Next Article in Journal
Pyoluteorin Produced by the Biocontrol Agent Pseudomonas protegens Is Involved in the Inhibition of Heterobasidion Species Present in Europe
Next Article in Special Issue
The Prevalence and Impact of Coinfection and Superinfection on the Severity and Outcome of COVID-19 Infection: An Updated Literature Review
Previous Article in Journal
Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis
Previous Article in Special Issue
Evaluation of Betacoronavirus OC43 and SARS-CoV-2 Elimination by Zefero Air Sanitizer Device in a Novel Laboratory Recirculation System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Perspective

Superantigens and SARS-CoV-2

1
Panres Pandemic Research, Newport TF10 8PG, UK
2
Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
*
Author to whom correspondence should be addressed.
Pathogens 2022, 11(4), 390; https://doi.org/10.3390/pathogens11040390
Submission received: 10 February 2022 / Revised: 3 March 2022 / Accepted: 22 March 2022 / Published: 23 March 2022
(This article belongs to the Collection SARS-CoV Infections)

Abstract

:
It has been posited SARS-CoV-2 contains at least one unique superantigen-like motif not found in any other SARS or endemic coronaviruses. Superantigens are potent antigens that can send the immune system into overdrive. SARS-CoV-2 causes many of the biological and clinical consequences of a superantigen, and, in the context of reinfection and waning immunity, it is important to better understand the impact of a widely circulating, airborne pathogen that may be a superantigen, superantigen-like or trigger a superantigenic host response. Urgent research is needed to better understand the long-term risks being taken by governments whose policies enable widespread transmission of a potential superantigenic pathogen, and to more clearly define the vaccination and public health policies needed to protect against the consequences of repeat exposure to the pathogen.

1. What Is a Superantigen?

The term superantigen was coined in 1989 [1] and defined proteins that hyper-stimulate T cells via the crosslinking of T cell receptors (TCR) with MHC Class II molecules. The definition was expanded following the discovery of B cell superantigens [2], which hyper-stimulate a large population of B cells without the crosslink. A superantigen is commonly defined as a molecule that has antigen-receptor mediated interactions with over 5% of the lymphocyte pool [3].
Put simply, superantigens are potent antigens that can send the immune system into overdrive and stimulate up to 30% of the naive T cell pool [4,5]. Reactions between superantigens and T cells may lead to a number of outcomes, including anergy, inflammation, cytotoxicity, deletion of T-cells and autoimmunity [6,7,8]. Superantigens have also been shown to impair post-vaccination memory cell responses to unrelated antigens and antagonize memory cell activation [9].
The same superantigen can produce a range of host responses. Toxic shock has been shown to develop more severely in individuals who express certain MHC Class II haplotypes which bind specific superantigens, compared with those who expressed haplotypes with lower binding affinity [10]. Responses may also be affected by environmental factors. For example, simultaneous bacterial and viral infections have been shown to increase the effects of superantigens [11]. Superantigens have been shown to impact central nervous system function and are implicated in the development of neurological conditions [12,13,14] and cardiovascular dysfunction [15,16].
Superantigens have diverse interactions with MHC class II and T–cell receptor molecules, involving a number of different interaction surfaces and stoichiometries [17,18,19]. In addition to superantigens, there are superantigen-like proteins that activate lymphocytes using mechanisms that place them outside the superantigen classification [20]. Superantigen-like proteins have been implicated in inducing thrombotic and bleeding complications through platelet activation [21,22].
SARS-CoV-2 causes many of the biological and clinical consequences of a superantigen, and we believe in the context of reinfection and waning immunity, it is important to better understand the impact of a widely circulating, airborne pathogen that may be a superantigen, superantigen-like or trigger a superantigenic host response.

2. Lessons from Dengue

T lymphocyte activation during dengue infection is thought to contribute to the pathogenesis of dengue hemorrhagic fever (DHF) [23]. In fact, dengue virus (DENV) causes some of the clinical characteristics seen in COVID-19, including T cell activation [23], neurological complications [24] and autoimmunity [25]. DENV-induced autoantibodies against endothelial cells, platelets and coagulator molecules lead to their abnormal activation or dysfunction [25]. A study of TCR Vβ gene usage in children with DENV infection concluded dengue is not a superantigen, but rather a conventional antigen [23]. The authors of the study cautioned their finding had limitations, but it is widely accepted DENV is a conventional antigen that causes host reactions typically associated with superantigens.
A conventional antigen can still trigger a superantigenic host response. A recent study of the response of human endogenous retroviruses (HERV) to DENV serotype 2 infection found significant differentiation in expression during infection [26]. HERVs are components of the human genome that likely originated through the historic incorporation of exogenous viruses [27]. HERVs perform important biological functions but are also implicated in the development of autoimmunity and cancer [28]. Certain viral infections have been shown to trigger HERV upregulation and autoimmunity [29]. HERVs can present proteins that act as superantigens [30]. Epstein–Barr virus (EBV) has been shown to transactivate HERV-K18, which encodes a superantigen [31]. This may have clinical implications. For example, HERV-K18 is significantly elevated in the peripheral blood of patients with juvenile rheumatoid arthritis [32].
HERV loci are upregulated by a variety of viral infections, seemingly as part of an effective innate immune response [33], but it is possible that a dysfunction in response transactivates a superantigen, which triggers an immune cascade or autoimmunity. In fact, transient elevations of HERV-K [34], and prolonged elevation of HERV-W have been found in COVID-19 patients [35,36]. HERV-W envelope protein (HERV-W-env) has been shown to induce T cell responses with superantigen characteristics [37].

3. Superantigens and T-Cell Dysfunction

Superantigens have differing effects on immature and mature CD4 and CD8 T-cells (Figure 1). Superantigens can deplete thymocytes or immature T-cells, but can hyperstimulate mature, antigen-experienced CD4s and CD8s [38]. After hyperstimulation by Staphylococcal enterotoxin B (SEB) superantigen, T-cells can enter a state of unresponsiveness known as ‘anergy’ where they fail to respond, and may sometimes subsequently enter apoptosis, or programmed cell death [39,40]. Not limited to only affecting CD4s by virtue of MHC II, superantigens can cause differentiation of naive T-cells and stimulation of CD8 memory cells from bystander activation via cytokines or from similar Vβ gene segments in their TCRs [41]. Antigen-independent activation, or bystander activation of CD8 T-cells, is a well-studied consequence of viral infection [41,42,43].
SEB superantigen activates virus-specific CD8 T-cells in vivo with both direct TCR engagement in some cases and by bystander effect [44]. This bystander stimulation is also apparent in vitro [44]. Interestingly, T-cell death elicited by superantigenic stimulation is most apparent among the T-cells activated by the bystander effect rather than activated by direct TCR engagement [45]. CD8 T-cells in which the superantigen directly stimulates per T-cell receptor β-chain retain their cytotoxic function [46]. The possibility of deletion of antiviral memory by the bystander effect warrants investigation given the involution of the thymus following puberty, as it could compromise microbe clearance [47].
Chronic exposure to superantigen could continually stimulate T-cells, keeping them in a perpetual state between anergy and hyperstimulation. Furthermore, given naive T-cells can be activated and differentiated by the bystander effect, this could manifest in an observed naive T-cell depletion in the peripheral blood where naive cells home to lymphoid tissues in individuals where new naive T-cells are not being readily generated due to thymic involution [47,48]. This effect could explain the paucity of naive T-cells in some Long COVID patients [49]. The loss of naive T-cells is a defining metric in immune aging and dysfunction. They help regulate immune responses and have the highest expansive capacity in response to antigens from cancers and infection [50,51,52].

4. Superantigens and Autoimmunity

Superantigens are implicated in the development of autoimmune diseases [53,54,55,56,57,58]. T-cell clones that are cross-reactive towards the endogenous host and microbial epitopes may be stimulated and migrate to tissue containing an autoantigen, a mechanism believed to play a role in the pathogenesis of rheumatic fever [59,60]. Individuals with autoimmune diseases show an increase in such T-cells in affected organs or peripheral blood [5]. Superantigens stimulate autoantibody production by bridging the MHC Class II molecule of B-cells with the TCR on T-cells [61]. Whether deletion or autoimmunity occurs seems to be a function of dose, persistence, host haplotype and severity of cytokine response [62].
Persistent subcutaneous exposure to a superantigen has been shown to cause a systemic inflammatory disease mimicking systemic lupus erythematosus (SLE) in mice [63]. Superantigens have been shown to trigger or exacerbate SLE [64]. Interestingly, HERV-E has been implicated in SLE [65,66]. HERV-E has been found to be upregulated in the bronchoalveolar lavage fluid of COVID-19 patients [67].
Insulin-dependent diabetes mellitus (IDDM) is a T-cell-mediated autoimmune disease triggered by unknown environmental factors acting on a predisposing genetic background, but there is evidence superantigen-like exposure in the form of HERV-W-env upregulation is implicated in the recruitment of macrophages in the pancreas and beta-cell dysfunction [68]. Antibodies against HERV-W-env precede or overlap with conventional IDDM antibodies in youths who are susceptible to or have the condition [69].

5. SARS-CoV-2 as a Superantigenic, Superantigen-like Pathogen or Superantigen Trigger

We note a recent study of SARS-CoV-2 which found immunological dysfunction following mild to moderate infection, including depletion of naive T and B-cells in individuals with Long COVID [49], and a single cell atlas which also found depletion of naive T-cells and higher levels of apoptotic T-cells in SARS-CoV-2 infection than HIV [70]. Taken together with findings on post-SARS-CoV-2 autoantibodies [71,72], presentation of MIS-C [73], activation and depletion of T-cells [74] and a rise in IDDM [75], these are suggestive of a superantigen, superantigen-like protein or triggering of a superantigenic host response as a causative agent, and further research is needed into its role and likely long-term effects, particularly since SARS-CoV-2 has been found to persist in the body months after acute infection [76,77,78,79,80,81,82]. SARS-CoV-2’s superantigenic characteristics have been implicated in MIS-C [83]. The expansion of T-cells carrying the TRBV11-2 gene, in combination with variable alpha chains, a hallmark of superantigen-mediated T-cell activation, has been reported in several studies of patients with MIS-C [84,85].
Brodin offers an energy allocation hypothesis for MIS-C, suggesting a choice in favor of disease tolerance over maximal resistance that means children are more likely to present with mild and even asymptomatic disease but might also be less efficient at viral clearance and, consequently, be more prone to some level of viral persistence and possibly other conditions linked to such viral persistence such as superantigen-mediated immune activation in MIS-C [86]. We question why such SARS-CoV-2’s superantigenic characteristics would not be assumed to apply to adults, particularly given the clinical and biological manifestations in all age groups, which reflect known prior differences between responses to superantigen exposure in adults and children. Indeed, MIS-A manifests in adults as a consequence of SARS-CoV-2 infection [87] and rare instances of Kawasaki disease are observed in adults [88,89].
The issue of whether SARS-CoV-2 contains a superantigen is not settled, but the evidence is accumulating [90,91,92,93,94,95] and SARS-CoV-2 is causing superantigen or superantigen-like clinical presentations and biomarkers. In addition to cytokine storms [96], T-cell activation and deletion [74] and presentation of MIS-C [73,97,98] (similar to Kawasaki disease, a suspected consequence of superantigen exposure [99]), those infected by SARS-CoV-2 who suffer Long COVID following infection manifest symptoms [100] typically seen in autoimmune conditions such as SLE [101,102,103], and autoantibodies [71] and antinuclear antibodies [72] have been detected in a proportion of such individuals [104].
In vitro assessments of SARS-CoV-2’s superantigen-like region may not capture the full physiological effect on the immune system in vivo. For example, lipopolysaccharide (LPS) can potentiate the SEB superantigen effect [105], which could have a synergistic effect on T cells following gut inflammation or injury via LPS translocation [106,107].
SARS-CoV-2 is known to infect gut epithelial cells [108], persist in the gut [79,109,110] and disrupt tight junctions in bronchial epithelial barriers [111]. Indeed, hospitalized non-survivors of SARS-CoV-2 infection had increased LPS detected in blood [112]. While SARS-CoV-2 may not be canonically superantigenic in vitro, the in vivo consequences may be significant due to other danger and death signals [113].
With evidence mounting that SARS-CoV-2 reactivates latent viruses such as Epstein–Barr Virus [114], cytomegalovirus [115,116] and human endogenous retrovirus [36], which are associated with superantigen expression [31,69,117,118,119], it is important to establish whether SARS-CoV-2 is a superantigen or triggering second-order superantigenic responses in susceptible individuals.
Some countries seem willing to tolerate high levels of infection provided their healthcare systems can cope. This approach is predicated on the belief a level of protective population immunity can be achieved and sustained, and the impact of reinfections will be less severe [120]. If SARS-CoV-2 contains a superantigen, superantigen-like protein or triggers a superantigenic host response, this strategy may prove a grave error. The effect of a superantigen is dependent on dose exposure, genetic predisposition, environmental conditions and immune response [6,7,12,62].
There is evidence the toxic effects of superantigens can be inhibited by specific antibodies but protection conferred seems to depend on antibody titer and exposure dose [121]. Recent evidence of a reduction in MIS-C following vaccination supports the protective role of antibodies in preventing a clinical manifestation of a superantigen or superantigen-like infection [122]; however, in the context of waning antibody titers seen following vaccination against [123] or infection [124] by SARS-CoV-2, and ongoing evolution of the virus [125], the impact of repeat exposure may be unpredictable.
Rather than proving beneficial, allowing widespread transmission of SARS-CoV-2 could be detrimental, and the growing population suffering from Long COVID [126] marked by a depletion of naive T-cells [49] may be a warning. Given the adverse impact Kawasaki disease and some autoimmune conditions can have on long-term health and longevity [127,128], national strategies that allow widespread transmission of an airborne [129] potentially superantigenic or superantigen-like pathogen that has demonstrated some evidence of persistence and can inflict repeat infections may be misguided.

6. Conclusions

If SARS-CoV-2 is a superantigen, superantigen-like or triggers a superantigenic host response, the unpredictable nature of a superantigen makes it particularly difficult to assess what will happen to people on repeat exposure and adds to the overall uncertainty around the long-term effects of the virus [130,131]. Urgent research is needed to confirm or refute the superantigenic nature of SARS-CoV-2, to better understand the long-term risks being taken by governments whose policies enable widespread transmission and to understand whether it is necessary to maintain consistently high levels of neutralizing antibodies to better protect against the consequences of exposure to the pathogen. It is of vital importance to definitively establish whether SARS-CoV-2 is a superantigen, superantigen-like or triggers a superantigenic host response in order to better understand the short and long-term consequences of infection. It should be noted that one of the superantigen-like motifs posited in SARS-CoV-2 is unique, and not found in any other SARS or endemic coronaviruses [83] and that according to longitudinal analysis of SARS-CoV-2, this motif appears highly conserved [132].

Author Contributions

A.H. and A.L. contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. White, J.; Herman, A.; Pullen, A.M.; Kubo, R.; Kappler, J.W.; Marrack, P. The V Beta-Specific Superantigen Staphylococcal Enterotoxin B: Stimulation of Mature T Cells and Clonal Deletion in Neonatal Mice. Cell 1989, 56, 27–35. [Google Scholar] [CrossRef]
  2. Pascual, V.; Capra, J.D. B-Cell Superantigens? Curr. Biol. 1991, 1, 315–317. [Google Scholar] [CrossRef]
  3. Silverman, G.J.; Goodyear, C.S. Confounding B-Cell Defences: Lessons From a Staphylococcal Superantigen. Nat. Rev. Immunol. 2006, 6, 465–475. [Google Scholar] [CrossRef] [PubMed]
  4. Choi, Y.; Lafferty, J.A.; Clements, J.R.; Todd, J.K.; Gelfand, E.W.; Kappler, J.; Marrack, P.; Kotzin, B.L. Selective Expansion of T Cells Expressing V Beta 2 in Toxic Shock Syndrome. J. Exp. Med. 1990, 172, 981–984. [Google Scholar] [CrossRef] [Green Version]
  5. Kotzin, B.L.; Leung, D.Y.M.; Kappler, J.; Marrack, P. Superantigens and Their Potential Role in Human Disease. Adv. Immunol. 1993, 54, 99–166. [Google Scholar] [CrossRef]
  6. Kotb, M. Bacterial pyrogenic exotoxins as superantigens. Clin. Microbiol. Rev. 1995, 8, 411–426. [Google Scholar] [CrossRef]
  7. Ericsson, P.O.; Hansson, J.; Widegren, B.; Dohlsten, M.; Sjogren, H.O.; Hedlund, G. In vivo induction of gamma/delta T cells with highly potent and selective anti-tumor cytotoxicity. Eur. J. Immunol. 1996, 21, 2797–2802. [Google Scholar] [CrossRef]
  8. McCormack, J.E.; Callahan, J.E.; Kappler, J.; Marrack, P.C. Profound deletion of mature T-cells in vivo by chronic exposure to exogenous superantigen. J. Immunol. 1993, 150, 3785–3792. [Google Scholar]
  9. Janik, D.K.; Lee, W.T. Staphylococcal Enterotoxin B (SEB) Induces Memory CD4 T Cell Anergy in vivo and Impairs Recall Immunity to Unrelated Antigens. J. Clin. Cell Immunol. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
  10. Guedez, Y.; Norrby-Teglund, A.; Low, D.; McGeer, A.; Kotb, M. HLA class II alleles associated with outcome of invasive group A streptococcal infections. In Proceedings of the 37th Annual Meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, ON, Canada, 29 September–1 October 1997. [Google Scholar]
  11. Nadal, D.; Lauener, R.P.; Braegger, C.P.; Kaufhold, A.; Simma, B.; Lutticken, R.; Seger, R.A. T-cell activation and cytokine release in streptococcal toxic shock-like syndrome. J. Pediatr. 1993, 122, 727–729. [Google Scholar] [CrossRef]
  12. Emmer, A.; Gerlach, K.; Staege, M.S.; Kornhuber, M.E. Superantigen-Mediated Encephalitis; Hayasaka, D., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
  13. Kornhuber, M.E.; Emmer, A.; Gerlach, K.; Staege, M.S. Experimental Models of Superantigen-Mediated Neuropathology. In Superantigens; Kotb, M., Fraser, J.D., Eds.; ASM Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
  14. Urbach-Ross, D.; Kusnecov, A.W. Impact of superantigenic molecules on central nervous system function. Front. Biosci. 2009, 14, 4416–4426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Brogan, P.A.; Shah, V.; Klein, N.; Dillon, M.J. Vbeta-restricted T cell adherence to endothelial cells: A mechanism for superantigen-dependent vascular injury. Arthritis Rheum. 2004, 50, 589–597. [Google Scholar] [CrossRef] [PubMed]
  16. Kulhankova, K.; Kinney, K.J.; Stach, J.M.; Gourronc, F.A.; Grumbach, I.A.; Klingelhutz, A.J.; Salgado-Pabon, W. The Superantigen Toxic Shock Syndrome Toxin 1 Alters Human Aortic Endothelial Cell Function. Infect. Immun. 2018, 86, e00848-17. [Google Scholar] [CrossRef] [Green Version]
  17. Sundstrom, M.; Abrahmsen, L.; Antonsson, P.; Mehindate, K.; Mourad, W.; Dohlsten, M. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J. 1996, 15, 6832–6840. [Google Scholar] [CrossRef]
  18. Jardetzky, T.; Brown, J.; Gorga, J.; Stern, L.; Urban, R.; Chi, Y.; Stauffacher, C.; Strominger, J.; Wiley, D. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 1994, 368, 711–718. [Google Scholar] [CrossRef]
  19. Kim, J.; Urban, R.; Strominger, J.; Wiley, D. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 1994, 266, 1870–1874. [Google Scholar] [CrossRef]
  20. Al-Shangiti, A.M.; Naylor, C.E.; Nair, S.P.; Briggs, D.C.; Henderson, B.; Chain, B.M. Structural relationships and cellular tropism of staphylococcal superantigen-like proteins. Infect. Immun. 2004, 72, 4261–4270. [Google Scholar] [CrossRef] [Green Version]
  21. Armstrong, P.C.; Hu, H.; Rivera, J.; Rigby, S.; Chen, Y.C.; Howden, B.P.; Gardiner, E.; Peter, K. Staphylococcal superantigen-like protein 5 induces thrombotic and bleeding complications in vivo: Inhibition by an anti-SSL5 antibody and the glycan Bimosiamose. J. Thromb. Haemost. JTH 2012, 10, 2607–2609. [Google Scholar] [CrossRef]
  22. Hu, H.; Armstrong, P.C.; Khalil, E.; Chen, Y.C.; Straub, A.; Li, M.; Soosairajah, J.; Hagemeyer, C.E.; Bassler, N.; Huang, D.; et al. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet activation and direct toward glycans as potential inhibitors. PLoS ONE 2011, 6, e19190. [Google Scholar] [CrossRef] [Green Version]
  23. Gagnon, S.J.; Leporati, A.; Green, S.; Kalayanarooj, S.; Vaughn, D.W.; Stephens, H.A.; Suntayakorn, S.; Kurane, I.; Ennis, F.A.; Rothman, A.L. T cell receptor Vbeta gene usage in Thai children with dengue virus infection. Am. J. Trop. Med. Hyg. 2001, 64, 41–48. [Google Scholar] [CrossRef] [Green Version]
  24. Carod-Artal, F.J.; Wichmann, O.; Farrar, J.; Gascón, J. Neurological complications of dengue virus infection. Lancet Neurol. 2013, 12, 906–919. [Google Scholar] [CrossRef]
  25. Wan, S.-W.; Lin, C.-F.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.; Wang, S.; Ling, P.; Anderson, R.; Lei, H.-Y.; Lin, Y.-S. Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 2013, 112, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Wang, M.; Qiu, Y.; Liu, H.; Liang, B.; Fan, B.; Zhou, X.; Liu, D. Transcription profile of human endogenous retroviruses in response to dengue virus serotype 2 infection. Virology 2020, 544, 21–30. [Google Scholar] [CrossRef] [PubMed]
  27. Katzourakis, A.; Tristem, M. Phylogeny of human endogenous and exogenous retroviruses. Retrovir. Primate Genome Evol. 2005, 186, 203. [Google Scholar]
  28. Nelson, P.N.; Carnegie, P.R.; Martin, J.; Davari Ejtehadi, H.; Hooley, P.; Roden, D.; Rowland-Jones, S.; Warren, P.; Astley, J. Demystified. Human endogenous retroviruses. Mol Pathol. 2003, 56, 11–18. [Google Scholar] [CrossRef] [Green Version]
  29. Posso-Osorio, I.; Tobón, G.J.; Cañas, C.A. Human endogenous retroviruses (HERV) and non-HERV viruses incorporated into the human genome and their role in the development of autoimmune diseases. J. Transl. Autoimmun. 2021, 4, 100137. [Google Scholar] [CrossRef]
  30. Posnett, D.N.; Yarilina, A.A. Sleeping with the enemy—Endogenous superantigens in humans. Immunity 2001, 15, 503–506. [Google Scholar] [CrossRef] [Green Version]
  31. Sutkowski, N.; Conrad, B.; Thorley-Lawson, D.; Huber, B.T. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001, 15, 579–589. [Google Scholar] [CrossRef] [Green Version]
  32. Sicat, J.; Sutkowski, N.; Huber, B.T. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. J. Rheumatol. 2005, 32, 1821–1831. [Google Scholar]
  33. Wang, M.; Wang, L.; Liu, H.; Chen, J.; Liu, D. Transcriptome Analyses Implicate Endogenous Retroviruses Involved in the Host Antiviral Immune System through the Interferon Pathway. Virol. Sin. 2021, 36, 1315–1326. [Google Scholar] [CrossRef]
  34. Temerozo, J.; Fintelman-Rodrigues, N.; Santos, M.C.; Hottz, E.; Sacramento, C.; Silva, A.; Mandacaru, S.; Moraes, E.C.; Trugilho, M.; Gesto, J.; et al. Human Endogenous Retrovirus K Activation in the Lower Respiratory Tract of Severe COVID-19 Patients Associates with Early Mortality. Res. Sq. 2021, 21, 514541. [Google Scholar] [CrossRef]
  35. Balestrieri, E.; Minutolo, A.; Petrone, V.; Fanelli, M.; Iannetta, M.; Malagnino, V.; Zordan, M.; Vitale, P.; Charvet, B.; Horvat, B.; et al. Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine 2021, 66, 103341. [Google Scholar] [CrossRef] [PubMed]
  36. Charvet, B.; Brunel, J.; Pierquin, J.; Iampietro, M.; Decimo, D.; Queruel, N.; Lucas, A.; Encabo-Berzosa, M.; Arenaz, I.; Marmolejo, T.P.; et al. SARS-CoV-2 induces human endogenous retrovirus type W envelope protein expression in blood lymphocytes and in tissues of COVID-19 patients. medRxiv 2022. Available online: https://www.medrxiv.org/content/10.1101/2022.01.18.21266111v2.full.pdf (accessed on 7 February 2022).
  37. Perron, H.; Jouvin-Marche, E.; Michel, M.; Ounanian-Paraz, A.; Camelo, S.; Dumon, A.; Jolivet-Reynaud, C.; Marcel, F.; Souillet, Y.; Borel, E.; et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vβ16 T-lymphocyte activation. Virology 2001, 287, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Deacy, A.M.; Gan, S.K.-E.; Derrick, J.P. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front. Immunol. 2021, 12, 1845. [Google Scholar] [CrossRef]
  39. Miethke, T.; Wahl, C.; Heeg, K.; Wagner, H. Acquired resistance to superantigen-induced T cell shock. V beta selective T cell unresponsiveness unfolds directly from a transient state of hyperreactivity. J. Immunol. 1993, 150, 3776–3784. [Google Scholar]
  40. Kuroda, K.; Yagi, J.; Imanishi, K.; Yan, X.J.; Li, X.Y.; Fujimaki, W.; Kato, H.; Miyoshi-Akiyama, T.; Kumazawa, Y.; Abe, H.; et al. Implantation of IL-2-containing osmotic pump prolongs the survival of superantigen-reactive T cells expanded in mice injected with bacterial superantigen. J. Immunol. 1996, 157, 1422–1431. [Google Scholar]
  41. Meilleur, C.E.; Wardell, C.M.; Mele, T.S.; Dikeakos, J.D.; Bennink, J.R.; Mu, H.; McCormick, J.K.; Mansour Haeryfar, S.M. Bacterial Superantigens Expand and Activate, Rather than Delete or Incapacitate, Preexisting Antigen-Specific Memory CD8+ T Cells. J. Infect. Dis. 2019, 219, 1307–1317. [Google Scholar] [CrossRef]
  42. Whiteside, S.K.; Snook, J.P.; Williams, M.A.; Weis, J.J. Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol. 2018, 39, 1021–1035. [Google Scholar] [CrossRef]
  43. Tough, D.F.; Borrow, P.; Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996, 272, 1947–1950. [Google Scholar] [CrossRef]
  44. Coppola, M.A.; Blackman, M.A. Bacterial superantigens reactivate antigen-specific CD8+ memory T cells. Int. Immunol. 1997, 9, 1393–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Biasi, G.; Panozzo, M.; Pertile, P.; Mezzalira, S.; Facchinetti, A. Mechanism underlying superantigen-induced clonal deletion of mature T lymphocytes. Int. Immunol. 1994, 6, 983–989. [Google Scholar] [CrossRef] [PubMed]
  46. Ehl, S.; Hombach, J.; Aichele, P.; Hengartner, H.; Zinkernagel, R.M. Bystander activation of cytotoxic T cells: Studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 1997, 185, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
  47. Halnon, N.J.; Jamieson, B.; Plunkett, M.; Kitchen, C.M.; Pham, T.; Krogstad, P. Thymic function and impaired maintenance of peripheral T cell populations in children with congenital heart disease and surgical thymectomy. Pediatr. Res. 2005, 57, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Palmer, S.; Albergante, L.; Blackburn, C.C.; Newman, T.J. Thymic involution and rising disease incidence with age. Proc. Natl. Acad. Sci. USA 2018, 115, 1883–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
  50. Li, M.; Yao, D.; Zeng, X.; Kasakovski, D.; Zhang, Y.; Chen, S.; Zha, X.; Li, Y.; Xu, L. Age related human T cell subset evolution and senescence. Immun. Ageing 2019, 16, 24. [Google Scholar] [CrossRef] [Green Version]
  51. Kaech, S.; Wherry, E.; Ahmed, R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002, 2, 251–262. [Google Scholar] [CrossRef]
  52. Cicin-Sain, L.; Smyk-Pearson, S.; Currier, N.; Byrd, L.; Koudelka, C.; Robinson, T.; Swarbrick, G.; Tackitt, S.; Legasse, A.; Fischer, M.; et al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 2010, 184, 6739–6745. [Google Scholar] [CrossRef]
  53. Yarwood, J.M.; Leung, D.Y.; Schlievert, P.M. Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol. Lett. 2000, 192, 1–7. [Google Scholar] [CrossRef]
  54. Conrad, B.; Weissmahr, R.N.; Böni, J.; Arcari, R.; Schüpbach, J.; Mach, B. A Human Endogenous Retroviral Superantigen as Candidate Autoimmune Gene in Type I Diabetes. Cell 1997, 90, 303–313, ISSN 0092-8674. [Google Scholar] [CrossRef] [Green Version]
  55. Friedman, S.M.; Posnett, D.N.; Tumang, J.R.; Cole, B.C.; Crow, M.K. A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum. 1991, 34, 468–480. [Google Scholar] [CrossRef] [PubMed]
  56. Acha-Orbea, H. Bacterial and viral superantigens: Roles in autoimmunity? Ann. Rheum. Dis. 1993, 52, S6–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. Silverman, G.J. B cell superantigens: Possible roles in immunodeficiency and autoimmunity. Semin. Immunol. 1998, 10, 43–55. [Google Scholar] [CrossRef] [PubMed]
  58. Soos, J.M.; Schiffenbauer, J.; Torres, B.A.; Johnson, H.M. Superantigens as virulence factors in autoimmunity and immunodeficiency diseases. Med. Hypotheses 1997, 48, 253–259. [Google Scholar] [CrossRef]
  59. Li, H.; Llera, A.; Malchiodi, E.L.; Mariuzza, R.A. The structural basis of T-cell activation by superantigens. Ann. Rev. Immunol. 1999, 17, 435–466. [Google Scholar] [CrossRef] [PubMed]
  60. Stollerman, G.H. Rheumatogenic group A streptococci and the return of rheumatic fever. Adv. Intern. Med. 1990, 35, 1–25. [Google Scholar]
  61. Domiati-Saad, R.; Attrep, J.F.; Brezinschek, H.P.; Cherrie, A.H.; Karp, D.R.; Lipsky, P.E. Staphylococcal enterotoxin D functions as a human B-cell superantigen by rescuing VH4-expressing B-cells from apoptosis. J. Immunol. 1996, 156, 3608–3620. [Google Scholar]
  62. Hofer, M.F.; Newell, K.; Duke, R.C.; Schlievert, P.M.; Freed, J.H.; Leung, D.Y.M. Differential effects of staphylococcal toxic shock syndrome toxin 1 on B cell apoptosis. Proc. Natl. Acad. Sci. USA 1996, 93, 5425–5430. [Google Scholar] [CrossRef] [Green Version]
  63. Chowdhary, V.R.; Tilahun, A.Y.; Clark, C.R.; Grande, J.P.; Rajagopalan, G. Chronic exposure to staphylococcal superantigen elicits a systemic inflammatory disease mimicking lupus. J. Immunol. 2012, 189, 2054–2062. [Google Scholar] [CrossRef]
  64. Dar, S.A.; Janahi, E.M.; Haque, S.; Akhter, N.; Jawed, A.; Wahid, M.; Ramachandran, V.G.; Bhattacharya, S.N.; Banerjee, B.D.; Das, S. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol. Res. 2016, 64, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
  65. Sekigawa, I.; Ogasawara, H.; Kaneko, H.; Hishikawa, T.; Hashimoto, H. Retroviruses and autoimmunity. Intern. Med. 2001, 40, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Ogasawara, H.; Naito, T.; Kaneko, H.; Hishikawa, T.; Sekigawa, I.; Hashimoto, H.; Kaneko, Y.; Yamamoto, N.; Maruyama, N.; Yamamoto, N. Quantitative analyses of messenger RNA of human endogenous retrovirus in patients with systemic lupus erythematosus. J. Rheumatol. 2001, 28, 533–538. [Google Scholar] [PubMed]
  67. Kitsou, K.; Kotanidou, A.; Paraskevis, D.; Karamitros, T.; Katzourakis, A.; Tedder, R.; Hurst, T.; Sapounas, S.; Kotsinas, A.; Gorgoulis, V.; et al. Upregulation of Human Endogenous Retroviruses in Bronchoalveolar Lavage Fluid of COVID-19 Patients. Microbiol. Spectr. 2021, 9, e01260-21. [Google Scholar] [CrossRef]
  68. Levet, S.; Medina, J.; Joanou, J.; Demolder, A.; Queruel, N.; Reant, K.; Normand, M.; Seffals, M.; Dimier, J.; Germi, R.; et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2017, 2, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Niegowska, M.; Wajda-Cuszlag, M.; Stepien-Ptak, G.; Trojanek, J.; Michałkiewicz, J.; Szalecki, M.; Sechi, L. Anti-HERV-WEnv antibodies are correlated with seroreactivity against Mycobacterium avium subsp. paratuberculosis in children and youths at T1D risk. Sci. Rep. 2019, 9, 6282. [Google Scholar] [CrossRef] [Green Version]
  70. Pan, T.; Cao, G.; Tang, E.; Zhao, Y.; Penaloza-MacMaster, P.; Fang, Y.; Huang, J. A single-cell atlas reveals shared and distinct immune responses and metabolism during SARS-CoV-2 and HIV-1 infections. bioRxiv 2022. Available online: https://www.biorxiv.org/content/10.1101/2022.01.10.475725v1.full.pdf (accessed on 7 February 2022).
  71. Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef]
  72. Muratori, P.; Lenzi, M.; Muratori, L.; Granito, A. Antinuclear antibodies in COVID 19. Clin. Transl. Sci. 2021, 14, 1627–1628. [Google Scholar] [CrossRef]
  73. Kouo, T.; Chaisawangwong, W. SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children. J. Clin. Investig. 2021, 131, e149327. [Google Scholar] [CrossRef]
  74. Rha, M.S.; Shin, E.C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell Mol. Immunol. 2021, 18, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
  75. Gottesman, B.L.; Yu, J.; Tanaka, C.; Longhurst, C.A.; Kim, J.J. Incidence of New-Onset Type 1 Diabetes Among US Children During the COVID-19 Global Pandemic. JAMA Pediatr. 2022, 24, 5801. [Google Scholar] [CrossRef] [PubMed]
  76. Chertow, D.; Stein, S.; Ramelli, S.; Grazioli, A.; Chung, J.; Singh, M.; Yinda, C.K.; Winkler, C.; Dickey, J.; Ylaya, K.; et al. SARS-CoV-2 infection and persistence throughout the human body and brain. Available online: https://www.researchsquare.com/article/rs-1139035/v1. (accessed on 7 February 2022).
  77. de Melo, G.D.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 2021, 13, eabf8396. [Google Scholar] [CrossRef] [PubMed]
  78. Vibholm, L.K.; Nielsen, S.S.F.; Pahus, M.H.; Frattari, G.S.; Olesen, R.; Andersen, R.; Monrad, I.; Andersen, A.H.F.; Thomsen, M.M.; Konrad, C.V.; et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine 2021, 64, 103230. [Google Scholar] [CrossRef] [PubMed]
  79. Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef]
  80. Reddy, R.; Farber, N.; Kresch, E.; Seetharam, D.; Diaz, P.; Ramasamy, R. SARS-CoV-2 in the Prostate: Immunohistochemical and Ultrastructural Studies. World J. Men’s Health 2022, 40, e12. [Google Scholar] [CrossRef]
  81. Martin-Cardona, A.; Lloreta Trull, J.; Albero-González, R.; Beser, M.P.; Andújar, X.; Ruiz-Ramirez, P.; Tur-Martínez, J.; Ferrer, C.; De Marcos Izquierdo, J.A.; Madrigal, A.P.; et al. SARS-CoV-2 identified by transmission electron microscopy in lymphoproliferative and ischaemic intestinal lesions of COVID-19 patients with acute abdominal pain: Two case reports. BMC Gastroenterol. 2021, 21, 334. [Google Scholar] [CrossRef]
  82. Arostegui, D.; Castro, K.; Schwarz, S.; Vaidy, K.; Rabinowitz, S.; Wallach, T. Persistent SARS-CoV-2 Nucleocapsid Protein Presence in the Intestinal Epithelium of a Pediatric Patient 3 Months After Acute Infection. PGN Rep. 2021, 3, e152. [Google Scholar] [CrossRef]
  83. Cheng, M.H.; Zhang, S.; Porritt, R.A.; Rivas, M.N.; Paschold, L.; Willscher, E.; Binder, M.; Arditi, M.; Bahar, I. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 25254–25262. [Google Scholar] [CrossRef]
  84. Hoste, L.; Roels, L.; Naesens, L.; Bosteels, V.; Vanhee, S.; Dupont, S.; Bosteels, C.; Browaeys, R.; Vandamme, N.; Verstaen, K.; et al. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS–C. J. Exp. Med. 2022, 219, e20211381. [Google Scholar] [CrossRef]
  85. Moreews, M.; Le Gouge, K.; Khaldi-Plassart, S.; Pescarmona, R.; Mathieu, A.L.; Malcus, C.; Djebali, S.; Bellomo, A.; Dauwalder, O.; Perret, M.; et al. Polyclonal expansion of TCR Vb 21.3+ CD4+ and CD8+ T cells is a hallmark of multisystem inflammatory syndrome in children. Sci. Immunol. 2021, 6, eabh1516. [Google Scholar] [CrossRef] [PubMed]
  86. Brodin, P. SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity 2022, 55, 201–209. [Google Scholar] [CrossRef] [PubMed]
  87. Morris, S.B.; Schwartz, N.G.; Patel, P.; Abbo, L.; Beauchamps, L.; Balan, S.; Lee, E.H.; Paneth-Pollak, R.; Geevarughese, A.; Lash, M.K.; et al. Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection—United Kingdom and United States, March-August 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
  88. Gomard-Mennesson, E.; Landron, C.; Dauphin, C.; Epaulard, O.; Petit, C.; Green, L.; Roblot, P.; Lusson, J.-R.; Broussolle, C.; Sève, P. Kawasaki Disease in Adults. Medicine 2010, 89, 149–158. [Google Scholar] [CrossRef] [PubMed]
  89. Kontopoulou, T.; Kontopoulos, D.G.; Vaidakis, E.; Mousoulis, G.P. Adult Kawasaki disease in a European patient: A case report and review of the literature. J. Med. Case Rep. 2015, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  90. Scaglioni, V.; Soriano, E.R. Are superantigens the cause of cytokine storm and viral sepsis in severe COVID-19? Observations and hypothesis. Scand. J. Immunol. 2020, 92, e12944. [Google Scholar] [CrossRef]
  91. Porritt, R.A.; Paschold, L.; Rivas, M.N.; Cheng, M.H.; Yonker, L.M.; Chandnani, H.; Lopez, M.; Simnica, D.; Schultheiß, C.; Santiskulvong, C.; et al. HLA class I-associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J. Clin. Investig. 2021, 131, e146614. [Google Scholar] [CrossRef]
  92. Gómez-Icazbalceta, G.; Hussain, Z.; Vélez-Alavez, M. In silico evidence of superantigenic features in ORF8 protein from COVID-19. bioRxiv 2021. Available online: https://www.biorxiv.org/content/10.1101/2021.12.14.472240v1.full.pdf (accessed on 7 February 2022).
  93. Chiappelli, F. Comments on “An insertion unique to SARS-CoV-2 exhibits super antigenic character strengthened by recent mutations” by Cheng MH et al. 2020. Bioinformation 2020, 16, 474–476. [Google Scholar] [CrossRef]
  94. Cheng, M.H.; Porritt, R.A.; Rivas, M.N. A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry in vitro. Structure 2021, 29, 951.e3–962.e3. [Google Scholar] [CrossRef]
  95. Bittmann, S.; Weissenstein, A.; Luchter, E.; Moschüring-Alieva Villalon, G. Multisystem inflammatory syndrome in children (MIS–C): The role of viral superantigens in COVID-19 disease. J. Allergy Infect. Dis. 2020, 1, 18–20. [Google Scholar]
  96. Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
  97. Guimarães, D.; Pissarra, R.; Reis-Melo, A.; Guimarães, H. Multisystem inflammatory syndrome in children (MISC): A systematic review. Int. J. Clin. Pract. 2021, 75, e14450. [Google Scholar] [CrossRef] [PubMed]
  98. Buonsenso, D.; Riitano, F.; Valentini, P. Pediatric Inflammatory Multisystem Syndrome Temporally Related With SARS-CoV-2: Immunological Similarities With Acute Rheumatic Fever and Toxic Shock Syndrome. Front. Pediatr. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
  99. Yeung, R.S.M. The etiology of Kawasaki disease: A superantigen-mediated process. Prog. Pediatr. Cardiol. 2004, 19, 115–122, ISSN 1058-9813. [Google Scholar] [CrossRef]
  100. Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
  101. Lynall, M. Neuropsychiatric symptoms in lupus. Lupus 2018, 27 (Suppl. 1), 18–20. [Google Scholar] [CrossRef]
  102. Leuchten, N.; Milke, B.; Winkler-Rohlfing, B.; Daikh, D.; Dörner, T.; Johnson, S.R.; Aringer, M. Early symptoms of systemic lupus erythematosus (SLE) recalled by 339 SLE patients. Lupus 2018, 27, 1431–1436. [Google Scholar] [CrossRef]
  103. Pettersson, S.; Lövgren, M.; Eriksson, L.E.; Moberg, C.; Svenungsson, E.; Gunnarsson, I.; Henriksson, E.W. An exploration of patient-reported symptoms in systemic lupus erythematosus and the relationship to health-related quality of life. Scand. J. Rheumatol. 2012, 41, 383–390. [Google Scholar] [CrossRef]
  104. Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
  105. Zong, F.; Gan, C.; Wang, Y.; Su, D.; Deng, M.; Xiao, N.; Zhang, Z.; Zhou, D.; Gao, B.; Yang, H. Exposure to aerosolized staphylococcal enterotoxin B potentiated by lipopolysaccharide modifies lung transcriptomes and results in lung injury in the mouse model. J. Appl. Toxicol. 2022, 11, 4289. [Google Scholar] [CrossRef] [PubMed]
  106. Sharma, L.; Riva, A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 2020, 8, 1744. [Google Scholar] [CrossRef] [PubMed]
  107. Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  108. Devaux, C.A.; Lagier, J.C.; Raoult, D. New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Front. Med. 2021, 8, 640073. [Google Scholar] [CrossRef] [PubMed]
  109. Wang, X.; Zhou, Y.; Jiang, N.; Zhou, Q.; Ma, W.L. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. Int. J. Infect. Dis. 2020, 95, 433–435. [Google Scholar] [CrossRef]
  110. O’Donnell, J.S.; Chappell, K.J. Chronic SARS-CoV-2, a Cause of Post-acute COVID-19 Sequelae (Long-COVID)? Front. Microbiol. 2021, 12, 64. [Google Scholar] [CrossRef]
  111. Robinot, R.; Hubert, M.; de Melo, G.D.; Lazarini, F.; Bruel, T.; Smith, N.; Levallois, S.; Larrous, F.; Fernandes, J.; Gellenoncourt, S.; et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat. Commun. 2021, 12, 4354. [Google Scholar] [CrossRef]
  112. Teixeira, P.C.; Dorneles, G.P.; Santana Filho, P.C.; da Silva, I.M.; Schipper, L.L.; Postiga, I.A.L.; Moreira Neves, C.A.; Rodrigues Junior, L.C.; Peres, A.; Trindade de Souto, J.; et al. Increased LPS levels coexist with systemic inflammation and result in monocyte activation in severe COVID-19 patients. Int. Immunopharmacol. 2021, 100, 108125. [Google Scholar] [CrossRef]
  113. Krakauer, T.; Pradhan, K.; Stiles, B.G. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Front. Immunol. 2016, 7, 23. [Google Scholar] [CrossRef]
  114. Gold, J.E.; Okyay, R.A.; Licht, W.E.; Hurley, D.J. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens 2021, 10, 763. [Google Scholar] [CrossRef]
  115. Moss, P. “The ancient and the new”: Is there an interaction between cytomegalovirus and SARS-CoV-2 infection? Immun. Ageing 2020, 17, 14. [Google Scholar] [CrossRef] [PubMed]
  116. Franceschini, E.; Cozzi-Lepri, A.; Santoro, A.; Bacca, E.; Lancellotti, G.; Menozzi, M.; Gennari, W.; Meschiari, M.; Bedini, A.; Orlando, G.; et al. Herpes Simplex Virus Re-Activation in Patients with SARS-CoV-2 Pneumonia: A Prospective, Observational Study. Microorganisms 2021, 9, 1896. [Google Scholar] [CrossRef] [PubMed]
  117. Sutkowski, N.; Palkama, T.; Ciurli, C.; Sekaly, R.P.; Thorley-Lawson, D.; Huber, B.T. An Epstein-Barr virus-associated superantigen. J. Exp. Med. 1996, 184, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Dobrescu, D.; Ursea, B.; Pope, M.; Ascht, A.S.; Posnett, D.N. Enhanced HIV-1 replication in Vβ12 T cells due to human cytomegalovirus in monocytes: Evidence for a putative herpesvirus superantigen. Cell 1995, 82, 753–763. [Google Scholar] [CrossRef] [Green Version]
  119. Huber, B.T.; Hsu, P.N.; Sutkowski, N. Virus-encoded superantigens. Microbiol. Rev. 1996, 60, 473–482. [Google Scholar] [CrossRef] [PubMed]
  120. Greenhalgh, T.; Griffin, S.; Gurdasani, D.; Hamdy, A.; Katzourakis, A.; McKee, M.; Michie, S.; Pagel, C.; Roberts, A.; Yates, K. Covid-19: An urgent call for global “vaccines-plus” action. BMJ 2022, 376, 111. [Google Scholar] [CrossRef]
  121. LeClaire, R.D.; Bavari, S. Human antibodies to bacterial superantigens and their ability to inhibit T-cell activation and lethality. Antimicrob. Agents Chemother. 2001, 45, 460–463. [Google Scholar] [CrossRef] [Green Version]
  122. Zambrano, L.D.; Newhams, M.M.; Olson, S.M.; Halasa, N.B.; Price, A.M.; Boom, J.A.; Sahni, L.C.; Kamidani, S.; Tarquinio, K.M.; Maddux, A.B.; et al. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA Vaccination Against Multisystem Inflammatory Syndrome in Children Among Persons Aged 12–18 Years—United States, July–December 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 52–58. [Google Scholar] [CrossRef]
  123. Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
  124. Choe, P.G.; Kang, C.K.; Suh, H.J.; Jung, J.; Song, K.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Park, S.W.; Kim, N.J.; et al. Waning Antibody Responses in Asymptomatic and Symptomatic SARS-CoV-2 Infection. Emerg. Infect. Dis. 2021, 27, 327–329. [Google Scholar] [CrossRef]
  125. Singh, J.; Pandit, P.; McArthur, A.G.; Banerjee, A.; Mossman, K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol. J. 2021, 18, 166. [Google Scholar] [CrossRef] [PubMed]
  126. Prevalence of Ongoing Symptoms Following Coronavirus (COVID-19) Infection in the UK: 3 March 2022, Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/3march2022 (accessed on 7 February 2022).
  127. Falasinnu, T.; Chaichian, Y.; Simard, J.F. Impact of Sex on Systemic Lupus Erythematosus-Related Causes of Premature Mortality in the United States. J. Women’s Health 2017, 26, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
  128. Nielsen, T.M.; Andersen, N.H.; Torp-Pedersen, C.; Søgaard, P.; Kragholm, K.H. Kawasaki disease, autoimmune disorders, and cancer: A register-based study. Eur. J. Pediatr. 2020, 180, 717–723. [Google Scholar] [CrossRef] [PubMed]
  129. Greenhalgh, T.; Jimenez, J.L.; Prather, K.A.; Tufekci, Z.; Fisman, D.; Schooley, R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 2021, 397, 1603–1605. [Google Scholar] [CrossRef]
  130. Desforges, M.; Gurdasani, D.; Hamdy, A.; Leonardi, A.J. Uncertainty around the Long-Term Implications of COVID-19. Pathogens 2021, 10, 1267. [Google Scholar] [CrossRef]
  131. Leonardi, A.J.; Argyropoulos, C.P.; Hamdy, A.; Proenca, R.B. Understanding the Effects of Age and T-Cell Differentiation on COVID-19 Severity: Implicating a Fas/FasL-mediated Feed-Forward Controller of T-Cell Differentiation. Front. Immunol. 2022, 13, 606. [Google Scholar] [CrossRef]
  132. Showers, W.M.; Leach, S.M.; Kechris, K.; Strong, M. Longitudinal analysis of SARS-CoV-2 spike and RNA-dependent RNA polymerase protein sequences reveals the emergence and geographic distribution of diverse mutations. Infect. Genet. Evol. 2021, 97, 105153, ISSN 1567-1348. [Google Scholar] [CrossRef]
Figure 1. Potential mechanisms to induce a superantigenic host response and possible clinical outcomes.
Figure 1. Potential mechanisms to induce a superantigenic host response and possible clinical outcomes.
Pathogens 11 00390 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Hamdy, A.; Leonardi, A. Superantigens and SARS-CoV-2. Pathogens 2022, 11, 390. https://doi.org/10.3390/pathogens11040390

AMA Style

Hamdy A, Leonardi A. Superantigens and SARS-CoV-2. Pathogens. 2022; 11(4):390. https://doi.org/10.3390/pathogens11040390

Chicago/Turabian Style

Hamdy, Adam, and Anthony Leonardi. 2022. "Superantigens and SARS-CoV-2" Pathogens 11, no. 4: 390. https://doi.org/10.3390/pathogens11040390

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop