Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection
Abstract
:1. Introduction
2. Results
2.1. Acquisition and Alignment of WGS of E. coli from GenBank
2.2. Search of SNP Sites from NGS of E. coli Genomes in GenBank
2.3. Amplification of SNP Sites and Sequencing of Target E. coli Strains Using Newly Designed Primers
2.4. Confirmation of SNP Sites Based on Aligned Sequences of Target E. coli and Design of E. coli Serotype-Specific SNP Primers Using Sequences Containing SNP Sites
2.5. E. coli-Specific SNP Primer Design Using Aligned Gene Sequences with Availability of SNP Sites
2.6. SNP Marker-Based Triplex PCR
2.7. Cross Reaction and Validation Test
3. Discussion
4. Materials and Methods
4.1. General Overview of SNP-Based Marker Design and Validation with PCR Amplification of Target E. coli
4.2. Culture and Isolation of Genomic DNA from Serotype-Specific E. coli (O157 and Non-O157) Strains
4.3. Acquisition and Alignment of WGS of E. coli from GenBank
4.4. Search for SNP Sites on WGS Alignment and Design with Suitable Primers Encompassing SNP Sites (Upstream and Downstream of SNP Sites)
4.5. Amplification of DNA Fragments Encompassing the SNP Sites of Interest and Re-Sequencing of the Amplified PCR Products of the Target Strains Using the Newly Designed Primers
4.6. PCR Amplification of E. coli O157 and Non-O157 Specific SNP Markers and Their Efficient Testing
4.7. Development of a Triplex SNP-Based PCR Marker
4.8. Validation and Cross Reaction Test with SNP-Based Triplex PCR
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakker, H.C.; Switt, A.I.; Cummings, C.A.; Hoelzer, K.; Degoricija, L.; Rodriguez-Rivera, L.D.; Wright, E.M.; Fang, R.; Davis, M.; Root, T.; et al. Whole-genome single-nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl. Environ. Microbiol. 2011, 77, 8648–8655. [Google Scholar] [CrossRef] [Green Version]
- Camprubí-Font, C.; Lopez-Siles, M.; Ferrer-Guixeras, M.; Niubó-Carulla, L.; Abellà-Ametller, C.; Garcia-Gil, L.J.; Martinez-Medina, M. Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli. Sci. Rep. 2018, 8, 2695. [Google Scholar] [CrossRef]
- Uelze, L.; Grützke, J.; Borowiak, M.; Hammerl, J.A.; Juraschek, K.; Deneke, C.; Tausch, S.H.; Malorny, B. Typing Methods Based on Whole Genome Sequencing Data. One Health Outlook 2020, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, Y.; Li, M. A narrative review of single-nucleotide polymorphism detection methods and their application in studies of Staphylococcus aureus. J. Bio-X Res. 2021, 4, 1–9. [Google Scholar] [CrossRef]
- Shakya, M.; Ahmed, S.A.; Davenport, K.W.; Flynn, M.C.; Lo, C.C.; Chain, P.S.G. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 2020, 10, 1723. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Jang, Y.H.; Jeong, M.K.; Seo, Y.; Park, C.H.; Kang, S.; Lee, Y.J.; Choi, J.S.; Yoon, S.S.; Kim, J.M. Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates. J. Veter. Sci. 2021, 22, e24. [Google Scholar] [CrossRef]
- Pightling, A.W.; Pettengill, J.B.; Luo, Y.; Baugher, J.D.; Rand, H.; Strain, E. Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations. Front. Microbiol. 2018, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Essendoubi, S.; Keenliside, J.; Reuter, T.; Stanford, K.; King, R.; Lu, P.; Yang, X. Publisher Correction: Genomic analysis of Shiga toxin-producing Escherichia coli O157:H7 from cattle and pork-production related environments. NPJ Sci. Food 2021, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Sahl, J.W.; Sistrunk, J.R.; Baby, N.I.; Begum, Y.; Luo, Q.; Sheikh, A.; Qadri, F.; Fleckenstein, J.M.; Rasko, D.A. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci. Rep. 2017, 7, 3402. [Google Scholar] [CrossRef]
- Quainoo, S.; Coolen, J.; van Hijum, S.; Huynen, M.A.; Melchers, W.; van Schaik, W.; Wertheim, H. Whole-Genome Sequencing of Bacterial Pathogens: The Future of Nosocomial Outbreak Analysis. Clin. Microbiol. Rev. 2017, 30, 1015–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, S.B.; Gupta, S.; Jain, M.; Chande, A.T.; Carleton, H.A.; Jordan, I.K.; Rishishwar, L. Genome-Enabled Molecular Subtyping and Serotyping for Shiga Toxin-Producing Escherichia coli. Front. Sustain. Food Syst. 2021, 5, 752873. [Google Scholar] [CrossRef]
- Parsons, B.D.; Zelyas, N.; Berenger, B.M.; Chui, L. Detection, characterization, and typing of Shiga toxin-producing Escherichia coli. Front. Microbiol. 2016, 7, 478. [Google Scholar] [CrossRef] [Green Version]
- Alberts, B.; Johnson, A.; Lewis, J.; Roberts, K.; Walter, P. The Maintenance of DNA Sequences. In Molecular Biology of the Cell, 4th ed.; Routledge: New York, NY, USA, 2002; Volume 4, p. 1616. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26881/ (accessed on 29 November 2021).
- Yokoyama, E.; Hirai, S.; Ishige, T.; Murakami, S. Application of Whole Genome Sequence Data in Analyzing the Molecular Epidemiology of Shiga Toxin-Producing Escherichia coli O157:H7/H. Int. J. Food Microbiol. 2018, 264, 39–45. [Google Scholar] [CrossRef]
- Bletz, S.; Bielaszewska, M.; Leopold, S.R.; Köck, R.; Witten, A.; Schuldes, J.; Zhang, W.; Karch, H.; Mellmann, A. Evolution of enterohemorrhagic Escherichia coli O26 based on single-nucleotide polymorphisms. Genome Biol. Evol. 2013, 5, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Leekitcharoenphon, P.; Johansson, M.H.K.; Munk, P.; Malorny, B.; Skarżyńska, M.; Wadepohl, K.; Moyano, G.; Hesp, A.; Veldman, K.T.; Bossers, A.; et al. Genomic evolution of antimicrobial resistance in Escherichia coli. Sci. Rep. 2021, 11, 15108. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.E.; Alikhan, N.F.; Dallman, T.J.; Zhou, Z.; Grant, K.; Maiden, M. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int. J. Food Microbiol. 2018, 274, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Piranfar, V.; Sharif, M.; Hashemi, M.; Vahdati, A.R.; Mirnejad, R. Detection and discrimination of two Brucella species by multiplex real-time PCR and high-resolution melt analysis curve from human blood and comparison of results using RFLP. Iran J. Basic Med. Sci. 2015, 18, 909–914. [Google Scholar] [PubMed]
- Koylass, M.S.; King, A.C.; Edwards-Smallbone, J.; Gopaul, K.K.; Perrett, L.L.; Whatmore, A.M. Comparative performance of SNP typing and ‘Bruce-ladder’ in the discrimination of Brucella suis and Brucella canis. Vet. Microbiol. 2010, 142, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Van Ert, M.N.; Easterday, W.R.; Simonson, T.S.; U’Ren, J.M.; Pearson, T.; Kenefic, L.J.; Busch, J.D.; Huynh, L.Y.; Dukerich, M.; Trim, C.B.; et al. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J. Clin. Microbiol. 2007, 45, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaine, S.D.; Soyer, Y.; Warnick, L.D.; Su, W.L.; Sukhnanand, S.; Richards, J.; Fortes, E.D.; McDonough, P.; Root, T.P.; Dumas, N.B.; et al. Multilocus sequence typing supports the hypothesis that cow- and human-associated Salmonella isolates represent distinct and overlapping populations. Appl. Environ. Microbiol. 2006, 72, 7575–7585. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zhang, Q.; Zhu, Y.; Jing, N.; Yuan, Y.; Zhang, Y.; Ren, S.; Hu, D.; Zhao, W.; Zhang, X.; et al. Molecular Mechanism of Polymyxin Resistance in Multidrug-Resistant Klebsiella pneumoniae and Escherichia coli Isolates from Henan Province, China: A Multicenter Study. Infect Drug Resist. 2021, 14, 2657–2666. [Google Scholar] [CrossRef]
- Joensen, K.G.; Tetzschner, A.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strachan, N.J.; Rotariu, O.; Lopes, B.; MacRae, M.; Fairley, S.; Laing, C.; Gannon, V.; Allison, L.J.; Hanson, M.F.; Dallman, T.; et al. Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association. Sci. Rep. 2015, 5, 14145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhao, H.; Qiu, Z.; Jin, M.; Yang, D.; Xu, Q.; Feng, H.; Li, J.; Shen, Z. Identifying geographic origins of the Escherichia coli isolates from food by a method based on single-nucleotide polymorphisms. J. Microbiol. Methods 2020, 168, 105807. [Google Scholar] [CrossRef]
- Dallman, T.J.; Greig, D.R.; Gharbia, S.E.; Jenkins, C. Phylogenetic structure of Shiga toxin-producing Escherichia coli O157:H7 from sub-lineage to SNPs. Microb. Genom. 2021, 7, mgen000544. [Google Scholar] [CrossRef]
- Singh, N.; Lapierre, P.; Quinlan, T.M.; Halse, T.A.; Wirth, S.; Dickinson, M.C.; Lasek-Nesselquist, E.; Musser, K.A. Whole-Genome Single-Nucleotide Polymorphism (SNP) Analysis Applied Directly to Stool for Genotyping Shiga Toxin-Producing Escherichia coli: An Advanced Molecular Detection Method for Foodborne Disease Surveillance and Outbreak Tracking. J. Clin. Microbiol. 2019, 57, e00307-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.R.; Brown, E.; Keys, C.; Strain, E.; Luo, Y.; Muruvanda, T.; Grim, C.; Jean-Gilles Beaubrun, J.; Jarvis, K.; Ewing, L.; et al. Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks. PLoS ONE 2016, 11, e0146929. [Google Scholar] [CrossRef] [PubMed]
- Mellmann, A.; Harmsen, D.; Cummings, C.A.; Zentz, E.B.; Leopold, S.R.; Rico, A.; Prior, K.; Szczepanowski, R.; Ji, Y.; Zhang, W.; et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 2011, 6, e22751. [Google Scholar] [CrossRef]
- Reuter, S.; Harrison, T.G.; Köser, C.U.; Ellington, M.J.; Smith, G.P.; Parkhill, J.; Peacock, S.J.; Bentley, S.D.; Török, M.E. A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak. BMJ Open 2013, 3, e002175. [Google Scholar] [CrossRef] [PubMed]
- Todd, E. Food-Borne Disease Prevention and Risk Assessment. Int. J. Environ. Res. Public Health 2020, 17, 5129. [Google Scholar] [CrossRef]
- Rani, A.; Ravindran, V.B.; Surapaneni, A.; Mantri, N.; Ball, A.S. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 2021, 349, 109233. [Google Scholar] [CrossRef] [PubMed]
- Capps, K.M.; Ludwig, J.B.; Shridhar, P.B.; Shi, X.; Roberts, E.; DebRoy, C.; Cernicchiaro, N.; Phebus, R.K.; Bai, J.; Nagaraja, T.G. Identification, Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle feces. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Varga, C.; John, P.; Cooke, M.; Majowicz, S.E. Area-Level Clustering of Shiga Toxin-Producing Escherichia coli Infections and Their Socioeconomic and Demographic Factors in Ontario, Canada: An Ecological Study. Foodborne Pathog. Dis. 2021, 18, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyytiä-Trees, E.; Smole, S.C.; Fields, P.A.; Swaminathan, B.; Ribot, E.M. Second generation subtyping: A proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathog. Dis. 2006, 3, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Ribot, E.M.; Freeman, M.; Hise, K.B.; Gerner-Smidt, P. PulseNet: Entering the age of next-generation sequencing. Foodborne Pathog. Dis. 2019, 16, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenke, C.; Harmsen, D.; Weniger, T.; Rothgänger, J.; Hyytiä-Trees, E.; Bielaszewska, M.; Karch, H.; Mellmann, A. Phylogenetic Analysis of Enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg. Infect. Dis. 2010, 16, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, Y.; Harada, T.; Kawai, T.; Takahashi, Y.; Umekawa, N.; Izumiya, H.; Kawatsu, K. Multilocus Variable-Number Tandem-Repeat Analysis of Enterohemorrhagic Escherichia coli Serogroups O157, O26, and O111 Based on a De Novo Look-Up Table Constructed by Regression Analysis. Foodborne Pathog. Dis. 2021, 18, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, B.A. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 2005, 26, 2567–2582. [Google Scholar] [CrossRef]
- Sheludchenko, M.S.; Huygens, F.; Hargreaves, M.H. Highly Discriminatory Single-Nucleotide Polymorphism Interrogation of Escherichia coli by Use of Allele-Specific Real-Time PCR and EBURST Analysis. Appl. Environ. Microbiol. 2010, 76, 4337–4345. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Lee, M.S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, N.; Murakami, N.; Kashiwagi, T.; Ujiie, K.; Ishimaru, K. Protocol: A simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species. Plant Methods 2010, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, M.; Ruesch, L.; Omot, A.; Francis, D. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet. Microbiol. 2007, 123, 145–152. [Google Scholar] [CrossRef]
- Dong, H.J.; Lee, S.; Kim, W.; An, J.U.; Kim, J.; Kim, D.; Cho, S. Prevalence, virulence potential, and pulsed-field gel electrophoresis profiling of Shiga toxin-producing Escherichia coli strains from cattle. Gut Pathog. 2017, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.H.; Seo, K.H.; Chon, J.W.; Jeong, D.; Song, K.Y. Status and Prospects of PCR Detection Methods for Diagnosing Pathogenic Escherichia coli: A Review. J. Dairy Sci. Biotechnol. 2021, 39, 51–56. [Google Scholar] [CrossRef]
- Dias, R.C.; Moreira, B.M.; Riley, L.W. Use of FimH Single-Nucleotide Polymorphisms for Strain Typing of Clinical Isolates of Escherichia coli for Epidemiologic Investigation. J. Clin. Microbiol. 2010, 48, 483–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Whole-genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. Eur. Food Saf. Auth. 2019, 17, e05898. [Google Scholar]
- Girish, P.S.; Barbuddhe, S.B.; Biswas, A.K.; Mandal, P. (Eds.) Single Nucleotide Polymorphism Genotyping Methods. Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies Editors: Ashim Kumar Biswas, Prabhat Mandal eBook, 1st ed.; Academic Press: London, UK, 2019; ISBN 978-0128192337. [Google Scholar]
- Moorhead, S.M.; Dykes, G.A.; Cursons, R.T. An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J. Microbiol. Methods 2003, 55, 425–432. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Solberg, O.D.; Riley, L.W. Genotypic Analyses of Uropathogenic Escherichia coli Based on FimH Single Nucleotide Polymorphisms (SNPs). J. Med. Microbiol. 2007, 56, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, K.; Ogawa, Y.; Eguchi, M.; Hikono, H.; Kusumoto, M.; Shimoji, Y. Development of an SNP-Based PCR Assay for Rapid Differentiation of a Japanese Live Vaccine Strain from Field Isolates of Erysipelothrix Rhusiopathiae. J. Microbiol. Methods 2015, 117, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, M.; Fara, A.G.; Beritognolo, I.; Sabatti, M. Allele-Specific PCR in SNP Genotyping. Single Nucleotide Polymorphisms. Methods Mol. Biol. 2009, 578, 415–424. [Google Scholar]
- Liu, J.; Huang, S.; Sun, M.; Liu, S.; Liu, Y.; Wang, W.; Zhang, X.; Wang, H.; Hua, W. An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods 2012, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kisand, V.; Lettieri, T. Genome sequencing of bacteria: Sequencing, de novo assembly and rapid analysis using open source tools. BMC Genom. 2013, 14, 211. [Google Scholar] [CrossRef]
- Petkau, A.; Mabon, P.; Sieffert, C.; Knox, N.C.; Cabral, J.; Iskander, M.; Iskander, M.; Weedmark, K.; Zaheer, R.; Katz, L.S.; et al. SNVPhyl: A single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb. Genom. 2017, 3, e000116. [Google Scholar] [CrossRef] [PubMed]
- Octavia, S.; Lan, R. Single nucleotide polymorphism typing of global Salmonella enterica serovar Typhi isolates by use of a hairpin primer real-time PCR assay. J. Clin. Microbiol. 2020, 48, 3504–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.J.; Lappi, V.; Wolfgang, W.J.; Lapierre, P.; Palumbo, M.J.; Medus, C.; Boxrud, D. Characterization of foodborne outbreaks of Salmonella enterica serovar enteritidis with whole genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. J. Clin. Microbiol. 2015, 53, 3334–3340. [Google Scholar] [CrossRef] [Green Version]
- Dallman, T.J.; Byrne, L.; Ashton, P.M.; Cowley, L.A.; Perry, N.T.; Adak, G.; Petrovska, L.; Ellis, R.J.; Elson, R.; Underwood, A.; et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.P.; Wilkins, M.R.; Mitchell, H.M.; Kaakoush, N.O. Novel genetic markers define a subgroup of pathogenic Escherichia coli strains belonging to the B2 phylogenetic group. FEMS Microbiol. Lett. 2015, 362, fnv193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Sullivan, P. Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost, and throughput. Pharm. J. 2003, 3, 77–96. [Google Scholar] [CrossRef]
- Urtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, 1–9. [Google Scholar]
- Hommais, F.; Pereira, S.; Acquaviva, C.; Escobar-Páramo, P.; Denamur, E. Single-Nucleotide Polymorphism Phylotyping of Escherichia coli. Appl. Environ. Microbiol. 2005, 71, 4784–4792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.M.; Lim, S.J.; Kim, W.H.; Cho, J.Y.; Park, Y.C. Prevalence data of diarrheagenic E. coli in the fecal pellets of wild rodents using culture methods and PCR assay. Data Brief 2020, 33, 106439. [Google Scholar] [CrossRef] [PubMed]
- Manning, S.D.; Motiwala, A.S.; Springman, A.C.; Qi, W.; Lacher, D.W.; Ouellette, L.M.; Mladonicky, J.M.; Somsel, P.; Rudrik, J.T.; Dietrich, S.E.; et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 2008, 105, 4868–4873. [Google Scholar] [CrossRef] [Green Version]
P. Code C | Forward Primer (5’–3′) | Reverse Primer (5’–3′) | Amplicon Size | Flanking Sequence with Ambiguous Code and Position of SNP of a Reference E. coli Genome a | Alter Amino Acid-SNP Position in a Respective Gene-Amino Acid of Reference E. coli b | Gene |
---|---|---|---|---|---|---|
01 | GACGTTACAGCTGCCGGT | ACCCAACCAGTCGGCAAC | 919 | thrB (3196: C) GCTGGAAGGCVGTATCTCCGG. | (S/G)-396-R | Homoserine kinase (thrB) |
02 | TCGGCGGTCGCTTTATGG | CCACGGCTGCATAACCCA | 669 | thrC (4363: G) GTTAAACTCGDCTAACTCGAT. | (S/T)-630-A | Threonine synthase (thrC) |
07 | GCGAGCTGGGAGAACTGG | GATTCGCTGTACCGCCGG | 674 | nhaR (19293: C) AGAACGGCGABTTTTGATTCC. | (V/F)-579-L | Transcriptional activator protein (nhaR) |
08 | TGACTCGCCGTATGTGCC | TGCCCGGCAGATAAGTGC | 839 | ileS (22945: C) GAAGCCAGTTVACTGGTGCGT. | (N/D)-485-H; (V/F)-714-I; (Y/D)-747-N | Isoleucine--tRNA ligase (ileS) |
ileS (23104: A) CTCGCTGGTADTCTGGACCAC. | ||||||
ileS (23137: A) TCTGCCTGCCDACCGCGCAAT. | ||||||
09 | CGGCCTGGAAACCGCTAA | TCGGTTGATGCCACCCAC | 852 | ileS (23980: T) GCCGGACACAKTGGATGTATG. | V-1590-L | Isoleucine--tRNA ligase (ileS) |
12 | GGCATTAGAGGGCGTGCA | TGTCATACGGCTGGACGC | 649 | dapB (28751: G) TGTCTTTGCTVCCAATTTTAG. | (T/P)-378-A | 4-hydroxy-tetrahydrodipicolinate (dapB) |
14 | TTGCTAAAGTGGCGGCGA | AGACGGATTCGCTTCGCA | 713 | carB (32142: T) CGCCGATGCGYTCCGTGCGGG. | L-1326-F | Carbamoyl-phosphate synthetase subunit beta (carB) |
15 | TATGCAGCCAGCCATCGG | AGATGTGGCACTTCCCGC | 785 | caiC (36991: A) AGGCGGCTGTVCCATCAACGT. | (G/A)-721-V | Carnitine-CoA ligase (caiC) |
16 | GGCGGTATACGGGAAGGC | CGTCTCCGGGGGATCTGA | 702 | caiB (39005: C) AACTTCCGCGMCCCATTCTGC. | V-1108-G | Carnitine-CoA transferase (caiB) |
20 | CCCAAGTTGCCCGGTCAT | GCACAGGGCTACGACGTT | 738 | polB (63783: A) GGTTTCGCGTVCATATTCCTG. | (G/A)-355-V | DNA polymerase II (polB) |
polB (63825: A) GCGCAGGTATMGCTCCTGCTG. | R-397-L | DNA polymerase II (polB) | ||||
21 | CAAATGCCGCCACCGAAC | CGTCCGCCAGAACGCTAT | 796 | polB (65142: G) ATCGTAGTTGBCAAACCAGGC. | (G/D)-1714-A | DNA polymerase II (polB) |
22 | CCGATTGGCCTGCTTCCA | GCAGCTGTGGTCGGGATT | 742 | araB (69326: T) AGTCCAAGTGWCAGTGAACAG. | V-979-D | araB—Ribulokinase (araB) |
23 | TTGGCAGCGGCGAGTTAA | AAGCGTCGCATCAGGCAA | 620 | yabI (71824: G) CTTCCTGCCAKGGATTCTGGC. | W-474-G | Inner membrane protein (yabI) |
24 | CCATCTGGCGGGCGATAG | GGTGCTGGAGATGAGCGG | 804 | thiP (73115: G) CAGCACGCATRCAAAGGCCAG. | V-205-A | Thiamine transport system permease protein (thiP) |
26 | CAGTGGCGGCAGGAGTAC | CCCTGGGCATTGACCGAC | 671 | leuD (78863: G) CATAAACGCASGTTGTTTTGC. | L-16-P | 3-isopropylmalate dehydratase subunit (leuD) |
Primer | Sequence (5′–3′) a | Length (bp) | Amplicon Size (bp) | Gene Description |
---|---|---|---|---|
O.nhaR-1-F | TTGTTTGACGTTGGCGTGACT | 21 | 397 | Transcriptional activator protein (nhaR) |
O.nhaR-1-R | CGGCATCATCAAACTCACCA | 20 | ||
O.nhaR-3-F | GCGTACTTAACGCCGCATTG | 20 | 225 | |
O.nhaR-3-R | CCGGGAACGGTTTTTCTAGT | 20 | ||
O.thrB-3-F | TGTTCGGTGGTCGCGACG | 18 | 337 | Homoserine kinase (thrB/C) |
O.thrB-3-R | CGTGAATGAAGCCAGCTAGA | 20 | ||
O.thrC-4-F | CCATTCTGACCGCGACCCCT | 20 | 344 | |
O.thrC-4-R | AACCAGCTGGTTGCGCACC | 19 | ||
O.ileS1-4-F | TCTGGGCGTGCTGGGCAAT | 19 | 488 | Isoleucine–tRNA ligase (ileS) |
O.ileS1-4-R | AGCGCAGCAGCTCAAGTTCT | 20 | ||
O.ileS1-3-F | ACAAAGGCGCGAAGCCAATT | 20 | 391 | |
O.ileS1-3-R | GGATGGGTAAAGCGCAGTAA | 20 | ||
O.ileS2-1F | GATCATCTTCCGCGCAGCG | 19 | 401 | |
O.ileS2-1R | CAACAACAGAAGAGTGAGTATAG | 23 | ||
O.ileS2-3-F | CGATCATCTTCCGCGCGCCG | 20 | 376 | |
O.ileS2-3-R | GAGTCAAACCATACATCCAATTTG | 24 | ||
O.caiB-3-F | GCAAATTGCGGCGGGAGGGC | 20 | 318 | Carbamoyl-phosphate synthase large chain (caiB) |
O.caiB-3-R | CTGCCTGATGCGACGTTAAT | 20 | ||
O.caiB-4-F | ATAACCAGTTTCGGGTTGCGC | 21 | 296 | |
O.caiB-4-R | ATCGAAATCGCCGGACCGGTT | 21 | ||
O.polB-3-F | CAAGGGGCGACCGCGCTTCGA | 21 | 262 | DNA polymerase II (polB) |
O.polB-3-R | GCTGGAAACCGTGCGCCCC | 19 | ||
O.polB-4-F | TAATGGTGCCGCGGTTCTGG | 20 | 232 | |
O.polB-4-R | CTTTACCTGCGTATCTTCAGT | 21 |
Primer | E. coli O157:H7 (ATCC-95150) | E. coli O157:H7 (NCCP-15739) | E. coli (KVCC-BA1800069) | E. coli O145:H28 (KVCC-BA1800090) |
---|---|---|---|---|
O.nhaR1 | √ | √ | √ | |
O.ileS2-1 | √ | √ | ||
O.thrB-3 | √ | |||
O.nhaR-3 | √ | |||
O.ileS1-3 | √ | |||
O.ileS2-3 | + | √ | √ | |
O.caiB-3 | ++ | √ | ||
O.polB-3 | + | √ | ||
O.thrC-4 | √ | |||
O.ileS1-4 | √ | |||
O.caiB-4 | √ | √ | ||
O.polB-4 | √ |
Primer Name | Sequence (5′–3′) | Length (bp) | Amplicon Size (bp) | Target Strains |
---|---|---|---|---|
O.ileS2-1F | GATCATCTTCCGCGCAGCG | 19 | 401 | E. coli O157:H7 (ATTC-95150; NCCP-15739) |
O.ileS2-1R | CAACAACAGAAGAGTGAGTATAG | 23 | ||
O.thrB-3-F | TGTTCGGTGGTCGCGACG | 18 | 337 | E. coli (KVCC-BA1800069) |
O.thrB-3-R | CGTGAATGAAGCCAGCTAGA | 20 | ||
O.polB-4-F | TAATGGTGCCGCGGTTCTGG | 20 | 232 | E. coli O145:H28 (KVCC-BA1800090) |
O.polB-4-R | CTTTACCTGCGTATCTTCAGT | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.-M.; Lim, S.-J.; Park, Y.-C. Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection. Pathogens 2022, 11, 115. https://doi.org/10.3390/pathogens11020115
Rahman M-M, Lim S-J, Park Y-C. Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection. Pathogens. 2022; 11(2):115. https://doi.org/10.3390/pathogens11020115
Chicago/Turabian StyleRahman, Md-Mafizur, Sang-Jin Lim, and Yung-Chul Park. 2022. "Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection" Pathogens 11, no. 2: 115. https://doi.org/10.3390/pathogens11020115
APA StyleRahman, M.-M., Lim, S.-J., & Park, Y.-C. (2022). Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-specific Escherichia coli Detection. Pathogens, 11(2), 115. https://doi.org/10.3390/pathogens11020115