Modelling Human Brucellosis Based on Infection Rate and Vaccination Coverage of Sheep and Goats
Abstract
:1. Introduction
2. Results
2.1. Descriptive Results, Estimated Relative Risks and RR90
2.2. Effect of the National Brucellosis Program Parameters on the Number of Human Cases
3. Discussion
4. Materials and Methods
4.1. Data
4.2. Bayesian Estimation of the Expected Number of Human Cases and the RU-Specific Relative Risk
4.3. Bayesian Assessment of the Effect of the Parameters of the National Brucellosis Program on the Number of Human Brucellosis Cases
4.4. Selection of Independent Variables
4.5. Model Selection Criteria and Model Goodness-of-Fit Tests, Selection of the Final Model and Assessment of the Adequate Fit to the Data
4.6. Convergence Diagnostics and Software
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gwida, M.; Al Dahouk, S.; Melzer, F.; Rösler, U.; Neubauer, H.; Tomaso, H. Brucellosis–Regionally Emerging Zoonotic Disease? Croat. Med. J. 2010, 51, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Corbel, M.J.; Elberg, S.S.; Cosivi, O. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy; World Organization for Animal Health: Paris, France, 2006; ISBN 9241547138. [Google Scholar]
- Blasco, J.M.; Molina-Flores, B. Control and Eradication of Brucella melitensis Infection in Sheep and Goats. Veter.-Clin. North Am. Food Anim. Pr. 2011, 27, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, D.D. Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella suis and Brucella abortus. Rev. Sci. Tech. l’OIE 2013, 32, 53–60. [Google Scholar] [CrossRef]
- Atluri, V.L.; Xavier, M.N.; de Jong, M.F.; den Hartigh, A.B.; Tsolis, R.M. Interactions of the Human Pathogenic Brucella Species with Their Hosts. Annu. Rev. Microbiol. 2011, 65, 523–541. [Google Scholar] [CrossRef]
- Moreno, E. Retrospective and prospective perspectives on zoonotic brucellosis. Front. Microbiol. 2014, 5, 213. [Google Scholar] [CrossRef] [Green Version]
- Authority, E.F.S.; Prevention, E.C.F.D. Control, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015, 13, 4329. [Google Scholar]
- Papaparaskevas, J.; Kandili, A.; Pantazatou, A.; Gartzonika, C.; Charalampakis, N.; Stathi, A.; Tarpatzi, K.; Refene, E.; Priftis, A.; Mageropoulou, A.; et al. Infections due to the Brucella melitensis REV-1 vaccine strain in Greece, 2001–2015. In Proceedings of the 26th ECCMID, Amsterdam, The Netherlands, 9–12 April 2016; Available online: https://www.escmid.org/escmid_publications/escmid_elibrary/material/?mid=46811 (accessed on 24 August 2021).
- Hellenic Statistical Authority, 2011 Population-Housing Census. Available online: http://www.statistics.gr/2011-census-pop-hous (accessed on 26 August 2021).
- Tzani, M.; Katsiolis, A. Program for the Control and Eradication of Brucellosis in Sheep and Goats in Greece. HCDCP E-Bull. 2012, 2, 19–20. Available online: https://issuu.com/keelpno-hcdcp/docs/hcdcp_newsletter_april_2012 (accessed on 13 March 2021).
- Katsiolis, A.; Thanou, O.; Tzani, Μ.; Dile, C.; Korou, L.M.; Stournara, A.; Petridou, E.; Giadinis, N. Investigation of the human resources needs for the effective and efficient implementation of the sheep and goat brucellosis program in Greece. Vet. J. Repub. Srp. (Banja Luka) 2018, 18, 270–296. [Google Scholar] [CrossRef]
- Fouskis, I.; Sandalakis, V.; Christidou, A.; Tsatsaris, A.; Tzanakis, N.; Tselentis, Y.; Psaroulaki, A. The epidemiology of Brucellosis in Greece, 2007–2012: A ‘One Health’ approach. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 124–135. [Google Scholar] [CrossRef]
- Nicoletti, P. brucellosis: Past, present and future. Prilozi 2010, 31, 21–32. [Google Scholar]
- Pereira, C.R.; De Almeida, J.V.F.C.; De Oliveira, I.R.C.; De Oliveira, L.F.; Pereira, L.J.; Zangerônimo, M.G.; Lage, A.P.; Dorneles, E.M.S. Occupational exposure to Brucella spp.: A systematic review and meta-analysis. PLoS Neglected Trop. Dis. 2020, 14, e0008164. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Prüfer, T.L.; Schoneberg, C.; Campe, A.; Runge, M.; Ganter, M.; Bauer, B.U. Prevalence of Coxiella burnetii in German sheep flocks and evaluation of a novel approach to detect an infection via preputial swabs at herd-level. Epidemiol. Infect. 2020, 148, e75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, F.; Zinsstag, J.; Orkhon, D.; Chimed-Ochir, G.; Hutton, G.; Cosivi, O.; Carrin, G.; Otte, J. Human health benefits from livestock vaccination for brucellosis: Case study. Bull. World Health Organ. 2004, 81, 867–876. [Google Scholar]
- Arapovic, J.; Špičić, S.; Duvnjak, S.; Ostojić, M.; Arapović, M.; Nikolić, J. Cvetnić, Željko The first report of Brucella melitensis Rev.1 human brucellosis in Bosnia and Herzegovina. J. Infect. Dev. Ctries. 2020, 14, 232–235. [Google Scholar] [CrossRef]
- Seyman, D.; Asik, Z.; Sepin-Ozen, N.; Berk, H. Acute Brucellosis Following Accidental Exposure to Brucella melitensis Rev-1 Vaccine. West Indian Med. J. 2015, 65, 216–218. [Google Scholar] [CrossRef]
- Christoforidou, S.; Boukouvala, E.; Zdragas, A.; Malissiova, E.; Sandalakis, V.; Psaroulaki, A.; Petridou, E.; Tsakos, P.; Ekateriniadou, L.; Hadjichristodoulou, C. Novel diagnostic approach on the identification of Brucella melitensis Greek endemic strains-discrimination from the vaccine strain Rev.1 by PCR-RFLP assay. Veter-Med. Sci. 2018, 4, 172–182. [Google Scholar] [CrossRef]
- Dougas, G.; Mellou, K.; Kostoulas, P.; Billinis, C.; Georgakopoulou, T.; Tsiodras, S. Brucellosis underreporting in Greece: Assessment based on aggregated laborato-ry data of culture-confirmed cases from public hospitals. Hippokratia 2020, 23, 106–110. [Google Scholar]
- Speigelhalter, D.; Thomas, D.; Best, N.; Lunn, D. OpenBUGS User Manual. 2010. Available online: https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/2021/06/OpenBUGS_Manual.pdf (accessed on 25 August 2021).
- Robert, C.; Ntzoufras, I. Bayesian Modeling Using WinBUGS. Chance 2012, 25, 60–61. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2013, 24, 997–1016. [Google Scholar] [CrossRef]
- Raftery, A.E.; Lewis, S.M. [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo. Stat. Sci. 1992, 7, 493–497. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Best, N.G.; Cowles, M.K.; Vines, S.K. CODA Manual Version 0.30; MRC Biostatistics Unit: Cambridge, UK, 1995; Volume 46, pp. 2020–2027. [Google Scholar]
Variable | Estimate | p | |
---|---|---|---|
Intercept | −1.84 (−2.81; −0.95) | <0.01 | |
Vaccination | No | Reference | |
Yes | 2.31 (1.35; 3.32) | <0.01 | |
Random-effect variance | 1.23 (0.88; 2.22) | <0.01 |
Variable | Estimate | p |
---|---|---|
Intercept | 0.56 (0.17; 0.94) | <0.01 |
Remaining unvaccinated female animals per 105 humans | −0.349 (−0.72; −0.07) | <0.01 |
Female animals vaccinated at age > 6 mo per 105 humans | 0.14 (0.04; 0.29) | 0.03 |
Random-effect variance | 1.23 (0.72; 2.20) | <0.01 |
Variable | Definition |
---|---|
“New positive holdings” a | Only newly diagnosed with brucellosis holdings in a particular year |
“Unvaccinated animals” a | Female sheep and goats remaining unvaccinated |
“Unvaccinated holdings” a | Farms with sheep and/or goats, in which no vaccination was implemented in the animals eligible for vaccination |
“Animals with delayed vaccination” a | Female sheep and goats that received vaccination after the optimal age (3–6 months old) |
“Percentage of tested holdings” | Percentage of holdings tested serologically |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougas, G.; Katsiolis, A.; Linou, M.; Kostoulas, P.; Billinis, C. Modelling Human Brucellosis Based on Infection Rate and Vaccination Coverage of Sheep and Goats. Pathogens 2022, 11, 167. https://doi.org/10.3390/pathogens11020167
Dougas G, Katsiolis A, Linou M, Kostoulas P, Billinis C. Modelling Human Brucellosis Based on Infection Rate and Vaccination Coverage of Sheep and Goats. Pathogens. 2022; 11(2):167. https://doi.org/10.3390/pathogens11020167
Chicago/Turabian StyleDougas, Georgios, Aristomenis Katsiolis, Maria Linou, Polychronis Kostoulas, and Charalambos Billinis. 2022. "Modelling Human Brucellosis Based on Infection Rate and Vaccination Coverage of Sheep and Goats" Pathogens 11, no. 2: 167. https://doi.org/10.3390/pathogens11020167
APA StyleDougas, G., Katsiolis, A., Linou, M., Kostoulas, P., & Billinis, C. (2022). Modelling Human Brucellosis Based on Infection Rate and Vaccination Coverage of Sheep and Goats. Pathogens, 11(2), 167. https://doi.org/10.3390/pathogens11020167