Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies
Abstract
:1. Introduction
1.1. Nematodes in Nature
1.2. Plant-Parasitic Nematodes
1.2.1. Life Cycle
1.2.2. Economic Impact
1.2.3. Traditional Chemical Control Using Pesticides and Other Strategies
1.3. Gastrointestinal Parasitic Nematodes
1.3.1. Definition
1.3.2. Common Ruminant Parasitic Nematode Genera/Species and Their Hosts
1.3.3. Life Cycle
1.3.4. Clinical Symptoms
1.3.5. Economic Impact
1.3.6. Common Practices of Control and Their Advantages and Disadvantages
2. Biological Control
Definition
3. Natural Antagonists of Nematodes
3.1. Bacteria
3.2. Protozoa
3.3. Acari
3.4. Nematodes
3.5. Fungi
3.5.1. Toxin-Producing Fungi
3.5.2. Nematode-Trapping Fungi
Genus Arthrobotrys
Species Duddingtonia flagrans
Species Purpureocillium lilacinum syn. Paecilomyces lilacinus
Species Pochonia chlamydosporia
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Peterson, H.; Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 1982, 39, 287–388. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Narayanan, A. Isolation of Nematodes from Soil Sample. In Plant-Microbe Interactions: Laboratory Techniques; Senthilkumar, M., Amaresan, N., Narayanan, A., Eds.; Springer Protocols Handbooks; Humana: New York, NY, USA, 2021; pp. 271–273. [Google Scholar]
- Feyisa, B. Survey and Identification of Plant Parasitic Nematodes on Faba bean Crop in Ethiopia. J. Plant Pathol. Microbiol. 2021, 12, 261. [Google Scholar]
- Pérez- García, J.A.; Díaz-Delgado, Y.; García-Machado, E.; Martínez-García, A.; Gonzalez, C.B.; Worsaae, K.; Armenteros, M. Nematode diversity of freshwater and anchialine caves of Western Cuba. Proc. Biol. Soc. Wash. 2018, 131, 144–155. [Google Scholar] [CrossRef]
- Howard, M.; Platt, F.L.S. The free-living marine nematode genus Sabatieria (Nematoda: Comesomatidae). Taxonomic revision and pictorial keys. Zool. J. Linn. Soc. 1985, 83, 27–78. [Google Scholar]
- Gonzalez, R.; Kanzaki, N.; Beck, C.; Kern, W.H.; Giblin-Davis, R.M. Nematode epibionts on skin of the Florida manatee Trichechus manatus latirostris. Sci. Rep. 2021, 11, 1211. [Google Scholar]
- Dzido, J.; Kijewska, A.; Rokicka, M.; Swiątalska-Koseda, A.; Rokicki, J. Report on anisakid nematodes in polar regions—Preliminary results. Polar Sci. 2009, 3, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Sapir, A. Why are nematodes so successful extremophiles? Commun. Integr. Biol. 2021, 14, 24–26. [Google Scholar] [CrossRef]
- Blaxter, M.; Koutsovoulos, G. The evolution of parasitism in Nematoda. Parasitology 2015, 142, S26–S39. [Google Scholar] [CrossRef]
- Jansen van Rensburg, C.; Fourie, H.; Ashrafi, S.; Rashidifard, M. Description of Prionchulus jonkershoekensis n. sp. (Nematoda: Mononchida), a new predatory species from South Africa. J. Nematol. 2021, 53, e2021-39. [Google Scholar] [CrossRef]
- Walter, D.E.; Hudgens, R.A.; Freckman, D.W. Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia 1986, 70, 357–361. [Google Scholar] [CrossRef]
- Aguilar-Marcelino, L.; Mendoza-de Gives, P.; Torres-Hernández, G.; López-Arellano, M.E.; González-Garduño, R. Butlerius butleri (Nematoda: Diplogasteridae) Feeds on Haemonchus contortus (Nematoda: Trichostrongylidae) Infective Larvae and Free-Living Nematodes in Sheep Faecal Cultures Under Laboratory Conditions: Preliminary Report. Acta Parasitol. 2020, 65, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H. Contribution of nematodes to the structure and function of the soil food web. J. Nematol. 2010, 42, 63–67. [Google Scholar] [PubMed]
- Van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabau, Z.J.; Dickson, D.W. Management of Plant-Parasitic Nematodes in Florida Peanut Production. Askifas UF/IFAS Extension, University of Florida. ENY069. Available online: https://edis.ifas.ufl.edu/publication/IN1199 (accessed on 2 March 2022).
- Schmitt, P.D.; Sipes, S.B. Plant-parasitic Nematodes and Their Management. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, 1st ed.; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii Manoa: Honolulu, HI, USA, 2000; pp. 145–149. [Google Scholar]
- Williams, D.S.; Boehm, J.M.; López-Nicora, H. Nematode Diseases of Plants. Ohio State University Extension, Department of Plant Pathology. Ohioline. Available online: https://ohioline.osu.edu/factsheet/plpath-gen-8 (accessed on 27 December 2021).
- Noling, J.W. Nematode Management in Tomatoes, Peppers, and Eggplant. Askifas, UF/IFAS Extension. University of Florida, ENY-032. Available online: https://edis.ifas.ufl.edu/publication/NG032 (accessed on 29 December 2021).
- Bernard, C.G.; Egnin, M.; Bonsi, C. The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. In Nematology—Concepts, Diagnosis and Control; Shah, M.M., Mahamood, M., Eds.; Intech Open Book Series: Aligarh, India, 2017; pp. 121–151. [Google Scholar]
- Van den Berg, E.; Marais, M.; Swart, A. Nematode Morphology and Classification. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, E.W., Robin, K., Daneel, M.S., De Waele, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 33–71. [Google Scholar]
- Eisenback, J.D. Meloidogyne incognita (root-knot nematode). In Invasive Species Compendium; CABI: Wallingford, UK, 2020. [Google Scholar] [CrossRef]
- Myers, P.; Espinosa, R.; Parr, C.S.; Jones, T.; Hammond, G.S.; Dewey, T.A. The Animal Diversity Web (Online). Available online: https://animaldiversity.org. (accessed on 10 March 2022).
- Ankrom, K.E.; Franco, A.L.C.; Fonte, S.J.; Gherardi, L.A.; Milano de Tomasel, C.; Andriuzzi, W.S.; Shaw, E.A.; Sala, O.E.; Wall, D.H. Ecto- and endoparasitic nematodes respond differently across sites to changes in precipitation. Oecologia 2020, 193, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Perrine-Walker, F. Interactions of endoparasitic and ectoparasitic nematodes within the plant root system. Funct. Plant Biol. 2019, 46, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Sanchez, K. Introduction to Plant Parasitic Nematodes: 2. What are Plant Parasitic Nematodes? TriCal Diagnostics. 2021. Available online: https://www.tricaldiagnostics.com/2019/05/21/introduction-to-plant-parasitic-nematodes-2-what-are-plant-parasitic-nematodes/ (accessed on 27 December 2021).
- Niblack, T. Nematodes. In Illinois Agronomy Handbook, 24th ed.; Department of Crop Sciences, Extension Crop Sciences: Urbana, IL, USA, 2021; pp. 209–218. [Google Scholar]
- ITIS, Integrated Taxonomic Information System. Ditylenchus Report. Data Base. 2021. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=196461#null (accessed on 27 December 2021).
- Nisa, U.R.; Tantray, A.Y.; Kouser, N.; Allie, K.A.; Wani, S.M.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L.; Shah, A.A. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef]
- Migunova, V.D.; Sasanelli, N. Bacteria as Biocontrol Tool against Phytoparasitic Nematodes. Plants 2021, 10, 389. [Google Scholar] [CrossRef]
- Ahmad, G.; Khan, A.; Khan, A.A.; Ali, A.; Mohhamad, H.I. Biological control: A novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek 2021, 114, 885–912. [Google Scholar] [CrossRef]
- Williamson, M.V.; Kumar, A. Nematode resistance in plants: The battle underground. Trends Genet. 2006, 22, 396–403. [Google Scholar] [CrossRef]
- Maurice, N. Meloidogyne: A Root-Knot Nematode. Ezine Articles. Available online: http://EzineArticles.com/?expert=Navodita_Maurice (accessed on 27 December 2021).
- Cabrera-Hidalgo, A.J.; Valadez-Moctezuma, E.; Bustamante-Ortíz, A.G.; Camacho-Tapía, M.; Marbán-Mendoza, N. Transcript accumulation of defense genes in tomato infected by the false root-knot nematode Nacobbus aberrans. Nematropica 2021, 51, 17–26. [Google Scholar]
- Nemaplex, Nacobbus aberrans. University of California, Davies. Available online: http://nemaplex.ucdavis.edu/Taxadata/G085s1.aspx#Damage (accessed on 7 January 2022).
- Nemaplex, Aphelencoides. University of California, Davies. Available online: http://nemaplex.ucdavis.edu/Taxadata/G011.aspx#Feeding (accessed on 7 January 2022).
- Esmaeili, M.; Heydari, R.; Tahmoures, M.; Ye, W. Aphelenchoides salixae n. sp. (Nematoda: Aphelenchoididae) isolated from Salix alba in western Iran. Nematology 2017, 19, 697–707. [Google Scholar] [CrossRef]
- Nemaplex, Heterodera Damage. University of California, Davies. Available online: http://nemaplex.ucdavis.edu/Taxadata/G060.aspx (accessed on 7 January 2022).
- Rathore, S.Y.; Tiwari, N.S. Relationship of Different Species of Heterodera with Taxonomic Grouping of Host Plants. Int. J. Sci. Res. 2013, 4, 2269–2276. [Google Scholar]
- Archidona-Yuste, A.; Navas-Cortés, J.A.; Cantalapiedra-Navarrete, C.; Palomares-Rius, J.E.; Castillo, P. Unravelling the biodiversity and molecular phylogeny of needle nematodes of the genus Longidorus (Nematoda: Longidoridae) in olive and a description of six new species. PLoS ONE 2016, 11, e0147689. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Prior, T.; Lawson, B.; Cantalapiedra-Navarrete, C.; Palomares-Rius, J.E.; Castillo, P.; Archidona-Yuste, A. An integrative taxonomic study of the needle nematode complex Longidorus Goodeyi Hooper, 1961 (Nematoda: Longidoridae) with description of a new species. Eur. J. Plant Pathol. 2020, 158, 59–81. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, C.; Cantalapiedra-Navarrete, C.; Montes-Borrego, M.; Palomares-Rius, J.E.; Castillo, P. Molecular phylogeny of the nematode genus Longidorus (Nematoda: Longidoridae) with description of three new species. Zool. J. Linn. Soc. 2013, 167, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Stephen, W.F.; Michelle, M.C. The Association of a Longidorus Species with Stunting and Root Damage of Loblolly Pine (Pinus taeda L.) Seedlings. Plant Dis. 2002, 86, 803–807. [Google Scholar]
- Smiley, R.; Sheedy, G.J.; Easly, A.S. Vertical Distribution of Pratylenchus spp. in Silt Loam Soil and Pacific Northwest Dryland. Crops. Plant Dis. 2008, 92, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AHDB, Plant Parasitic Nematodes. Agriculture and Horticulture. 2021. Available online: https://projectblue.blob.core.windows.net/media/Default/Potato%20knowledge%20library/AHDB%20PPFLN_Jan2021%20AS%20amend.pdf (accessed on 7 January 2022).
- Mitiku, M. Plant-Parasitic Nematodes and Their Management: A Review. J. Biol. Agricult. Healthc. 2018, 8, 4–42. [Google Scholar] [CrossRef]
- Sekora, N.; Crow, T.W. Burrowing Nematode, Radopholus Similis (Cobb 1893) Thorne (1949) (Nematoda: Secernentea: Tylenchida: Pratylenchidae: Pratylenchinae). UF/IFAS Extension. University of Florida. 2012. Available online: https://vdocument.in/burrowing-nematode-radopholus-similis-cobb-1893-thorne-levels-on-banana-oabannon.html (accessed on 7 January 2022).
- Nemaplex, Xiphinema. University of California, Davies. 2021. Available online: http://nemaplex.ucdavis.edu/Taxadata/G143.aspx (accessed on 7 January 2022).
- Tariq, S. The Fascinating Plant Parasites—Nematodes. Medium. Plant Sciences. Available online: https://medium.com/a-microbiome-scientist-at-large/plant-parasitic-nematodes-eelworms-2bb17d1f5bc5. (accessed on 16 February 2022).
- Holbein, J.; Franke, R.B.; Marhavý, P.; Fujita, S.; Górecka, M.; Sobczak, M.; Gelder, N.; Schreiber, L.; Florian, M.M.; Siddique, S. Root endodermal barrier system contributes to defence against plant−parasitic cyst and root−knot nematodes. Plant J. 2019, 100, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lilley, C.J.; Imren, M.; Knox, J.P.; Urwin, P.E. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant. Front. Plant Sci. 2017, 8, 1087. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.G.K. Host cell responses to endoparasitic nematode attack: Structure and function of giant cells and syncytia. Ann. Appl. Biol. 1981, 97, 353–372. [Google Scholar] [CrossRef]
- Coyne, D.L.; Dalzell, J.; Cortada, L.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N.; Talwana, H. Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Ann. Rev. Phytopathol. 2018, 56, 381–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Sikora, R.; Coyne, D.; Hallman, J.; Timper, P. Plant Parasitic Nematodes—The World’s Most Important Crop pathogen? CABI Blog. Available online: https://blog.cabi.org/2018/07/24/plant-parasitic-nematodes/ (accessed on 27 December 2021).
- Zhou, L.; Yuen, G.; Wang, Y.; Wei, L.; Ji, G. Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot. 2016, 84, 8–13. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K.; Modi, A.; Singh, P.K.; Zhimo, V.Y.; Kumar, A. Impacts of agrochemicals on soil microbiology and food quality. In Agrochemicals Detection, Treatment and Remediation, Pesticides and Chemical Fertilizers; Majeti, N.V.P., Ed.; Butterworth-Heinemann: Hyderabad, India, 2020; pp. 101–116. [Google Scholar]
- Rajput, S.; Sharma, R.; Kumari, A.; Kaur, R.; Sharma, G.; Arora, S.; Kaur, R. Pesticide residues in various environmental and biological matrices: Distribution, extraction, and analytical procedures. Environ. Dev. Sustain. 2021, 24, 6032–6052. [Google Scholar] [CrossRef]
- Ecological Footprint Bible. Agriculture & Soil Degradation. Ecological Footprint Bible. Available online: https://www.theconsciouschallenge.org/ecologicalfootprintbibleoverview/agriculture-soil-degradation (accessed on 27 December 2021).
- Czarnek, K. The Use of Pesticides: Beneficial or Detrimental? The Uses of Pesticides and the Effects on Non-Target Plants and Animals. Available online: https://theunchainedlibrary.files.wordpress.com/2020/09/janek-czarnek-the-use-of-pesticides-beneficial-or-detrimental.pdf (accessed on 27 December 2021).
- Mandal, R.H.; Katel, S.; Subedi, S.; Shrestha, J. Plant Parasitic Nematodes and their management in crop production: A review. J. Agric. Nat. Resour. 2021, 4, 327–338. [Google Scholar] [CrossRef]
- Community Garden Australia. Crop Rotation. Management Pests and Maintain Plant Health. Available online: https://www.communitygarden.org.au/wp-content/uploads/2021/04/crop-rotation.pdf (accessed on 28 December 2021).
- Tamilarasan, S.; Rajam, M.V. Engineering Crop Plants for Nematode Resistance through Host-Derived RNA Interference. Cell Dev. Biol. 2013, 2, 114. [Google Scholar] [CrossRef]
- Fiaz, M.; Waris, M.; Ahmed, S.; Mohsin, M.; Ather, M.; Azhar, M. Effects of inducers of systemic acquired resistance on reproduction of root knot nematodes in tomato. Pure Appl. Biol. 2018, 7, 1131–1136. [Google Scholar] [CrossRef]
- Malakeberhan, H.; Kakaire, S. Managing Nematodes, Cover Crops, and Soil Heath in Diverse Cropping Systems. Michigan State University Extension. E3457. Available online: https://www.canr.msu.edu/hrt/uploads/files/E3457_Nematodes_AAFinal.pdf (accessed on 27 December 2021).
- Cornell University. What is Biological Control? Available online: https://biocontrol.entomology.cornell.edu/what.html (accessed on 27 December 2021).
- Levine, D.N. Trichostrongyles. In Nematode Parasites of Domestic Animals and of Man, 1st ed.; Burguess Pub. Co: Mineapolis, MI, USA, 1980; pp. 1–2. [Google Scholar]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez de León, A.A.; Silva-Villela, H.; Torres-Acosta, J.F.J.; Fragoso-Sánchez, H.; Romero-Salas, D.; Cruz, R.R.; Saldierna, F.; García-Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Cienc. Pec. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Yeates, W.G.; Bungers, T. Nematode diversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 113–135. [Google Scholar] [CrossRef]
- Courtney, H.C.; Parker, F.C.; McClure, E.K.; Herd, P.R. Population dynamics of Haemonchus contortus and Trichostronylus spp. in sheep. Int. J. Parasitol. 1983, 13, 557–560. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Claerebout, E. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Rani-Dey, A.; Begum, N.; Biswas, H.; Zahangir-Alam, M. Prevalence and factors influencing gastrointestinal parasitic infections in sheep in Bangladesh. Ann. Parasitol. 2021, 67, 187–194. [Google Scholar]
- Von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de-Gives, P.; Valles-de la Mora, B.; Liébano-Hernández, E.; López-Arellano, M.E.; Aguilar-Marcelino, L. Reappearance of Mecistocirrus digitatus in Cattle from the Mexican Tropics: Prevalence, Molecular, and Scanning Electron Microscopy Identification. J. Parasitol. 2014, 100, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.M. Overview of Gastrointestinal Parasites of Ruminants. MSD Manual. Veterinary Manual. 2014. Available online: https://www.msdvetmanual.com/digestive-system/gastrointestinal-parasites-of-ruminants/overview-of-gastrointestinal-parasites-of-ruminants (accessed on 27 December 2021).
- Roeber, F.; Jex, R.A.; Gasser, B.R. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—An Australian perspective. Parasit. Vectors 2013, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Monnig’s, H.O. Veterinary Helminthology and Entomology, 3rd ed.; Williams & Wilkins: Baltimore, MA, USA, 1938. [Google Scholar]
- Soulsby, E.J.L. Helminths, Arthropods and Protozoa of Domesticated Animals; Ballière Tindall: London, UK, 1982; pp. 1–809. [Google Scholar]
- Gibbons, L.M. Keys to the Nematode Parasites of Vertebrates; Supplementary Volume; CAB International: Wallingford, UK, 2010; p. 416. [Google Scholar]
- Dikmans, G.; Andrews, J.S. A comparative morphological study of the infective larvae of the common nematodes parasitic in the alimentary tract of sheep. Trans. Am. Microscop. Soc. 1933, 52, 1–25. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological Identification of Parasitic Nematode Infective Larvae of Small Ruminants and Cattle: A Practical Lab Guide. Onderstepoort. J. Vet. Res. 2013, 80, 1–14. [Google Scholar] [CrossRef]
- Skorpikova, L.; Reslova, N.; Magdalek, J.; Vadlejch, J.; Kasny, M. The use of high resolution melting analysis of ITS-1 for rapid differentiation of parasitic nematodes Haemonchus contortus and Ashworthius sidemi. Sci. Rep. 2020, 10, 15984. [Google Scholar] [CrossRef]
- Davey, M.L.; Utaaker, S.K.; Fossøy, F. Characterizing parasitic nematode faunas in faeces and soil using DNA metabarcoding. Parasit. Vectors 2021, 14, 422. [Google Scholar] [CrossRef]
- Habtemichael, G.Y.; Dejene, M.; Eniyew, M.S. Prevalence of gastrointestinal helminth parasites and identification of major nematodes of cattle in and identification of major nematodes of cattle in and around Bishoftu, Oromia Region, Ethiopia. J. Vet. Med. Anim. Health 2018, 10, 165–172. [Google Scholar]
- Khalaf, K.W.; Himmadi, M. Diagnostic study of Nematodes in Cattle in Mosul city. Al-Anbar. J. Vet. Sci. 2019, 12, 142–149. [Google Scholar] [CrossRef]
- Pinilla-León, J.C.; Delgado, N.U.; Florez, A.A. Prevalence of gastrointestinal parasites in cattle and sheep in three municipalities in the Colombian Northeastern Mountain. Vet. World 2019, 12, 48–54. [Google Scholar]
- Springer, A.; Jordan, D.; Kirse, A.; Schneider, B.; Campe, A.; Knubben-Schweizer, G.; Müller, K.E.; Hoedemaker, M.; Strube, C. Seroprevalence of Major Pasture-Borne Parasitosis (Gastrointestinal Nematodes, Liver Flukes and Lungworms) in German Dairy Cattle Herds, Association with Management Factors and Impact on Production Parameters. Animals 2021, 11, 2078. [Google Scholar] [CrossRef]
- Thanasuwan, S.; Piratae, S.; Tankrathok, A. Prevalence of gastrointestinal parasites in cattle in Kalasin Province, Thailand. Vet. World 2021, 14, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, K.; Bora, S.; Deka, D.K. Prevalence of Gastro Intestinal Parasites in Sheep of Assam, India. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 1805–1812. [Google Scholar]
- Olivas-Salazar, R.; Estrada-Angulo, A.; Mellado, M.; Aguilar-Caballero, A.J.; Castro-Pérez, B.E.; Gutiérrez-Blanco, E.; Ruíz-Zárate, F. Prevalence of gastrointestinal nematode infections in goat flocks on semi-arid rangelands of northeastern Mexico. Trop. Anim. Health Prod. 2018, 50, 807–813. [Google Scholar] [CrossRef]
- Matsepe, L.G.; Molapo, S.; Phalatsi, M.; Phororo, M. Prevalence and fecal egg load of gastrointestinal parasites of Angora goats in four agro-ecological zones in Lesotho. Vet. World 2021, 14, 339–346. [Google Scholar] [CrossRef]
- Omar, I.A.; Dey, R.A.; Alam, M.B.B.; Mondal, H.M.M.; Khan, Y.M.; Khan Faruque, O.M. Prevalence of Common Gastrointestinal Parasite Infection Under Natural Grazing Condition in Black Bengal Goat of Bangladesh. Int. J. Asian Contemp. Res. 2021, 1, 63–72. [Google Scholar]
- Weingartz, C.R.A. Study of the Prevalence of Gastrointestinal Nematodes in Goats. Master of Science in Animal Science (MS); University of Arkansas: Little Rock, AR, USA, 2017. [Google Scholar]
- Silva, F.B.; Amarante, V.R.M.; Kadri, M.S.; Carrijo-Mauad, J.R.; Amarante, T.F.A. Vertical migration of Haemonchus contortus third stage larvae on Brachiaria decumbens grass. Vet. Parasitol. 2008, 158, 85–92. [Google Scholar] [CrossRef]
- Zajac, A.M.; Garza, J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet. Clin. North Am. Food Anim. Pract. 2020, 36, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, G.M.; Armour, J.; Duncan, J.L.; Dunn, A.M.; Jennings, F.W. Veterinary Parasitology, 2nd ed.; Blackwell Science: London, UK, 1996; pp. 1–307. [Google Scholar]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology, 3rd ed.; Blackwell Publishing: London, UK, 2007; pp. 40–45. [Google Scholar]
- Sambodo, P.; Prastowo, J.; Indarjulianto, S.; Kurniasih, K. Morphology and morphometry of Haemonchus contortus in goats in Yogyakarta, Indonesia. Indones. Vet. Sci. 2018, 12, 62–65. [Google Scholar]
- Roberts, J.L.; Swan, R.A. Quantitative studies of ovine haemonchosis. I. Relationship between faecal egg counts and total worm counts. Vet. Parasitol. 1981, 8, 165–171. [Google Scholar] [CrossRef]
- Gamble, R.H.; Lichtenfels, R.J.; Purcel, P.J. Light and scanning electron microscopy of the ecdysis of Haemonchus contortus infective larvae. J. Parasitol. 1989, 75, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Iqbal, Z.; Roohi, N. Ovine haemonchosis. Trop. Anim. Health Prod. 2021, 53, 19. [Google Scholar] [CrossRef] [PubMed]
- Mengist, Z.; Abebe, N.; Gugs, G.; Kumar, N. Assessment of Small Ruminant Haemonchosis and Its Associated Risk Factors in and Around Finoteselam, Ethiopia. J. Agric. Vet. Sci. 2014, 7, 36–41. [Google Scholar] [CrossRef]
- Dunn, A.M. Veterinary Helminthology, 2nd ed.; William Heinemann Medical Books: Portsmouth, NH, USA, 1978; pp. 1–336. [Google Scholar]
- Iliev, T.P.; Prelezov, P.; Ivanov, A.; Kirkova, Z.; Tonev, A. Clinical study of acute haemonchosis in lambs. Trakia J. Sci. 2017, 1, 74–78. [Google Scholar] [CrossRef]
- Parmar, D.; Bhawana, S.; Sharma, P. Gastrointestinal Nematodiasis with Main Emphasis on Haemonchus contortus. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 284–289. [Google Scholar] [CrossRef]
- Cows. Control of Parasitic Gastroenteritis in Cattle. Control of Worms Sustainably. Available online: ACOWS—www.cattleparasites.org.uk (accessed on 27 December 2021).
- Ayaz, M.M.; Sheikh, A.S.; Aziz, M.; Nazir, M.M. Goat Immunity to Helminthes. In Goats (Capra)—From Ancient to Modern; IntechOpen: London, UK, 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Suarez, V.H.; Cristel, S.L.; Busetti, M.R. Epidemiology and effects of gastrointestinal nematode infection on milk productions of dairy ewes. Parasite 2009, 16, 141–147. [Google Scholar] [CrossRef]
- Nieuwhof, G.J.; Bishop, S.C. Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Anim. Sci. 2005, 81, 23–29. [Google Scholar] [CrossRef]
- Rashid, M.; Rashid, M.I.; Akbar, H.; Ahmad, L.; Hassan, M.A.; Ashraf, K.; Saeed, K.; Gharbi, M. A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology 2018, 146, 129–141. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.; McEwan, J.C.; Dodds, K.G.; Gemmell, N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. Genomics 2014, 15, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlier, J.; Höglund, J.; Morgan, E.R.; Geldhof, P.; Vercruysse, J.; Claerebout, E. Biology and Epidemiology of Gastrointestinal Nematodes in Cattle. Vet. Clin. North Am. Food Anim. Pract. 2020, 36, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Aguiar de Oliveira, P.; Riet-Correa, B.; Estima-Silva, P.; Barreto Coelho, A.C.; Lemos dos Santos, B.; Paldês Costa, M.A.; Lopes Ruas, J.; Schild, A.L. Multiple anthelmintic resistance in Southern Brazil sheep flocks. Rev. Bras. Parasitol. Vet. 2017, 26, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Beleckė, A.; Kupčinskas, T.; Stadalienė, I.; Höglund, J.; Milan, S.; Stuen, S.; Petkevicuis, S. Anthelmintic resistance in small ruminants in the Nordic-Baltic region. Acta Vet. Scand. 2021, 63, 18. [Google Scholar] [CrossRef]
- Mickiewicz, M.; Czopowicz, M.; Moroz, A.; Potarniche, A.-V.; Szalus-Jordanow, O.; Spiu, M.; Markowska-Daniel, I.; Várady, M. Prevalence of anthelmintic resistance of gastrointestinal nematodes in Polish goat herds assessed by the larval development test. BMC Vet. Res. 2021, 17, 1–12. [Google Scholar] [CrossRef]
- Bamidele-Falowo, A.; Festus-Akimoladun, O. Veterinary Drug Residues in Meat and Meat Products: Occurrence, Detection and Implications. In Veterinary Medicine and Pharmaceuticals, 1st ed.; Bekoe, S.O., Saravanan, M., Adosraku, K.R., Ramkumar, P.K., Eds.; IntechOpen: London, UK, 2020; Chapter 5; pp. 1–19. [Google Scholar]
- FAO, Livestock Long Shadow. Environmental Issues and Options. The Livestock, Environmental and Development. Available online: http://www.fao.org/3/a0701e/a0701e.pdf (accessed on 27 December 2021).
- Lumaret, J.-P.; Römbke, J.; Kadiri, N.; Errouissi, F.; Tixier, T.; Floate, K. Antiparasitics and their impact on soil and dung fauna. In Proceedings of the International UBA Workshop Pharmaceuticals in Soil, Sludge and Slurry, Dessau, Germany, 18–19 June 2013. [Google Scholar]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Reyes-Guerrero, D.E.; Olmedo Juárez, M.E.; López Arellano, M.E.; Mendoza de Gives, P. Control and prevention of nematodosis in small ruminants: Background, challenges and perspectives in Mexico. Rev. Mex. Cien. Pecu. 2021, 12, 186–204. [Google Scholar] [CrossRef]
- Randall, M.J.; Tu, M. Biological control. In Weed Control Methods Handbook, The Nature Conservancy; Randal, M.J., Hurd, C., Tu, N., Eds.; Wildland Invasive Species Team: Davies, CA, USA, 2001; pp. 4.1–4.24. [Google Scholar]
- Mayrhofer, N.; Velicer, J.G.; Schall, A.K.; Vasse, M. Behavioral interactions between bacterivorous nematodes and predatory bacteria in a synthetic community. Microorganisms 2021, 9, 1362. [Google Scholar] [CrossRef]
- Sayre, R.M. Bacterial diseases of nematodes and their role in controlling nematode populations. Agric. Ecosyst. Environ. 1988, 24, 263–279. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N. Pasteuria penetrans for Control of Meloidogyne incognita on Tomato and Cucumber, and M. arenaria on Snapdragon. J. Nematol. 2015, 47, 207–213. [Google Scholar] [PubMed]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on Control Methods against Plan Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- Navarrete, X.; Ron, L.; Viteri, P.; Viera, W. Parasitism of the root knot nematode Meloidogyne incognita (Kofoid and White) chitwood in five wild Solanaceae species. Rev. Fac. Nac. Agron. Medellín 2018, 71, 8367–8373. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Yang, J.; Zhang, K.Q. Bacteria in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 2007, 61, 197–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, L.M.; Hewlett, T.E.; Green, A.; Simmons, L.J.; Kelley, K.; Doroh, M.; Stetina, S.R. Molecular and morphological characterization and biological control capabilities of a Pasteuria ssp. parasitizing Rotylenchulus reniformis, the reniform nematode. J. Nematol. 2010, 42, 207–217. [Google Scholar] [PubMed]
- Abd-Elgawad, M.M.M.; Askary, H.T. Fungal and bacterial nematicides in integrated nematode management strategies. Egypt. J. Biol. Pest Control 2018, 28, 74. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; Davies, K.G.; Morgan, M.; Behnke, J.M. Attachment tests of Pasteuria penetrans to the cuticle of plant and animal parasitic nematodes, free living nematodes and srf mutants of Caenorhabditis elegans. J. Helminth. 1999, 73, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.R.; Lee, B.C.; Kim, D.S.; Jeon, H.Y.; Yiem, M.S.; Lee, J.D. Distribution of plant-parasitic nematodes in fruit vegetable production area in Korea and identification of root-knot nematodes by enzyme phenotypes. J. Korean Appl. Entomol. 2000, 39, 123–129. [Google Scholar]
- Liu, C.; Timper, P. Effectiveness of Pasteuria penetrans applied to seed or furrow. Nematropica 2020, 50, 2020. [Google Scholar]
- Khabbaz, S.E.; Ladhalakshmi, D.; Babu, M.; Kandan, A.; Ramamoorthy, V.; Saravanakumar, D.; Al-Mughrabi, T.; Kandasamy, S. Plant Growth Promoting Bacteria (PGPB)—A versatile tool for plant health management. Can. J. Pestic. Pest Manag. 2019, 1, 1–25. [Google Scholar] [CrossRef]
- De Vleeddchauwer, D.; Höfte, M. Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–12. [Google Scholar]
- Yin, N.; Jia Zhao, J.-L.; Liu, R.; Li, Y.; Ling, J.; Yang, Y.-H.; Bing-Yan, X.; Zheng-Chuan, M. Biocontrol Efficacy of Bacillus cereus Strain Bc-cm103 against Meloidogyne incognita. Plant Dis. 2021, 105, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Dehghanian, S.Z.; Abdollahi, M.; Charehgani, H.; Niazi, A. Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato. Biol. Control 2020, 141, 104134. [Google Scholar] [CrossRef]
- Raymaekers, K.; Ponet, L.; Holtappels, D.; Berckmans, B.; Cammue, B.P.A. Screening for novel biocontrol agents applicable in plant disease management–a review. Biol. Control 2020, 144, 104240. [Google Scholar] [CrossRef]
- Márquez, M.E.; Garmendia, L.; Fernández, E.; Escobar, M.M. Bacillus thuringiensis strains with biological activity against Meloidogyne incognita. (Original title in Spanish: Cepas de Bacillus thuringiensis con actividad biológica contra Meloidogyne incognita. Fitosanidad 2004, 8, 31–35. [Google Scholar]
- Ramalakshmi, A.; Sharmila, R.; Iniyakumar, M.; Gomathi, V. Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egypt J. Biol. Pest Control 2020, 30, 90. [Google Scholar] [CrossRef]
- Rønn, R.; Vestergård, M.; Ekelund, F. Interactions Between Bacteria, Protozoa and Nematodes in Soil. Acta Protozool. 2012, 51, 223–225. [Google Scholar]
- Hamels, I.; Moens, T.; Muylaert, K.; Vyverman, W. Trophic interactions between ciliates and nematodes from an intertidal flat. Aquat. Microb. Ecol. 2001, 26, 61–72. [Google Scholar] [CrossRef]
- Ugarte, C.; Zaborski, E. Soil Nematodes in Organic Farming Systems. eOrganic. 2020. Available online: https://eorganic.org/node/4495 (accessed on 27 December 2021).
- Bjørnlund, L.; Rønn, R. “David and Goliath” of the soil food web—Flagellates that kill nematodes. Soil Biol. Biochem. 2008, 40, 2032–2039. [Google Scholar] [CrossRef]
- Homma, Y.; Kegasawa, K. Predation on Larvae of Plant Parasitic Nematodes by Soil Vampyrellid Amoebae. Jpn. J. Nematol. 1994, 14, 1–7. [Google Scholar]
- Neidig, N.; Jousset, A.; Nunes, F.; Bonkowski, M.; Paul, R.J.; Scheu, S. Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct. Ecol. 2010, 24, 1133–1138. [Google Scholar] [CrossRef]
- Gwiazdowicz, D.J. Biodiversity of Mites. Diversity 2021, 13, 80. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Schatz, H.; Pfingstl, T.; Goldschmidt, T.; Martin, P.; Pešić, V.; Ramírez, M.; Schmidt, K.-H.; Fan, Q.-H.; Mironov, S.; et al. Discovering and documenting Acari: The first twenty years in Zootaxa. Zootaxa 2021, 4979, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Neher, D.A.; Powers, T.O. Nematodes. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Columbia Universiy: New York, NY, USA, 2005. [Google Scholar]
- Buglogical Control Systems Inc. Spider mite predators. Spider Mites. Available online: https://www.buglogical.com/spider-mites/ (accessed on 30 December 2021).
- Brust, J. Dry Bulb Mite Found in Maryland Garlic. AG Insight. University of Maryland Extension. Available online: https://extension.umd.edu/sites/default/files/2021-05/2021_April.pdf (accessed on 30 December 2021).
- Van de Velde, V.; Duarte, V.A.M.; Benavente, A.; Vangansbeke, D.; Wäkers, F.; De Clercq, P. Quest for the Allmitey: Potential of Pronematus ubiquitus (Acari: Iolinidae) as a Biocontrol Agent against Tetranychus urticae and Tetranychus evansi (Acari: Tetranychidae) on Tomato (Solanum lycopersicum L.). bioRxiv 2021. Available online: https://doi.org/10.1101/2021.04.08.438973 (accessed on 30 December 2021).
- Bilgrami, L.A.; Tahseen, Q. A nematode feeding mite, Tyrophagus putrescentiae (Sarcoptiformis: Acaridae). Fundament Appl. Nematol. 1992, 15, 477–478. [Google Scholar]
- Schneider, K.; Renker, C.; Scheu, S.; Maraun, M. Feeding biology of oribatid mites: A minireview. Phytophaga 2004, XIV, 247–256. [Google Scholar]
- Badejo, M.A.; Akinwole, P. Preliminary study of the feeding habits of seven species of oribatid mites from Nigeria. Systemnatic Appl. Acarol. 2007, 12, 121. [Google Scholar] [CrossRef]
- Linford, M.B.; Oliviera, M. Potential agent of biological control of plant parasitic nematodes. Phytopathology 1938, 28, 14. [Google Scholar]
- Muraoka, M.; Ishibashi, N. Nematode-feeding mites and their feeding behaviour. Appl. Entomol. Zool. 1976, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Marcelino, L.; Quintero-Martínez, M.T.; Mendoza-de Gives, P.; López-Arellano, M.E.; Liébano-Hernández, E.; Torres-Hernández, G.; Gonzále- Camacho, J.M.; Cid-del Prado, I. Evaluation of predatory of the mite Lasioseius penicilliger (aracnida: Mesostigmata) on Haemonchus contortus and bacteria-feeding nematodes. J. Helminthol. 2014, 88, 20–23. [Google Scholar] [CrossRef]
- Bilgrami, L.A.; Brey, C. Potential of predatory nematodes to control plant-parasitic nematodes. In Nematodes as Biocontrol Agents; Grewal, P.S., Ehlers, R.U., Shapiro-Ilan, D.I., Eds.; CAB International: Oxford, UK, 2005; pp. 446–447. [Google Scholar]
- Kanwar, R.S.; Patil, J.A.; Yadav, S. Prospects of using predatory nematodes in biological control for plant parasitic nematodes—A review. Biol. Control 2021, 160, 104668. [Google Scholar] [CrossRef]
- Taylor, L.D.; Sinsabaugh, L.R. The Soil Fungi. Soil Microbiol. Ecol. Biochem. 2015, 1, 77–109. [Google Scholar]
- van Ooij, C. Hungry fungus eats nematode. Nat. Rev. Microbiol. 2011, 9, 766–767. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-de Gives, P. Carnivorous Fungi: The cruelest executioners of nematodes in the soil. Mushroom J. 2011, 1, 31–36. [Google Scholar]
- de Freitas-Soares, F.E.; Sufiate, L.B.; de Queiroz, H.J. Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups. Agricult. Nat. Res. 2018, 52, 1–8. [Google Scholar]
- Barron, G.L.; Thorn, R.G. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 2011, 65, 774–778. [Google Scholar] [CrossRef]
- Kwok, O.C.H.; Plattner, R.; Weisleder, D. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 1992, 18, 127–136. [Google Scholar] [CrossRef]
- Lee, C.-H.; Changa, H.W.; Yanga, C.-T.; Walic, N.; Shiec, J.-J.; Hsueha, Y.-P. Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. PNAS 2020, 117, 6014–6022. [Google Scholar] [CrossRef]
- Luo, H.; Liu, Y.; Fang, L.; Li, X.; Tang, N.; Zhang, K. Coprinus comatus Damages Nematode Cuticles Mechanically with Spiny Balls and Produces Potent Toxins to Immobilize Nematodes. Appl. Environ. Microbiol. 2007, 73, 3916–3923. [Google Scholar] [CrossRef] [Green Version]
- Montañéz-Palma, L.F.; Téllez-Téllez, M.; Acosta-Urdapilleta, M.L.; Díaz-Godinez, G.; Aguilar-Marcelino, L. Nematicidal activity of a hydroalcoholic extract of the edible mushroom Neolentinus ponderosus on L3 larvae of Haemonchus contortus. Acta Parasitol. 2021, 66, 969–976. [Google Scholar] [CrossRef]
- Nordbring-Hertz, B. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora—An extensive plasticity of infection structures. Mycologist 2004, 18, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Pramer, D.; Kuyama, S. Nemin and the nematode-trapping fungi. Bacteriol. Rev. 1963, 27, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-Q.; Hyde, K.D. Nematode-Trapping Fungi, 1st ed.; Zhang, K.Q., Hyde, K.D., Eds.; Springer Science & Business: Dordrecht, The Netherlands, 2014; Volume 23, pp. 1–392. [Google Scholar]
- Hsueh, Y.-P.; Gronquist, R.M.; Scharz, M.E.; Bath, D.R.; Lee, C.-H.; Gharib, S.; Schoeder, C.F.; Sternberg, W.P. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife 2017, 6, e20023. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; Vazquez-Prats, V.M. Reduction of Haemonchus contortus infective larvae by three nematophagous fungi in sheep faecal cultures. Vet. Parasitol. 1994, 55, 197–203. [Google Scholar] [CrossRef]
- Bakr, A.R.; Mahdy, E.M.; Mousa, M.E. Biological control of Root-knot nematode Meloidogyne incognita by Arthrobotrys oligospora. Egypt J. Crop Prot. 2014, 9, 1–11. [Google Scholar] [CrossRef]
- Whipps, J.M.; Davies, K.G. Success in Biological Control of Plant Pathogens and Nematodes by Microorganisms. In Biological Control: Measures of Success, 1st ed.; Gurr, G., Wratten, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 1, pp. 231–269. [Google Scholar]
- Mostafanezhad, H.; Sahebani, N.; Nourinejhad Zarghani, S. Control of root-knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocont. Sci. Technol. 2014, 24, 203–215. [Google Scholar] [CrossRef]
- Tazi, H.; Hamza, M.A.; Hallouti, A. Biocontrol potential of nematophagous fungi against Meloidogyne spp. infecting tomato. Org. Agr. 2021, 11, 63–71. [Google Scholar] [CrossRef]
- Ortíz-Pérez, D.O.; Sánchez Muñóz, B.; Toral, J.N.; Orantes Zebadúa, M.A.; Cruz López, J.L.; Mendoza de Gives, P. Using Duddingtonia flagrans in calves under an organic milk farm production system in the Mexican tropics. Exp. Parasitol. 2017, 175, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Araújo, V.J. Predaceous activity of Arthrobotrys spp. isolates on infective Cooperia punctata larvae. Braz. J. Vet. Res. Animal Sci. 1998, 35, 9–11. [Google Scholar] [CrossRef]
- Ojeda-Robertos, N.F.; Aguilar-Marcelino, L.; Olmedo-Juárez, A.; Luna-Palomera, C.; Peralta-Torres, J.A.; López-Arellano, M.E.; Mendoza-de-Gives, P. In vitro predatory activity of nematophagous fungi isolated from water buffalo feces and from soil in the Mexican southeastern. Braz. J. Vet. Parasitol. Jaboticabal 2019, 2, 314–319. [Google Scholar] [CrossRef]
- BGIF Seretariat Universtitsparken. Available online: https://www.gbif.org/es/species/2587473 (accessed on 30 December 2021).
- Zopf, W. Zur Kenntnis der Infektions-Krankheiten neiderer Thiere. Nova Acta Leop Acad Nat. Halle 1888, 52, 7. [Google Scholar]
- Dasgupta, K.M.; Kham, R.M. Nematophagous fungi: Ecology, Diversity and Geographical Distribution. In Biocontrol Agents of Phytonematodes; Askary, H., Martinelli, P.R.P., Eds.; CAB International: St. Albans, UK, 2015; pp. 126–162. [Google Scholar]
- Sánchez-Martínez, E.; Aguilar-Marcelino, L.; Hernández-Romano, J.; Castañeda-Ramírez, G.S.; Mendoza-de Gives, P. Taxonomic and biological characterization and predatory activity of four nematophagous fungi isolates of Arthrobotrys species from Tapachula, Chiapas, Mexico. Arch. Agron. Soil Sci. 2021. [Google Scholar] [CrossRef]
- Guey, Y.L.; Tzean, S.S. Phylogeny of the Genus Arthrobotrys and Allied Nematode-Trapping Fungi Based on RDNA Sequences. Mycologia 1997, 89, 876–884. [Google Scholar]
- De Hoog, G.S.; Van Oorschot, C.A.N. Taxonomy of the Dactylaria complex. Stud. Mycol. 1985, 26, 1–122. [Google Scholar]
- Singh, U.B.; Sahu, A.; Sahu, N.; Singh, R.K.; Renu, S.; Singh, D.P.; Singh, K.P. Arthrobotrys oligospora-mediated biological control of diseases of tomato (Lycopersicon esculentum Mill.) caused by Meloidogyne incognita and Rhizoctonia solani. J. Appl. Microbiol. 2012, 114, 196–208. [Google Scholar] [CrossRef]
- Naz, I.; Raja Khan, A.A.; Masood, T.; Baig, A.; Siddique, I.; Haq, S. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biol. Control. 2021, 152, 104429. [Google Scholar] [CrossRef]
- Singh, B.U.; Sahu, A.; Singh, R.K.; Singh, P.D.; Meena, K.K.; Srivastava, J.S.; Renu, M.M.C. Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminicola and Rhizoctonia solani in Rice (Oryza sativa L.). Biol. Control. 2012, 60, 262–270. [Google Scholar] [CrossRef]
- Llerandi-Juárez, R.D.; Mendoza de Gives, P. Resistance of nematophagous fungi chlamydospores to the digestive processes of sheep in Mexico. J. Helminthol. 1998, 72, 155–158. [Google Scholar] [CrossRef]
- Lopez-Llorca, L.V.; Jansson, H.-B.; Maciá-Vicente, J.G.; Salinas, J. Nematophagous fungi as Root Endophytes. In Microbial Root Endophytes, 1st ed.; Schulz, K.J., Doyle, C., Sieher, T.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 191–206. [Google Scholar]
- Barron, G.L. Lignolytic and cellulolytic fungi as predators and parasites. In The Fungal Community, Its Organization and Role in the Ecosystems; Carroll, G.C., Wicklow, D.T., Eds.; Marcel Dekker: New York, NY, USA, 1992; pp. 311–326. [Google Scholar]
- Wang, Y.; Sun, L.; Yi, S.; Huang, Y.; Lenaghan, C.S.; Zhang, M. Naturally Occurring Nanoparticles from Arthrobotrys oligospora as a Potential Immunostimulatory and Antitumor Agent. Adv. Funct. Mater 2012, 23, 2175–2184. [Google Scholar] [CrossRef]
- Duddington, C.L. A new predacious species of Trichothecium. Trans. Brit. Mycol. Soc. 1949, 32, 284–287. [Google Scholar] [CrossRef]
- Cooke, R.C.; Godfrey, B.G.S. A key to the nematode-destroying fungi. Trans. Br. Mycol. Soc. 1964, 47, 61–74. [Google Scholar] [CrossRef]
- Monteiro, T.S.A.; Balbino, H.M.; de Mello, I.N.K.; Coutinho, R.R.; de Aráujo, V.J.; Freitas, G.L. Duddingtonia flagrans preying a plant parasitic nematode. Braz. J. Biol. 2020, 80, 197–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, X.; Wang, X.; Li, G. Pathogenicity and Volatile Nematicidal Metabolites from Duddingtonia flagrans against Meloidogyne incognita. Microorganisms 2021, 9, 2268. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-B.; Liu, W.; Chen, M.-Y.; Li, X.; Han, Y.; Xu, Q.; Long-Jie, S.; Xie, D.-Q.; Cai, K.-Z.; Liu, Y.-Z.; et al. Isolation and Characterization of China Isolates of Duddingtonia flagrans, a Candidate of the Nematophagous Fungi for Biocontrol of Animal Parasitic Nematodes. J. Parasitol. 2015, 101, 476–484. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.E.; Ramírez-Várgas, G.; Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions. Dose/response assessment. Vet. Parasitol. 2018, 263, 66–72. [Google Scholar] [CrossRef]
- Healey, K.; Lawlor, C.; Knox, M.R.; Chambers, M.; Lamb, J.; Groves, P.J. Field evaluation of Duddingtonia flagrans IAH 1297 for the reduction of worm burden in grazing animals: Pasture larval studies in horses, cattle and goats. Vet. Parasitol. 2018, 258, 124–132. [Google Scholar] [CrossRef]
- Braga, F.R.; Ferraz, C.M.; da Silva, E.N.; de Araújo, J.V. Efficiency of the Bioverm® (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 2020, 10, 62. [Google Scholar] [CrossRef]
- Ojeda-Robertos, N.F.; Torres-Acosta, J.F.J.; Aguilar-Caballero, A.J.; Ayala-Burgos, A.; Cob-Galera, L.A.; Sandoval-Castro, C.A.; Barrientos-Medina, R.C.; Mendoza de Gives, P. Assessing the efficacy of Duddingtonia flagrans chlamydospores per gram of faeces to control Haemonchus contortus larvae. Vet. Parasitol. 2008, 158, 329–335. [Google Scholar] [CrossRef]
- Pramer, D.; Stoll, N.R. Nemin: A Morphogenic Substance Causing Trap Formation by Predaceous Fungi. Science 1959, 129, 966–967. [Google Scholar] [CrossRef]
- Junwei, W.; Qingling, M.; Jun, Q.; Weisheng, W.; Shuangqing, C.; Jianxun, L.; Chuanguang, Z.; Chuangfu, C. The recombinant serine protease XAoz1 of Arthrobotrys oligospora exhibits potent nematicidal activity against Caenorhabditis elegans and Haemonchus contortus. FEMS Microbiol. Lett. 2013, 344, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-de Gives, P.; Ribeiro Braga, F.; Victor de Araújo, J. Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocon. Sci. Tech. 2022, 1–17. [Google Scholar] [CrossRef]
- Saxena, G. Biological Control of Root-Knot and Cyst Nematodes Using Nematophagous Fungi. Root Biol. 2018, 1, 221–237. [Google Scholar]
- Moreno-Gavíra, A.; Huertas, V.; Diánez, F.; Sánchez-Montesinos, B.; Santos, M. Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. Plants 2020, 9, 1746. [Google Scholar] [CrossRef]
- Sing, T.; Patel, A.D.; Prajapati, B.A.; Patel, A.B. Management of Meloidogyne spp. in okra through bioagents. The Pharma Innov. J. 2022, SP-11, 276–279. [Google Scholar]
- Morgan-Jones, J.; White, J.F.; Rodríguez-Kabana, R. Phytonematode pathology: Ultrastructural studies. II. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica 1984, 14, 57–71. [Google Scholar]
- Yang, F.; Abdelnabby, H.; Xiao, Y. The role of a phospholipase (PLD) in virulence of Purpureocillium lilacinum (Paecilomyces lilacinum). Microbial Pathogen 2015, 85, 11–20. [Google Scholar] [CrossRef]
- Dahlin, P.; Eder, R.; Consoli, E.; Krauss, J.; Kiewnick, S. Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251. Crop Prot. 2019, 124, 104874. [Google Scholar] [CrossRef]
- Goffré, D.; Folgarait, P.J. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii. J. Invertebr. Pathol. 2015, 130, 107–115. [Google Scholar] [CrossRef]
- Sushil, S.N.; Roy, S.; Jaiswal, A.K.; Joshi, D.; Pathak, A.D. Management of Termites Through Different Tools and Their Impact on Environment and Soil Micro-arthropods in Sugarcane in Indo-Gangetic Plains of India. Sugar Tech. 2021, 23, 865–871. [Google Scholar] [CrossRef]
- Gortari, M.C.; Galarza, B.C.; Cazau, M.C.; Hours, R.A. Comparison of the biological properties of two strains of Paecilomyces lilacinus (Thom) Samson associated to their antagonistic effect onto Toxocara canis eggs. Malays. J. Microbiol. 2008, 4, 35–41. [Google Scholar]
- Ocampo-Gutiérrez, A.Y.; Hernández-Velázquez, V.M.; Aguilar-Marcelino, L.; Cardoso-Taketa, A.; Zamilpa, A.; López-Arellano, M.E.; González-Cortázar, M.; Hernández-Romano, J.; Reyes-Estébanez, M.; Mendoza-de Gives, P. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecol. 2020, 49, 101004. [Google Scholar] [CrossRef]
- Castillo-Lopez, D.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 2014, 59, e103891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, T. Biological Control of Root-Knot Nematodes (Meloidogyne spp.) by the Fungus Pochonia chlamydosporia—A Review; Swedish University of Agricultural Sciences: Alnarp, Sweden, 2015; pp. 2–27. [Google Scholar]
- Evans, C.H.; Kirk, M.P. Systematics of Pochonia. In Perspectives in Sustainable Management through Pochonia Chlamydosporia Applications for Root and Rizosphere Health. Sustainability in Plant and Crop Protection; Manzanilla-López, R., Lopez-Llorca, L.V., Eds.; Springer: Cham, Switzerland, 2017; pp. 21–43. [Google Scholar]
- Yi, X.; Guo, Y.; Ali Khan, A.R.; Fan, Z. Understanding the pathogenicity of Pochonia chlamydosporia to root knot nematode through omics approaches and action mechanism. Biol. Control 2021, 162, 104726. [Google Scholar] [CrossRef]
- Tahseen, Q.; Clark, N.I.; Atkins, D.S.; Hirsch, R.P.; Kerry, R.B. Impact in the nematophagous fungus Pochonia chlamydosporia on nematode and microbial populations. Comm. Agric. Appl. Biol. Sci. 2005, 70, 81–86. [Google Scholar]
- Tunlid, A.; Jansson, H.B.; Nordbring-Hertz, B. Fungal attachment to nematodes. Mycol. Res. 1992, 96, 401–412. [Google Scholar] [CrossRef]
- Freire, F.C.O.; Bridge, J. Parasitism of eggs, females and juveniles of Meloidogyne incognita by Paecilomyces lilacinus and Verticillium chlamydosporium. Fitopatol. Bras. 1985, 10, 577–596. [Google Scholar]
- Bontempo, A.F.; Fernandes, R.H.; Lopes, J.; Freitas, L.G.; Lopes, E.A. Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australas. Plant Pathol. 2014, 43, 421–424. [Google Scholar] [CrossRef]
- Avelar-Monteneiro, S.T.; de Freitas, F.L. Pochonia. In Beneficial Microbes in Agro-Ecology. Bacteria and Fungi, 1st ed.; Amaresan, N., Kumar, M.K., Annapurna, K., Krishna, K., Sankaranarayanan, A., Eds.; Elsevier, Academic Press: London, UK, 2020; pp. 861–912. [Google Scholar]
- Braga, F.R.; De Freitas, S.F.E.; Senna; Aype, T.-H.; da Fonseca, L.A.; Lacerda, T.; Rocha Aguiar, A.; Mayorga, L.F.; de Araújo, J.V. Effect of the Fungus Pochonia chlamydosporia on Contracaecum pelagicum Eggs. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-de Gives, P.; Ribeiro-Braga, F. Pochonia chlamydosporia: A promising biotechnological tool against parasitic nematodes and geohelminths. In Perspectives in Sustainable Nematode Management through Pochonia Chlamydosporia Applications for Root and Rizosphere Health. Sustainability in Plant and Crop Protection; Manzanilla-López, R., Lopez-Llorca, L.V., Eds.; Springer: Cham, Switzerland, 2017; pp. 371–386. [Google Scholar]
- Vieira, Í.; Oliveira, I.; Campos, A.; Araújo, J. Association and predatory capacity of fungi Pochonia chlamydosporia and Arthrobotrys cladodes in the biological control of parasitic helminths of bovines. Parasitology 2019, 146, 1347–1351. [Google Scholar] [CrossRef]
- Olsen, W.O. Animal Parasites. In Their Life Cycles and Ecology, 3rd ed.; University Park Press: Baltimore, MA, USA, 1974; pp. 1–562. [Google Scholar]
- Manzanilla-López, R.H.; Lopez-Llorca, L.V. Future Perspectives. In Perspectives in Sustainable Management through Pochonia Chlamydosporia Applications for Root and Rizosphere Health Sustainability in Plant and Crop Protection; Manzanilla-López, R., López-Llorca, L.V., Eds.; Springer: Cham, Switzerland, 2017; pp. 387–401. [Google Scholar]
Genus/Host Range | Plant/Crop Host | Method of Attack | Symptoms | Author |
---|---|---|---|---|
Meloidogyne spp. Root-knot nematodes More than 90 host species | Wide horticultural and field crop host range (about 2000 plant hosts worldwide) | Root system | Root galls Dead in young plants | [32] |
Nacobbus aberrans False root-knot nematode | Affects a number of economically important crops, e.g., tomato, chilli pepper, beans, potatoes, sugar beets, and crucifers | Migratory/sedentary Endoparasitic nematode Penetrate into plant roots, forming galls | Root galls | [33,34] |
Aphelenchoides spp. More than 200 species | Wide host spectrum, including ornamentals. Some species are fungi feeders | Some species endoparasitic in leaves, but also feeds ectoparasitically on leaves and flower buds in some plants | Chlorosis and necrosis of leaves | [35,36] |
Heterodera spp. At least 80 species Obligate parasites Affects more than 40 species | A few hosts, including: oatmeal, soybean, alfalfa, corn, and others | Penetrate cortex roots, endodermis, or vascular parenchyma Feeds on root tissues | General debilitation Reduction in the efficiency of the root system Chlorosis, stunted growth, wilting Poor yield | [37,38] |
Longidorus spp. More than 160 species Can transmit Nepoviruses | Polyphagous root-ectoparasites of many plants, including various agricultural crops and trees | Damage is caused by direct feeding on root cells, as well as by transmitting Nepoviruses | Chlorosis and stunted growth in forest trees | [39,40,41,42] |
Pratylenchus spp. Migratory endoparasites | Possess a wide host range Commonly found in wheat, canola, chickpea, and barley | Provoke plant tissue necrosis because of migration and feeding | Crops show an in-field patchy decline, lack of vigour, chlorosis slower growth, crooked or bushy appearance of tap roots, fleshy tap roots, stunted, stubby small root systems with excessive branching Small roots that are large near the tip Sparse lateral roots Brownish to black spots or streaks or discolored necrotic areas on the roots | [43,44] |
Radopholus spp. Burrowing nematodes Two species: R. citrophilus and R. similis | Affects several economically important crops, e.g., banana citrus, coconut, ginger, palm, avocado, coffee, prayer plant, black pepper, sugarcane, tea, vegetables, ornamentals, trees, grasses, and weeds | Attack the root system Migratory endoparasite in all life stages | In banana, provokes toppling disease In pepper, causes the yellows disease In citrus, can spread decline | [45,46] |
Xiphinema spp. 39 species have been identified | They have a wide host range that includes common weeds and grasses, strawberries, soybeans, forest trees, orchards, and grapes Can be vectors of viruses, e.g., peach yellow bud mosaic virus in peach, apricot, and plum, cherry rasp leaf virus, and grape yellow vein virus | Attack roots, causing root stunting and tip galling | Necrosis on roots | [47] |
Prevention/Control Strategy | Advantages | Drawbacks |
---|---|---|
Chemical control using pesticides | Pesticides occasion a direct lethal effect on the nematodes, and a prompt and effective reduction in the nematode population followed by an improvement in the plant health is expected |
|
Crop rotation | The rotation of crops with plants of a different family can reduce the size of nematode populations, thus mitigating their establishment in the new species of plant and reducing the disease [61]. | Crops from different families must be alternated, and thus, farmers have to consider changing and alternating their crops. |
Planting resistant crop varieties | Using crop varieties with different types of natural genes that cause resistance to nematodes has led to promising results against nematodes [62]. Specialised nematode resistance genes induce active resistance against nematodes and provoke important damage in nematode tissues, including necrosis and the death of nematodes improving the crop health [63]. | This system requires RNA technology to select crop varieties with genes associated with resistance to nematodes. |
Fallowing | During the off-season, clean fallowing eliminates the nematode plant host availability along with their chance to feed on plants. This simple practice leads to a gradual decline in the nematode population due to nematode deaths because of starvation [18]. | None |
Soil amendments | Incorporating organic matter, such as compost prepared with animal manure and decomposed plant material, into soil enhances the soil organic matter and proliferation of the microbial biomass, releasing pest-regulating compounds and eventually improving plant health [64]. | None |
Biological control | The control is highly specific in a blank organism. This practice is the most effective sustainable strategy for the control of plant parasitic nematodes based on the biotechnological use of nematode natural enemies, including fungi, bacteria, and other microorganisms [30,65]. | Setting up a biological control system is a costly effort. A lot of planning and money goes into developing a successful system. The time to reduce the parasite population is much slower compared with a chemical pesticide, which produces results immediately. |
Host | Nematode/Prevalence | Place | Climatic Features | Author |
---|---|---|---|---|
Cattle | Haemonchus spp., Oesophagostomum spp., Trichostrongylus spp., Overall prevalence = 42.33% | Bisofu, Oromia, Ethiopia | warm semi-arid | [83] |
Haemonchus spp., Ostertagia spp. Overall prevalence = 23.34% | Mosul city, Irak | warm semi-arid | [84] | |
Strongylidae order = 16.5% Strongyloides 3.8% | Colombian Northeastern Mountain, Colombia | Tropical rainforest | [85] | |
Ostertagia ostertagi = 41.42% | Germany | Temperate | [86] | |
Strongyloides spp. = 16.36% Trichuris spp. = 22.73% | Kalasin province, Thailand | Tropical savanna | [87] | |
Sheep | Chabertia ovina, Trichuris ovis, Trichostrongylus spp., H. contortus and Oesophagostomum spp. Overall prevalence = 36.82% | Assam, India | Tropics | [88] |
Strongylidae order = 31.9%; Strongyloides spp. = 3.1% and Trichuris spp. = 2.06% | Colombian Northeastern Mountain, Colombia | Tropical rainforest | [85] | |
Goats | Trichostrongylus spp., Haemonchus spp. Overall = 88.9% | Coahuila and Nuevo León, (Northeastern Mexico) | Semi-arid | [89] |
H. contortus = 97.4% | Maseru, Leshoto, Africa | Mild, warm and temperate | [90] | |
H. contortus = 47.1% | Bangladesh | Tropics | [91] | |
T. colubriformis, H. contortus, Teladorsagia spp., Oesophagostomum spp., Trichuris spp., Nematodirus spathiger and Cooperia curticei (The whole gastrointestinal tracts of goats at necropsy resulted positive to parasitic nematodes) | Northwest Arkansas, Fayetteville, USA | Warm and temperate | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-de Gives, P. Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens 2022, 11, 640. https://doi.org/10.3390/pathogens11060640
Mendoza-de Gives P. Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens. 2022; 11(6):640. https://doi.org/10.3390/pathogens11060640
Chicago/Turabian StyleMendoza-de Gives, Pedro. 2022. "Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies" Pathogens 11, no. 6: 640. https://doi.org/10.3390/pathogens11060640
APA StyleMendoza-de Gives, P. (2022). Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies. Pathogens, 11(6), 640. https://doi.org/10.3390/pathogens11060640