Development of Quality Control Ranges for Biocide Susceptibility Testing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interlaboratory Trial
2.2. Development of QC Ranges for Staphylococcus aureus ATCC® 6538
2.2.1. Benzalkonium Chloride
2.2.2. Chlorhexidine
2.2.3. Polyhexanide
2.2.4. Octenidine
2.2.5. Summary Staphylococcus aureus ATCC® 6538
2.3. Development of QC Ranges for Enterococcus hirae ATCC® 10541
2.3.1. Benzalkonium Chloride
2.3.2. Chlorhexidine
2.3.3. Polyhexanide
2.3.4. Octenidine
2.3.5. Summary Enterococcus hirae ATCC® 10541
2.4. Development of QC Ranges for Escherichia coli ATCC® 10536
2.4.1. Benzalkonium Chloride
2.4.2. Chlorhexidine
2.4.3. Polyhexanide
2.4.4. Octenidine
2.4.5. Summary Escherichia coli ATCC® 10536
2.5. Development of QC Ranges for Pseudomonas aeruginosa ATCC® 15442
2.5.1. Benzalkonium Chloride
2.5.2. Chlorhexidine
2.5.3. Polyhexanide
2.5.4. Octenidine
2.5.5. Summary Pseudomonas aeruginosa ATCC® 15442
2.6. Overall Results and Outlook
3. Materials and Methods
3.1. Selection of the Bacterial Strains and Biocides
3.2. Interlaboratory Trial
3.3. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SCENIHR. Assessment of the Antibiotic Resistance Effects of Biocides. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). European Commission Health & Consumer Protection DG Directorate C: Public Health and Risk Assessment Unit C7. 2009. Available online: https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_q_012.pdf (accessed on 20 December 2021).
- Maillard, J.Y. Resistance of Bacteria to Biocides. Microbiol. Spectr. 2018, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- DVG. Prüfrichtlinien MHK IV Ermittlung der Minimalen Hemmkonzentration. In Richtlinien für die Prüfung von Desinfektionsverfahren und Chemischen Desinfektionsmitteln. Deutsche Verterinärmedizinische Gesellschaft (German Veterinary Medical Society), 4th ed.; DVG: Gießen, Germany, 2017; Available online: https://www.desinfektion-dvg.de/index.php?id=1800 (accessed on 20 December 2021).
- DIN. DIN EN 1040:2006-03. Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Basic Bactericidal Activity of Chemical Disinfectants and Antiseptics—Test Method and Requirements (Phase 1). 2006. Available online: https://www.en-standard.eu/csn-en-1040-chemical-disinfectants-and-antiseptics-quantitative-suspension-test-for-the-evaluation-of-basic-bactericidal-activity-of-chemical-disinfectants-and-antiseptics-test-method-and-requirements-phase-1/ (accessed on 20 December 2021).
- Feßler, A.T.; Schug, A.R.; Geber, F.; Scholtzek, A.D.; Merle, R.; Brombach, J.; Hensel, V.; Meurer, M.; Michael, G.B.; Reinhardt, M.; et al. Development and evaluation of a broth macrodilution method to determine the biocide susceptibility of bacteria. Vet. Microbiol. 2018, 223, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Schug, A.R.; Bartel, A.; Scholtzek, A.D.; Meurer, M.; Brombach, J.; Hensel, V.; Fanning, S.; Schwarz, S.; Feßler, A.T. Biocide susceptibility testing of bacteria: Development of a broth microdilution method. Vet. Microbiol. 2020, 248, 108791. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L.; Sweeney, M.T.; Lubbers, B.V. Antimicrobial susceptibility testing of bacteria of veterinary origin. Microbiol. Spectr. 2018, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing. Available online: http://www.eucast.org/ (accessed on 30 November 2021).
- Humayoun, S.B.; Hiott, L.M.; Gupta, S.K.; Barrett, J.B.; Woodley, T.A.; Johnston, J.J.; Jackson, C.R.; Frye, J.G. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS ONE 2018, 13, e0209072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, A.R.; Bartel, A.; Meurer, M.; Scholtzek, A.D.; Brombach, J.; Hensel, V.; Fanning, S.; Schwarz, S.; Feßler, A.T. Comparison of two methods for cell count determination in the course of biocide susceptibility testing. Vet. Microbiol. 2020, 251, 108831. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters for Veterinary Antimicrobial Agents, Approved Guideline, 3rd ed.; CLSI Document VET02-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Langsrud, S.; Sundheim, G. Factors contributing to the survival of poultry associated Pseudomonas spp. exposed to a quaternary ammonium compound. J. Appl. Microbiol. 1997, 82, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Langsrud, S.; Sidhu, M.; Heir, E.; Holck, A. Bacterial disinfectant resistance—A challenge for the food industry. Int. Biodeterior. Biodegrad. 2003, 51, 283–290. [Google Scholar] [CrossRef]
- Lanini, S.; D’Arezzo, S.; Puro, V.; Martini, L.; Imperi, F.; Piselli, P.; Montanaro, M.; Paoletti, S.; Visca, P.; Ippolito, G. Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS ONE 2011, 6, e17064. [Google Scholar] [CrossRef] [PubMed]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.-S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T. Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, M.C.; Feßler, A.T.; Monecke, S.; Ehricht, R.; No, D.; Schwarz, S. Molecular Analysis of Two Different MRSA Clones ST188 and ST3268 from Primates (Macaca spp.) in a United States Primate Center. Front. Microbiol. 2018, 9, 2199. [Google Scholar] [CrossRef] [PubMed]
- Monecke, M.; Feßler, A.T.; Burgold-Voigt, S.; Krüger, H.; Mühldorfer, K.; Wibbelt, G.; Liebler-Tenorio, E.M.; Reinicke, M.; Braun, S.D.; Hanke, D.; et al. Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin. Sci. Rep. 2021, 11, 24394. [Google Scholar] [CrossRef] [PubMed]
- Mišić, D.; Kiskaroly, F.; Szostak, M.P.; Cabal, A.; Ruppitsch, W.; Bernreiter-Hofer, T.; Milovanovic, V.; Feßler, A.T.; Allerberger, F.; Spergser, J.; et al. The First Report of mcr-1-Carrying Escherichia coli Originating from Animals in Serbia. Antibiotics 2021, 10, 1063. [Google Scholar] [CrossRef] [PubMed]
- Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Mišić, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Ullah, S.; Ahmad, I.; Qureshi, A.K.; Balkhair, K.S.; Abdur Rehman, M. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J. Sci. Food Agric. 2014, 94, 388–403. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Bordash, G. Statistical methods for establishing quality control ranges for antibacterial agents in Clinical and Laboratory Standards Institute susceptibility testing. Antimicrob. Agents Chemother. 2007, 51, 2483–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | |||||||||||
0.001 | 3 | ||||||||||
0.0005 | |||||||||||
0.00025 | 3 | 1 | |||||||||
0.000125 | 17 | 10 | 11 | 15 | 9 | 2 | 30 | 7 | 7 | 19 | |
0.00006 | 13 | 20 | 19 | 12 | 27 | 20 | 28 | 22 | 23 | 11 | |
0.00003 | 1 | ||||||||||
0.000015 | |||||||||||
≤0.000008 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | |||||||||||
0.001 | |||||||||||
0.0005 | |||||||||||
0.00025 | 3 | ||||||||||
0.000125 | 20 | 11 | 17 | 20 | 6 | 5 | 8 | 4 | 8 | 27 | |
0.00006 | 10 | 18 | 13 | 7 | 22 | 25 | 28 | 22 | 26 | 22 | 3 |
0.00003 | 1 | 2 | 2 | ||||||||
0.000015 | |||||||||||
≤0.000008 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.064 | |||||||||||
0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | 2 | 3 | |||||||||
0.001 | 3 | 2 | 13 | ||||||||
0.0005 | 4 | 2 | 5 | 6 | 2 | 7 | 12 | ||||
0.00025 | 6 | 11 | 10 | 15 | 6 | 3 | 6 | 9 | 8 | 14 | 2 |
0.000125 | 20 | 15 | 20 | 7 | 16 | 24 | 24 | 13 | 19 | 9 | |
0.00006 | 2 | 8 | 1 | 1 | |||||||
0.00003 | |||||||||||
≤0.000015 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | |||||||||||
0.001 | |||||||||||
0.0005 | 1 | ||||||||||
0.00025 | 14 | 8 | 15 | 14 | 5 | 2 | 1 | 8 | 1 | 3 | 15 |
0.000125 | 14 | 18 | 14 | 14 | 21 | 24 | 9 | 17 | 23 | 25 | 15 |
0.00006 | 1 | 4 | 1 | 2 | 4 | 3 | 20 | 5 | 6 | 2 | |
0.00003 | 1 | ||||||||||
≤0.000015 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | 2 | 4 | 10 | 2 | 6 | 1 | |||||
0.001 | 21 | 25 | 19 | 13 | 18 | 15 | 12 | 28 | 21 | 26 | 19 |
0.0005 | 7 | 5 | 7 | 7 | 12 | 14 | 18 | 3 | 4 | 10 | |
0.00025 | 1 | ||||||||||
0.000125 | |||||||||||
0.00006 | |||||||||||
0.00003 | |||||||||||
0.000015 | |||||||||||
≤0.000008 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | |||||||||||
0.001 | 1 | ||||||||||
0.0005 | 1 | 4 | |||||||||
0.00025 | 5 | 2 | 5 | 13 | 3 | 4 | 15 | ||||
0.000125 | 11 | 5 | 5 | 10 | 5 | 1 | 2 | 2 | 4 | 7 | |
0.00006 | 14 | 16 | 14 | 6 | 12 | 9 | 5 | 25 | 17 | 21 | 2 |
0.00003 | 7 | 5 | 1 | 13 | 20 | 25 | 11 | 1 | 1 | ||
0.000015 | |||||||||||
≤0.000008 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.064 | 1 | ||||||||||
0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | 4 | ||||||||||
0.001 | 1 | 1 | 5 | ||||||||
0.0005 | 2 | 2 | 4 | 12 | 1 | 3 | 6 | 11 | |||
0.00025 | 11 | 18 | 18 | 12 | 9 | 1 | 7 | 7 | 12 | 10 | 8 |
0.000125 | 17 | 10 | 7 | 5 | 16 | 29 | 21 | 22 | 15 | 14 | 1 |
0.00006 | 5 | 2 | |||||||||
0.00003 | |||||||||||
≤0.000015 |
MIC (in %) | Lab 1 | Lab 2 | Lab 3 | Lab 4 | Lab 5 | Lab 6 | Lab 7 | Lab 8 | Lab 9 | Lab 10 | Lab 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
≥0.032 | |||||||||||
0.016 | |||||||||||
0.008 | |||||||||||
0.004 | |||||||||||
0.002 | 1 | ||||||||||
0.001 | 1 | 2 | 3 | ||||||||
0.0005 | 2 | 2 | 5 | 12 | 1 | 2 | 2 | 9 | |||
0.00025 | 20 | 15 | 18 | 8 | 15 | 2 | 10 | 2 | 15 | 13 | |
0.000125 | 8 | 13 | 6 | 8 | 14 | 16 | 20 | 15 | 26 | 12 | 3 |
0.00006 | 12 | 10 | 3 | 2 | 1 | 1 | |||||
0.00003 | |||||||||||
≤0.000015 |
Biocide | QC Strains | |||
---|---|---|---|---|
Staphylococcus aureus ATCC® 6538 (DSM 799) | Enterococcus hirae ATCC® 10541 (DSM 3320) | Escherichia coli ATCC® 10536 (DSM 682) | Pseudomonas aeruginosa ATCC® 15442 (DSM 939). | |
benzalkonium chloride | 0.00003–0.00025% | 0.000125–0.0005% | 0.0005–0.002% | 0.002–0.008% |
chlorhexidine | 0.00003–0.00025% | 0.00003–0.00025% | 0.000015–0.00025% | - |
polyhexanide | 0.00006–0.001% | 0.000125–0.002% | 0.00006–0.001% | - |
octenidine | 0.00006–0.00025% | 0.00006–0.0005% | 0.00006–0.0005% | 0.000125–0.002% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schug, A.R.; Scholtzek, A.D.; Turnidge, J.; Meurer, M.; Schwarz, S.; Feßler, A.T.; the Biocide Susceptibility Study Group. Development of Quality Control Ranges for Biocide Susceptibility Testing. Pathogens 2022, 11, 223. https://doi.org/10.3390/pathogens11020223
Schug AR, Scholtzek AD, Turnidge J, Meurer M, Schwarz S, Feßler AT, the Biocide Susceptibility Study Group. Development of Quality Control Ranges for Biocide Susceptibility Testing. Pathogens. 2022; 11(2):223. https://doi.org/10.3390/pathogens11020223
Chicago/Turabian StyleSchug, Angela R., Anissa D. Scholtzek, John Turnidge, Marita Meurer, Stefan Schwarz, Andrea T. Feßler, and the Biocide Susceptibility Study Group. 2022. "Development of Quality Control Ranges for Biocide Susceptibility Testing" Pathogens 11, no. 2: 223. https://doi.org/10.3390/pathogens11020223
APA StyleSchug, A. R., Scholtzek, A. D., Turnidge, J., Meurer, M., Schwarz, S., Feßler, A. T., & the Biocide Susceptibility Study Group. (2022). Development of Quality Control Ranges for Biocide Susceptibility Testing. Pathogens, 11(2), 223. https://doi.org/10.3390/pathogens11020223