Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease
Abstract
1. Introduction
2. Epidemiology
3. Natural History
4. Pathogenesis
4.1. Molecular Mimicry
Pharyngitis versus Impetigo in Immune Mediated Sequalae
4.2. Genetic Susceptibility
4.3. Other Factors
5. Clinical Features
- Risk stratification based on disease endemicity: The 2015 modification identifies low risk populations as those with ARF incidence <2 per 100,000 school-aged children per year or a prevalence of RHD of ≤1 per 1000 patients at any age per year. Additionally, it emphasizes that children from non low-risk ARF populations should be considered at moderate-to-high risk (moderate and high being treated equally).
- Different categorization and implications of carditis, joint manifestations, parameters of fever and inflammation dependent on population risk stratifications.
- The recommendation that all patients with suspected or confirmed ARF undergo doppler echocardiography and recognition of echocardiographic evidence of carditis (subclinical carditis) as a major manifestation of ARF in low-and high-risk populations, based on meta-analysis that included 23 studies from five continents demonstrating that patients with ARF have weighted pooled prevalence of subclinical carditis of 16.8%, and nearly half (44.7%) had deterioration in valve function over time [46,57,58].
Echocardiography in Rheumatic Heart Disease
6. RHD and Pregnancy
7. Management & Prevention
8. Ways Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 2000, 13, 470–511. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.E.; Stevens, D.L. Streptococcus pyogenes. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2015; pp. 2285–2299.e4. [Google Scholar]
- Singer, H.S.; Mascaro-Blanco, A.; Alvarez, K.; Morris-Berry, C.; Kawikova, I.; Ben-Pazi, H.; Thompson, C.B.; Ali, S.F.; Kaplan, E.L.; Cunningham, M.W. Neuronal Antibody Biomarkers for Sydenham’s Chorea Identify a New Group of Children with Chronic Recurrent Episodic Acute Exacerbations of Tic and Obsessive Compulsive Symptoms Following a Streptococcal Infection. PLoS ONE 2015, 10, e0120499. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Frankovich, J.; Cooperstock, M.; Cunningham, M.W.; Latimer, M.E.; Murphy, T.K.; Pasternack, M.; Thienemann, M.; Williams, K.; Walter, J.; et al. Clinical Evaluation of Youth with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS): Recommendations from the 2013 PANS Consensus Conference. J. Child Adolesc. Psychopharmacol. 2015, 25, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.W. Molecular Mimicry, Autoimmunity, and Infection: The Cross-Reactive Antigens of Group A Streptococci and their Sequelae. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.D.; Engel, M.E.; Whitelaw, A.; Alemseged, A.; Sadoh, W.E.; Ali, S.K.M.; Sow, S.O.; Dale, J.; Mayosi, B.M. Rationale and design of the African group A streptococcal infection registry: The AFROStrep study. BMJ Open 2016, 6, e010248. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, J.; Rowsell, R. A nursing home outbreak of Group A streptococcal infection: Case control study of environmental contamination. J. Hosp. Infect. 1995, 30, 162–164. [Google Scholar] [CrossRef]
- Martin, J.M.; Green, M.; Barbadora, K.A.; Wald, E.R. Group A Streptococci Among School-Aged Children: Clinical Characteristics and the Carrier State. Pediatrics 2004, 114, 1212–1219. [Google Scholar] [CrossRef]
- Mazón, A.; Gil-Setas, A.; de la Gándara, L.J.S.; Vindel, A.; Sáez-Nieto, J.A. Transmission of Streptococcus pyogenes causing successive infections in a family. Clin. Microbiol. Infect. 2003, 9, 554–559. [Google Scholar] [CrossRef][Green Version]
- Yokchoo, N.; Patanarapeelert, N.; Patanarapeelert, K. The effect of group A streptococcal carrier on the epidemic model of acute rheumatic fever. Theor. Biol. Med Model. 2019, 16, 14. [Google Scholar] [CrossRef]
- Watkins, D.A.; Johnson, C.O.; Colquhoun, S.; Karthikeyan, G.; Beaton, A.; Bukhman, G.; Forouzanfar, M.H.; Longenecker, C.T.; Mayosi, B.M.; Mensah, G.A.; et al. Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015. N. Engl. J. Med. 2017, 377, 713–722. [Google Scholar] [CrossRef]
- Zuhlke, L.; Karthikeyan, G.; Engel, M.E.; Rangarajan, S.; Mackie, P.; Cupido, B.; Mauff, K.; Islam, S.; Joachim, A.; Daniels, R.; et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: The Global Rheumatic Heart Disease Registry (the REMEDY study). Eur. Heart J. 2015, 36, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, G.; Guilherme, L. Acute rheumatic fever. Lancet 2018, 392, 161–174. [Google Scholar] [CrossRef]
- Zuhlke, L.; Engel, M.; Karthikeyan, G.; Rangarajan, S.; Mackie, P.; Cupido, B.; Mauff, K.; Islam, S.; Daniels, R.; Francis, V.; et al. Clinical Outcomes in 3343 Children and Adults with Rheumatic Heart Disease From 14 Low- and Middle-Income Countries: Two-Year Follow-Up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation 2016, 134, 1456–1466. [Google Scholar] [CrossRef]
- Wyber, R. Rheumatic Heart Disease: Tools for Implementing Programmes. Glob. Heart 2015, 10, 79–80. [Google Scholar] [CrossRef]
- Remenyi, B.; Carapetis, J.; Wyber, R.; Taubert, K.; Mayosi, B.M. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat. Rev. Cardiol. 2013, 10, 284–292. [Google Scholar] [CrossRef] [PubMed]
- White, A. WHO Resolution on rheumatic heart disease. Eur. Heart J. 2018, 39, 42. [Google Scholar] [CrossRef] [PubMed]
- Sims Sanyahumbi, A.; Colquhoun, S.; Wyber, R.; Carapetis, J.R. Global Disease Burden of Group A Streptococcus. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Ralph, A.P.; Carapetis, J.R. Group a streptococcal diseases and their global burden. Curr. Top. Microbiol. Immunol. 2013, 368, 1–27. [Google Scholar]
- Bessen, D.E.; McShan, W.M.; Nguyen, S.V.; Shetty, A.; Agrawal, S.; Tettelin, H. Molecular Epidemiology and Genomics of Group A Streptococcus. Infect. Genet. Evol. 2015, 33, 393–418. [Google Scholar] [CrossRef]
- Hammond-Collins, K.; Strauss, B.; Barnes, K.; Demczuk, W.; Domingo, M.-C.; Lamontagne, M.-C.; Lu, D.; Martin, I.; Tepper, M. Group A Streptococcus Outbreak in a Canadian Armed Forces Training Facility. Mil. Med. 2019, 184, e197–e204. [Google Scholar] [CrossRef]
- Wahl, R.U.; Lütticken, R.; Stanzel, S.; van der Linden, M.; Reinert, R.R. Epidemiology of invasive Streptococcus pyogenes infections in Germany, 1996–2002: Results from a voluntary laboratory surveillance system. Clin. Microbiol. Infect. 2007, 13, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Avire, N.J.; Whiley, H.; Ross, K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- YYou, Y.; Davies, M.; Protani, M.; McIntyre, L.; Walker, M.J.; Zhang, J. Scarlet Fever Epidemic in China Caused by Streptococcus pyogenes Serotype M12: Epidemiologic and Molecular Analysis. eBioMedicine 2018, 28, 128–135. [Google Scholar] [CrossRef]
- Mosites, E.; Frick, A.; Gounder, P.; Castrodale, L.; Li, Y.; Rudolph, K.; Hurlburt, D.; Lecy, K.D.; Zulz, T.; Adebanjo, T.; et al. Outbreak of Invasive Infections from Subtype emm26. 3 Group A Streptococcus among Homeless Adults—Anchorage, Alaska, 2016–2017. Clin. Infect. Dis. 2018, 66, 1068–1074. [Google Scholar] [CrossRef]
- Tyrrell, G.J.; Fathima, S.; Kakulphimp, J.; Bell, C. Increasing Rates of Invasive Group A Streptococcal Disease in Alberta, Canada; 2003–2017. Open Forum Infect. Dis. 2018, 5, ofy177. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S.; Bowen, A.C.; Engel, M.E.; De La Lande, M.; Barth, D.D. The incidence of sore throat and group A streptococcal pharyngitis in children at high risk of developing acute rheumatic fever: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0242107. [Google Scholar] [CrossRef] [PubMed]
- Bimerew, M.; Beletew, B.; Getie, A.; Wondmieneh, A.; Gedefaw, G.; Demis, A. Prevalence of rheumatic heart disease among school children in East Africa: A systematic review and meta-analysis. Pan Afr. Med. J. 2021, 38, 242. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Beaton, A.; Cunningham, M.W.; Guilherme, L.; Karthikeyan, G.; Mayosi, B.M.; Sable, C.; Steer, A.; Wilson, N.; Wyber, R.; et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Primers 2016, 2, 15084. [Google Scholar] [CrossRef]
- Raynes, J.; Frost, H.R.C.; Williamson, D.; Young, P.G.; Baker, E.; Steemson, J.D.; Loh, J.M.; Proft, T.; Dunbar, R.; Carr, P.E.A.; et al. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Front. Microbiol. 2016, 7, 1119. [Google Scholar] [CrossRef]
- Webb, R.H.; Grant, C.; Harnden, A. Acute rheumatic fever. BMJ 2015, 351, 3443. [Google Scholar] [CrossRef]
- Perricone, C.; Rinkevich, S.; Blank, M.; Landa-Rouben, N.; Alessandri, C.; Conti, F.; Leor, J.; Shoenfeld, Y.; Vatesini, G. The autoimmune side of rheumatic fever. Isr. Med. Assoc. J. 2014, 16, 654–655. [Google Scholar] [PubMed]
- Henningham, A.; Davies, M.R.; Uchiyama, S.; van Sorge, N.M.; Lund, S.; Chen, K.T.; Walker, M.J.; Cole, J.N.; Nizet, V. Virulence Role of the GlcNAc Side Chain of the Lancefield Cell Wall Carbohydrate Antigen in Non-M1-Serotype Group A Streptococcus. mBio 2018, 9, e02294-17. [Google Scholar] [CrossRef]
- Lancefield, R.C. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 1962, 89, 307–313. [Google Scholar]
- Faé, K.C.; Da Silva, D.D.; Oshiro, S.E.; Tanaka, A.C.; Pomerantzeff, P.M.A.; Douay, C.; Charron, D.; Toubert, A.; Cunningham, M.W.; Kalil, J.; et al. Mimicry in Recognition of Cardiac Myosin Peptides by Heart-Intralesional T Cell Clones from Rheumatic Heart Disease. J. Immunol. 2006, 176, 5662–5670. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Kosanke, S.; Dunn, S.T.; Jankelow, D.; Duran, C.M.G.; Cunningham, M.W. Pathogenic Mechanisms in Rheumatic Carditis: Focus on Valvular Endothelium. J. Infect. Dis. 2001, 183, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Moreland, N.J.; Oliver, J.; Crane, J.; Williamson, D.A.; Sika-Paotonu, D.; Harwood, M.; Upton, A.; Smith, S.; Carapetis, J.; et al. Understanding group A streptococcal pharyngitis and skin infections as causes of rheumatic fever: Protocol for a prospective disease incidence study. BMC Infect. Dis. 2019, 19, 633. [Google Scholar] [CrossRef]
- Thomas, S.; Bennett, J.; Jack, S.; Oliver, J.; Purdie, G.; Upton, A.; Baker, M.G. Descriptive Analysis of Group A Streptococcus in Skin Swabs and Acute Rheumatic Fever, Auckland, New Zealand, 2010–2016. Lancet Reg. Health West. Pac. 2021, 8, 100101. [Google Scholar] [CrossRef]
- Parks, T.; Smeesters, P.R.; Steer, A.C. Streptococcal skin infection and rheumatic heart disease. Curr. Opin. Infect. Dis. 2012, 25, 145–153. [Google Scholar] [CrossRef]
- Bessen, D.E.; Sotir, C.M.; Readdy, T.L.; Hollingshead, S.K. Genetic Correlates of Throat and Skin Isolates of Group A Streptococci. J. Infect. Dis. 1996, 173, 896–900. [Google Scholar] [CrossRef]
- McDonald, M.; Currie, B.J.; Carapetis, J.R. Acute rheumatic fever: A chink in the chain that links the heart to the throat? Lancet Infect. Dis. 2004, 4, 40–245. [Google Scholar] [CrossRef]
- Bowen, A.C.; Mahé, A.; Hay, R.J.; Andrews, R.M.; Steer, A.C.; Tong, S.; Carapetis, J. The Global Epidemiology of Impetigo: A Systematic Review of the Population Prevalence of Impetigo and Pyoderma. PLoS ONE 2015, 10, e0136789. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.; Smeesters, P.; Steer, A.C.; Steemson, J.D.; Ng, A.C.H.; Proft, T.; Fraser, J.D.; Baker, M.G.; Morgan, J.; Carter, P.E.; et al. M-Protein Analysis of Streptococcus pyogenes Isolates Associated with Acute Rheumatic Fever in New Zealand. J. Clin. Microbiol. 2015, 53, 3618–3620. [Google Scholar] [CrossRef] [PubMed]
- Woldu, B.; Bloomfield, G.S. Rheumatic Heart Disease in the Twenty-First Century. Curr. Cardiol. Rep. 2016, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Gewitz, M.H.; Baltimore, R.S.; Tani, L.Y.; Sable, C.A.; Shulman, S.T.; Carapetis, J.; Remenyi, B.; Taubert, K.A.; Bolger, A.F.; Beerman, L.; et al. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: A scientific statement from the American Heart Association. Circulation 2015, 131, 1806–1818. [Google Scholar] [CrossRef]
- Engel, M.E.; Stander, R.; Vogel, J.; Adeyemo, A.A.; Mayosi, B.M. Genetic Susceptibility to Acute Rheumatic Fever: A Systematic Review and Meta-Analysis of Twin Studies. PLoS ONE 2011, 6, e25326. [Google Scholar] [CrossRef]
- Reason, I.J.M.; Schafranski, M.D.; Jensenius, J.C.; Steffensen, R. The Association Between Mannose-Binding Lectin Gene Polymorphism and Rheumatic Heart Disease. Hum. Immunol. 2006, 67, 991–998. [Google Scholar] [CrossRef]
- Ramasawmy, R.; Spina, G.S.; Fae, K.C.; Pereira, A.C.; Nisihara, R.; Reason, I.J.M.; Grinberg, M.; Tarasoutchi, F.; Kalil, J.; Guilherme, L. Association of Mannose-Binding Lectin Gene Polymorphism but Not of Mannose-Binding Serine Protease 2 with Chronic Severe Aortic Regurgitation of Rheumatic Etiology. Clin. Vaccine Immunol. 2008, 15, 932–936. [Google Scholar] [CrossRef]
- Catarino, S.J.; Boldt, A.B.; Beltrame, M.H.; Nisihara, R.M.; Reason, I.J.M. Association of MASP2 Polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum. Immunol. 2014, 75, 1197–1202. [Google Scholar] [CrossRef]
- Machipisa, T.; Chong, M.; Muhamed, B.; Chishala, C.; Shaboodien, G.; Pandie, S.; de Vries, J.; Laing, N.; Joachim, A.; Daniels, R.; et al. Association of Novel Locus With Rheumatic Heart Disease in Black African Individuals: Findings From the RHDGen Study. JAMA Cardiol. 2021, 6, 1000–1011. [Google Scholar] [CrossRef]
- Parks, T.; Mirabel, M.M.; Kado, J.; Auckland, K.; Nowak, J.; Rautanen, A.; Mentzer, A.J.; Marijon, E.; Jouven, X.; Perman, M.L.; et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat. Commun. 2017, 8, 14946. [Google Scholar] [CrossRef]
- Okello, E.; Kakande, B.; Sebatta, E.; Kayima, J.; Kuteesa, M.; Mutatina, B.; Nyakoojo, W.; Lwabi, P.; Mondo, C.K.; Odoi-Adome, R.; et al. Socioeconomic and Environmental Risk Factors among Rheumatic Heart Disease Patients in Uganda. PLoS ONE 2012, 7, e43917. [Google Scholar] [CrossRef]
- Kingué, S.; Ba, S.A.; Balde, D.; Diarra, M.B.; Anzouan-Kacou, J.-B.; Anisubia, B.; Damorou, J.-M.; Ndobo, P.; Menanga, A.; Kane, A.; et al. The VALVAFRIC study: A registry of rheumatic heart disease in Western and Central Africa. Arch. Cardiovasc. Dis. 2016, 109, 321–329. [Google Scholar] [CrossRef]
- Baker, M.G.; Gurney, J.; Oliver, J.; Moreland, N.J.; Williamson, D.A.; Pierse, N.; Wilson, N.; Merriman, T.R.; Percival, T.; Murray, C.; et al. Risk Factors for Acute Rheumatic Fever: Literature Review and Protocol for a Case-Control Study in New Zealand. Int. J. Environ. Res. Public Health 2019, 16, 4515. [Google Scholar] [CrossRef]
- Jones, T.D. The diagnosis of rheumatic fever. J. Am. Med. Assoc. 1944, 126, 481–484. [Google Scholar] [CrossRef]
- Beaton, A.; Carapetis, J. The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: Implications for practice in low-income and middle-income countries. Heart Asia 2015, 7, 7–11. [Google Scholar] [CrossRef]
- Szczygielska, I.; Hernik, E.; Kołodziejczyk, B.; Gazda, A.; Maślińska, M.; Gietka, P. Rheumatic fever–new diagnostic criteria. Reumatologia 2018, 56, 37. [Google Scholar] [CrossRef]
- Dougherty, S.D.; Carapetis, J.; Zèuhlke, L.; Wilson, N. Acute Rheumatic Fever and Rheumatic Heart Disease; Elsevier: St. Louis, MO, USA, 2020; Volume XVIII, p. 343p. [Google Scholar]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 70, 252–289. [Google Scholar] [CrossRef]
- Kumar, R.K.; Antunes, M.J.; Beaton, A.; Mirabel, M.; Nkomo, V.T.; Okello, E.; Regmi, P.R.; Reményi, B.; Sliwa-Hähnle, K.; Zühlke, L.J.; et al. Contemporary Diagnosis and Management of Rheumatic Heart Disease: Implications for Closing the Gap: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e337–e357. [Google Scholar] [CrossRef]
- Yeong, M.; Silbery, M.; Finucane, K.; Wilson, N.J.; Gentles, T.L. Mitral Valve Geometry in Paediatric Rheumatic Mitral Regurgitation. Pediatr. Cardiol. 2015, 36, 827–834. [Google Scholar] [CrossRef]
- Remenyi, B.; ElGuindy, A.; Smith, S.C.; Yacoub, M.; Holmes, D.R. Valvular aspects of rheumatic heart disease. Lancet 2016, 387, 1335–1346. [Google Scholar] [CrossRef]
- Cupido, B.J.; Commerford, P.J. Rheumatic Fever and Valvular Heart Disease. In Essential Cardiology; Rosendorf, C., Ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Otto, C.M.; Bonow, R.O. Valvular Heart Disease: A companion to Braunwald’s Heart Disease, 5th ed.; Elsevier: Philadelphia, PA, USA, 2021; Volume XII, 594p. [Google Scholar]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. CardioThorac. Surg. 2021, 60, 727–800. [Google Scholar]
- Gentles, T.L.; Finucane, A.K.; Remenyi, B.; Kerr, A.R.; Wilson, N.J. Ventricular Function Before and After Surgery for Isolated and Combined Regurgitation in the Young. Ann. Thorac. Surg. 2015, 100, 1383–1389. [Google Scholar] [CrossRef]
- Généreux, P.; Stone, G.W.; O’Gara, P.T.; Marquis-Gravel, G.; Redfors, B.; Giustino, G.; Pibarot, P.; Bax, J.J.; Bonow, R.O.; Leon, M.B. Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients with Asymptomatic Severe Aortic Stenosis. J. Am. Coll. Cardiol. 2016, 67, 2263–2288. [Google Scholar] [CrossRef]
- Watkins, D.A.; Beaton, A.Z.; Carapetis, J.R.; Karthikeyan, G.; Mayosi, B.M.; Wyber, R.; Yacoub, M.H.; Zühlke, L.J. Rheumatic Heart Disease Worldwide: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2018, 72, 1397–1416. [Google Scholar] [CrossRef]
- Reményi, B.; Wilson, N.; Steer, A.; Ferreira, B.; Kado, J.; Kumar, K.; Lawrenson, J.; Maguire, G.; Marijon, E.; Mirabel, M.; et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—An evidence-based guideline. Nat. Rev. Cardiol. 2012, 9, 297–309. [Google Scholar] [CrossRef]
- Diao, M.; Kane, A.; Ndiaye, M.B.; Mbaye, A.; Bodian, M.; Dia, M.M.; Sarr, M.; Kane, A.; Monsuez, J.J.; Ba, S.A. Pregnancy in women with heart disease in sub-Saharan Africa. Arch. Cardiovasc. Dis. 2011, 104, 370–374. [Google Scholar] [CrossRef]
- Beaton, A.; Okello, E.; Scheel, A.; DeWyer, A.; Ssembatya, R.; Baaka, O.; Namisanvu, H.; Njeri, A.; Matovu, A.; Namagembe, I.; et al. Impact of heart disease on maternal, fetal and neonatal outcomes in a low-resource setting. Heart 2019, 105, 755–760. [Google Scholar] [CrossRef]
- Sliwa, K.; Soma-Pillay, P.; Mocumbi, A.O. Medical disease as a cause of maternal mortality: The pre-imminence of cardiovascular pathology: Review articles. Cardiovasc. J. Afr. 2016, 27, 84–88. [Google Scholar]
- Silversides, C.K.; Grewal, J.; Mason, J.; Sermer, M.; Kiess, M.; Rychel, V.; Wald, R.M.; Colman, J.M.; Siu, S.C. Pregnancy Outcomes in Women with Heart Disease: The CARPREG II Study. J. Am. Coll. Cardiol. 2018, 71, 2419–2430. [Google Scholar] [CrossRef]
- Siu, S.C.; Sermer, M.; Colman, J.M.; Alvarez, A.N.; Mercier, L.-A.; Morton, B.C.; Kells, C.M.; Bergin, M.L.; Kiess, M.C.; Marcotte, F.; et al. Prospective Multicenter Study of Pregnancy Outcomes in Women with Heart Disease. Circulation 2001, 104, 515–521. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Roos-Hesselink, J.W.; Bauersachs, J.; Blomström-Lundqvist, C.; Cífková, R.; De Bonis, M.; Iung, B.; Johnson, M.R.; Kintscher, U.; Kranke, P.; et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 2018, 39, 3165–3241. [Google Scholar] [CrossRef]
- Pijuan-Domènech, A.; Galian, L.; Goya, M.; Casellas, M.; Merced, C.; Ferreira-Gonzalez, I.; Mora, J.R.M.; Dos-Subirà, L.; Subirana-Domènech, M.; Pedrosa, V.; et al. Cardiac complications during pregnancy are better predicted with the modified WHO risk score. Int. J. Cardiol. 2015, 195, 149–154. [Google Scholar] [CrossRef]
- Van Hagen, I.M.; Boersma, E.; Johnson, M.R.; Thorne, S.A.; Parsonage, W.A.; Escribano Subias, P.; Lesniak-Sobelga, A.; Irtyuga, O.; Sorour, K.A.; Taha, N.; et al. Global cardiac risk assessment in the Registry of Pregnancy and Cardiac disease: Results of a registry from the European Society of Cardiology. Eur. J. Heart Fail 2016, 18, 523–533. [Google Scholar] [CrossRef]
- Zühlke, L.; Acquah, L. Pre-conception counselling for key cardiovascular conditions in Africa: Optimising pregnancy outcomes. Cardiovasc. J. Afr. 2016, 27, 79–83. [Google Scholar] [CrossRef]
- Mocumbi, A.O.; Jamal, K.K.; Mbakwem, A.; Shung-King, M.; Sliwa, K. The Pan-African Society of Cardiology position paper on reproductive healthcare for women with rheumatic heart disease. Cardiovasc. J. Afr. 2018, 29, 394–403. [Google Scholar] [CrossRef]
- Zühlke, L.J.L.; Beaton, A.A.; Engel, M.M.; Hugo-Hamman, C.C.; Karthikeyan, G.; Katzenellenbogen, J.; Ntusi, N.N.; Ralph, A.A.; Saxena, A.A.; Smeesters, P.R.; et al. Group A Streptococcus, Acute Rheumatic Fever and Rheumatic Heart Disease: Epidemiology and Clinical Considerations. Curr. Treat. Options Cardiovasc. Med. 2017, 19, 15. [Google Scholar] [CrossRef]
- Marijon, E.; Mocumbi, A.; Narayanan, K.; Jouven, X.; Celermajer, D.S. Persisting burden and challenges of rheumatic heart disease. Eur. Heart J. 2021, 42, 3338–3348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auala, T.; Zavale, B.G.; Mbakwem, A.Ç.; Mocumbi, A.O. Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease. Pathogens 2022, 11, 496. https://doi.org/10.3390/pathogens11050496
Auala T, Zavale BG, Mbakwem AÇ, Mocumbi AO. Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease. Pathogens. 2022; 11(5):496. https://doi.org/10.3390/pathogens11050496
Chicago/Turabian StyleAuala, Tangeni, Ben’Lauro Goncalves Zavale, Amam Çhinyere Mbakwem, and Ana Olga Mocumbi. 2022. "Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease" Pathogens 11, no. 5: 496. https://doi.org/10.3390/pathogens11050496
APA StyleAuala, T., Zavale, B. G., Mbakwem, A. Ç., & Mocumbi, A. O. (2022). Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease. Pathogens, 11(5), 496. https://doi.org/10.3390/pathogens11050496