 | 9/0 | 9/0 |
Sensitivity | 88.89% | 88.89% | 100% | 66.67% | 11.11% | 55.56% | 100% | 100% | |
C. glabrata (n = 9) | P/N | 8/1 | 8/1 | 9/0 | 7/2 | 2/7 | 3/6 | 9/0 | 6/3 |
Sensitivity | 88.89% | 88.89% | 100% | 77.78% | 22.22% | 33.33% | 100% | 66.67% | |
C. tropicalis (n = 9) | P/N | 6/3 | 6/3 | 9/0 | 8/1 | 2/7 | 3/6 | 9/0 | 6/3 |
Sensitivity | 66.67% | 66.67% | 100% | 88.89% | 22.22% | 33.33% | 100% | 66.67% | |
C. parapsilosis (n = 9) | P/N | 9/0 | 9/0 | 9/0 | 6/3 | 3/6 | 5/4 | 9/0 | 7/2 |
Sensitivity | 100% | 100% | 100% | 66.67% | 33.33% | 55.56% | 100% | 77.78% | |
Non-infection (n = 100) | P/N | 0/100 | 0/100 | 0/100 | 100/0 | 0/100 | 0/100 | 0/100 | 100/0 |
Sensitivity (95% CI) | N/A | N/A | N/A | 100% [96.38–100.00] | N/A | N/A | N/A | 100% [96.38–100.00] | |
Specificity (95% CI) | 100% [96.38–100.00] | 100% [96.38–100.00] | 100% [96.38–100.00] | N/A | 100% [96.38–100.00] | 100% [96.38–100.00] | 100% [96.38–100.00] | N/A |
Candida Pan/IC LAMP | ||||
---|---|---|---|---|
Cy5 (Candida pan) | Texas Red (Internal Control) | |||
Samples | Ct | RFU * | Ct | RFU * |
Escherichia coli | N/A | 19.1 | N/A | 23.3 |
Enterococcus faecium | N/A | 31.1 | N/A | 22.6 |
Klebsiella spp. | N/A | 20.0 | N/A | 28.3 |
Staphylococcus aureus | N/A | 44.0 | N/A | 39.0 |
Staphylococcus epidermidis | N/A | 57.7 | N/A | 42.6 |
Human whole blood DNA | N/A | −17.9 | 29.68 | 4186 |
Distilled water | N/A | 1.76 | N/A | −0.889 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.H.; Jee, H.; Moon, K.C.; Lim, C.S.; Jang, W.S. Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens 2022, 11, 111. https://doi.org/10.3390/pathogens11020111
Lim DH, Jee H, Moon KC, Lim CS, Jang WS. Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens. 2022; 11(2):111. https://doi.org/10.3390/pathogens11020111
Chicago/Turabian StyleLim, Da Hye, Hyunseul Jee, Kyung Chul Moon, Chae Seung Lim, and Woong Sik Jang. 2022. "Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia" Pathogens 11, no. 2: 111. https://doi.org/10.3390/pathogens11020111
APA StyleLim, D. H., Jee, H., Moon, K. C., Lim, C. S., & Jang, W. S. (2022). Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens, 11(2), 111. https://doi.org/10.3390/pathogens11020111