Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing
Abstract
:1. Introduction
2. Varied Analytes for HIVDRT
2.1. Plasma
2.2. Serum
2.3. Whole Blood
2.4. Peripheral Blood Mononuclear Cells (PBMCs)
2.5. Dried Fluid Analytes
2.5.1. Dried Filter Paper Analytes (DFPAs)
DBS
DPS
DSS
2.5.2. Dried Analytes Collected with the Newer Generation of Devices
HemaSpotTM
ViveSTTM
3. Application Considerations on HIVDRT Analytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Menendez-Arias, L.; Delgado, R. Update and latest advances in antiretroviral therapy. Trends Pharmacol. Sci. 2022, 43, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Yombi, J.C.; Mertes, H. Treatment as Prevention for HIV Infection: Current Data, Challenges, and Global Perspectives. AIDS Rev. 2018, 20, 131–140. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. HIV Drug Resistance Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Sebire, K.; McGavin, K.; Land, S.; Middleton, T.; Birch, C. Stability of human immunodeficiency virus RNA in blood specimens as measured by a commercial PCR-based assay. J. Clin. Microbiol. 1998, 36, 493–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardie, D.; Korsman, S.; Ameer, S.; Vojnov, L.; Hsiao, N.Y. Reliability of plasma HIV viral load testing beyond 24 hours: Insights gained from a study in a routine diagnostic laboratory. PLoS ONE 2019, 14, e0219381. [Google Scholar] [CrossRef] [Green Version]
- Amellal, B.; Murphy, R.; Maiga, A.; Brucker, G.; Katlama, C.; Calvez, V.; Marcelin, A.G. Stability of HIV RNA in plasma specimens stored at different temperatures. HIV Med. 2008, 9, 790–793. [Google Scholar] [CrossRef]
- World Health Organization. WHO/HIVResNet HIV Drug Resistance Laboratory Strategy; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Yokota, M.; Tatsumi, N.; Nathalang, O.; Yamada, T.; Tsuda, I. Effects of heparin on polymerase chain reaction for blood white cells. J. Clin. Lab. Anal. 1999, 13, 133–140. [Google Scholar] [CrossRef]
- Imai, H.; Yamada, O.; Morita, S.; Suehiro, S.; Kurimura, T. Detection of HIV-1 RNA in heparinized plasma of HIV-1 seropositive individuals. J. Virol. Methods 1992, 36, 181–184. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Dayhoff, D.E.; Chang, G.; Cassol, S.A.; Birx, D.L.; Artenstein, A.W.; Michael, N.L. Comparison of serum and plasma viral RNA measurements in primary and chronic human immunodeficiency virus type 1 infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 15, 49–53. [Google Scholar] [CrossRef]
- Lew, J.; Reichelderfer, P.; Fowler, M.; Bremer, J.; Carrol, R.; Cassol, S.; Chernoff, D.; Coombs, R.; Cronin, M.; Dickover, R.; et al. Determinations of levels of human immunodeficiency virus type 1 RNA in plasma: Reassessment of parameters affecting assay outcome. TUBE Meeting Workshop Attendees. Technology Utilization for HIV-1 Blood Evaluation and Standardization in Pediatrics. J. Clin. Microbiol. 1998, 36, 1471–1479. [Google Scholar] [CrossRef] [Green Version]
- Avila-Rios, S.; Parkin, N.; Swanstrom, R.; Paredes, R.; Shafer, R.; Ji, H.; Kantor, R. Next-Generation Sequencing for HIV Drug Resistance Testing: Laboratory, Clinical, and Implementation Considerations. Viruses 2020, 12, 617. [Google Scholar] [CrossRef]
- Van, L.K.; Theys, K.; Vandamme, A.M. HIV-1 genotypic drug resistance testing: Digging deep, reaching wide? Curr. Opin. Virol. 2015, 14, 16–23. [Google Scholar]
- Crowe, S.; Turnbull, S.; Oelrichs, R.; Dunne, A. Monitoring of human immunodeficiency virus infection in resource-constrained countries. Clin. Infect. Dis. 2003, 37, S25–S35. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Manual for HIV Drug Resistance Testing Using Dried Blood Spot Specimens, 3rd ed.; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Bonner, K.; Siemieniuk, R.A.; Boozary, A.; Roberts, T.; Fajardo, E.; Cohn, J. Expanding access to HIV viral load testing: A systematic review of RNA stability in EDTA tubes and PPT beyond current time and temperature thresholds. PLoS ONE 2014, 9, e113813. [Google Scholar]
- Steegen, K.; Luchters, S.; Demecheleer, E.; Dauwe, K.; Mandaliya, K.; Jaoko, W.; Plum, J.; Temmerman, M.; Verhofstede, C. Feasibility of detecting human immunodeficiency virus type 1 drug resistance in DNA extracted from whole blood or dried blood spots. J. Clin. Microbiol. 2007, 45, 3342–3351. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, A.; Sierra, O.; Martinez-Prats, L.; Gutierrez, F.; Zurita, S.; Pulido, F.; Rubio, R.; Delgado, R. Analysis of drug resistance mutations in whole blood DNA from HIV-1 infected patients by single genome and ultradeep sequencing analysis. J. Virol. Methods 2018, 260, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Allavena, C.; Rodallec, A.; Leplat, A.; Hall, N.; Luco, C.; Le, G.L.; Bernaud, C.; Bouchez, S.; Andre-Garnier, E.; Boutoille, D.; et al. Interest of proviral HIV-1 DNA genotypic resistance testing in virologically suppressed patients candidate for maintenance therapy. J. Virol. Methods 2018, 251, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Saracino, A.; Gianotti, N.; Marangi, M.; Cibelli, D.C.; Galli, A.; Punzi, G.; Monno, L.; Lazzarin, A.; Angarano, G. Antiretroviral genotypic resistance in plasma RNA and whole blood DNA in HIV-1 infected patients failing HAART. J. Med. Virol. 2008, 80, 1695–1706. [Google Scholar] [CrossRef]
- Smith, M.S.; Koerber, K.L.; Pagano, J.S. Zidovudine-resistant human immunodeficiency virus type 1 genomes detected in plasma distinct from viral genomes in peripheral blood mononuclear cells. J. Infect. Dis. 1993, 167, 445–448. [Google Scholar] [CrossRef]
- Kaye, S.; Comber, E.; Tenant-Flowers, M.; Loveday, C. The appearance of drug resistance-associated point mutations in HIV type 1 plasma RNA precedes their appearance in proviral DNA. AIDS Res. Hum. Retrovir. 1995, 11, 1221–1225. [Google Scholar] [CrossRef]
- Pessoa, R.; Watanabe, J.T.; Calabria, P.; Felix, A.C.; Loureiro, P.; Sabino, E.C.; Busch, M.P.; Sanabani, S.S. Deep sequencing of HIV-1 near full-length proviral genomes identifies high rates of BF1 recombinants including two novel circulating recombinant forms (CRF) 70_BF1 and a disseminating 71_BF1 among blood donors in Pernambuco, Brazil. PLoS ONE 2014, 9, e112674. [Google Scholar] [CrossRef] [Green Version]
- Turriziani, O.; Bucci, M.; Stano, A.; Scagnolari, C.; Bellomi, F.; Fimiani, C.; Mezzaroma, I.; D’Ettorre, G.; Brogi, A.; Vullo, V.; et al. Genotypic resistance of archived and circulating viral strains in the blood of treated HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 2007, 44, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Gatanaga, H.; Ida, S.; Tsuchiya, K.; Matsuoka-Aizawa, S.; Kimura, S.; Oka, S. Emergence of protease inhibitor resistance-associated mutations in plasma HIV-1 precedes that in proviruses of peripheral blood mononuclear cells by more than a year. J. Acquir. Immune Defic. Syndr. 2003, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Li, Y.; Liang, B.; Pilon, R.; MacPherson, P.; Bergeron, M.; Kim, J.; Graham, M.; Van, D.G.; Sandstrom, P.; et al. Pyrosequencing dried blood spots reveals differences in HIV drug resistance between treatment naive and experienced patients. PLoS ONE 2013, 8, e56170. [Google Scholar] [CrossRef] [PubMed]
- Huruy, K.; Mulu, A.; Liebert, U.G.; Maier, M. HIV-1C proviral DNA for detection of drug resistance mutations. PLoS ONE 2018, 13, e0205119. [Google Scholar]
- Montejano, R.; Dominguez-Dominguez, L.; de Miguel, R.; Rial-Crestelo, D.; Esteban-Cantos, A.; Aranguren-Rivas, P.; Garcia-Alvarez, M.; Alejos, B.; Bisbal, O.; Santacreu-Guerrero, M.; et al. Detection of archived lamivudine-associated resistance mutations in virologically suppressed, lamivudine-experienced HIV-infected adults by different genotyping techniques (GEN-PRO study). J. Antimicrob. Chemother. 2021, 76, 3263–3271. [Google Scholar] [CrossRef]
- Khairunisa, S.Q.; Megasari, N.L.A.; Indriati, D.W.; Kotaki, T.; Natalia, D.; Nasronudin Kameoka, M. Identification of HIV-1 subtypes and drug resistance mutations among HIV-1-infected individuals residing in Pontianak, Indonesia. Germs 2020, 10, 174–183. [Google Scholar] [CrossRef]
- Hirsch, M.S.; Brun-Vezinet, F.; D’Aquila, R.T.; Hammer, S.M.; Johnson, V.A.; Kuritzkes, D.R.; Loveday, C.; Mellors, J.W.; Clotet, B.; Conway, B.; et al. Antiretroviral drug resistance testing in adult HIV-1 infection: Recommendations of an International AIDS Society-USA Panel. JAMA 2000, 283, 2417–2426. [Google Scholar] [CrossRef]
- Chun, T.W.; Stuyver, L.; Mizell, S.B.; Ehler, L.A.; Mican, J.A.; Baseler, M.; Lloyd, A.L.; Nowak, M.A.; Fauci, A.S. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 1997, 94, 13193–13197. [Google Scholar] [CrossRef] [Green Version]
- Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278, 1295–1300. [Google Scholar] [CrossRef]
- Armenia, D.; Zaccarelli, M.; Borghi, V.; Gennari, W.; Di, C.D.; Giannetti, A.; Forbici, F.; Bertoli, A.; Gori, C.; Fabeni, L.; et al. Resistance detected in PBMCs predicts virological rebound in HIV-1 suppressed patients switching treatment. J. Clin. Virol. 2018, 104, 61–64. [Google Scholar] [CrossRef]
- Peng, X.; Xu, Y.; Huang, Y.; Zhu, B. Intrapatient Development of Multi-Class Drug Resistance in an Individual Infected with HIV-1 CRF01_AE. Infect. Drug Resist. 2021, 14, 3441–3448. [Google Scholar] [CrossRef] [PubMed]
- Moraka, N.O.; Garcia-Broncano, P.; Hu, Z.; Ajibola, G.; Bareng, O.T.; Pretorius-Holme, M.; Maswabi, K.; Maphorisa, C.; Mohammed, T.; Gaseitsiwe, S.; et al. Patterns of pretreatment drug resistance mutations of very early diagnosed and treated infants in Botswana. AIDS 2021, 35, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- Hamers, R.L.; Smit, P.W.; Stevens, W.; Schuurman, R.; Rinke de Wit, T.F. Dried fluid spots for HIV type-1 viral load and resistance genotyping: A systematic review. Antivir. Ther. 2009, 14, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.; Susi, A. A simple phenyylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef]
- Rodriguez-Auad, J.P.; Rojas-Montes, O.; Maldonado-Rodriguez, A.; Alvarez-Munoz, M.T.; Munoz, O.; Torres-Ibarra, R.; Vazquez-Rosales, G.; Lira, R. Use of Dried Plasma Spots for HIV-1 Viral Load Determination and Drug Resistance Genotyping in Mexican Patients. Biomed. Res. Int. 2015, 2015, 240407. [Google Scholar] [CrossRef] [Green Version]
- Rottinghaus, E.; Bile, E.; Modukanele, M.; Maruping, M.; Mine, M.; Nkengasong, J.; Yang, C. Comparison of Ahlstrom grade 226, Munktell TFN, and Whatman 903 filter papers for dried blood spot specimen collection and subsequent HIV-1 load and drug resistance genotyping analysis. J. Clin. Microbiol. 2013, 51, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Rottinghaus, E.K.; Beard, R.S.; Bile, E.; Modukanele, M.; Maruping, M.; Mine, M.; Nkengasong, J.; Yang, C. Evaluation of dried blood spots collected on filter papers from three manufacturers stored at ambient temperature for application in HIV-1 drug resistance monitoring. PLoS ONE 2014, 9, e109060. [Google Scholar] [CrossRef]
- Bertagnolio, S.; Parkin, N.T.; Jordan, M.; Brooks, J.; Garcia-Lerma, J.G. Dried blood spots for HIV-1 drug resistance and viral load testing: A review of current knowledge and WHO efforts for global HIV drug resistance surveillance. AIDS Rev. 2010, 12, 195–208. [Google Scholar]
- Monleau, M.; Aghokeng, A.F.; Eymard-Duvernay, S.; Dagnra, A.; Kania, D.; Ngo-Giang-Huong, N.; Toure-Kane, C.; Truong, L.X.; Chaix, M.L.; Delaporte, E.; et al. Field evaluation of dried blood spots for routine HIV-1 viral load and drug resistance monitoring in patients receiving antiretroviral therapy in Africa and Asia. J. Clin. Microbiol. 2014, 52, 578–586. [Google Scholar] [CrossRef] [Green Version]
- McNulty, A.; Jennings, C.; Bennett, D.; Fitzgibbon, J.; Bremer, J.W.; Ussery, M.; Kalish, M.L.; Heneine, W.; Garcia-Lerma, J.G. Evaluation of dried blood spots for human immunodeficiency virus type 1 drug resistance testing. J. Clin. Microbiol. 2007, 45, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Monleau, M.; Butel, C.; Delaporte, E.; Boillot, F.; Peeters, M. Effect of storage conditions of dried plasma and blood spots on HIV-1 RNA quantification and PCR amplification for drug resistance genotyping. J. Antimicrob. Chemother. 2010, 65, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Rottinghaus, E.K.; Ugbena, R.; Diallo, K.; Bassey, O.; Azeez, A.; DeVos, J.; Zhang, G.; Aberle-Grasse, J.; Nkengasong, J.; Yang, C. Dried blood spot specimens are a suitable alternative sample type for HIV-1 viral load measurement and drug resistance genotyping in patients receiving first-line antiretroviral therapy. Clin. Infect. Dis. 2012, 54, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Lerma, J.G.; McNulty, A.; Jennings, C.; Huang, D.; Heneine, W.; Bremer, J.W. Rapid decline in the efficiency of HIV drug resistance genotyping from dried blood spots (DBS) and dried plasma spots (DPS) stored at 37 degrees C and high humidity. J. Antimicrob. Chemother. 2009, 64, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Dachraoui, R.; Brand, D.; Brunet, S.; Barin, F.; Plantier, J.C. RNA amplification of the HIV-1 Pol and env regions on dried serum and plasma spots. HIV Med. 2008, 9, 557–561. [Google Scholar] [CrossRef]
- Plantier, J.C.; Dachraoui, R.; Lemee, V.; Gueudin, M.; Borsa-Lebas, F.; Caron, F.; Simon, F. HIV-1 resistance genotyping on dried serum spots. AIDS 2005, 19, 391–397. [Google Scholar] [CrossRef]
- Hauser, A.; Hofmann, A.; Hanke, K.; Bremer, V.; Bartmeyer, B.; Kuecherer, C.; Bannert, N. National molecular surveillance of recently acquired HIV infections in Germany, 2013 to 2014. Eurosurveillance 2017, 22, 30436. [Google Scholar] [CrossRef]
- Andrea, H.; Alexandra, H.; Claudia, S.H.; Ruth, Z.; Osamah, H.; Norbert, B.; Claudia, K. Analysis of transmitted drug resistance and HIV-1 subtypes using dried serum spots of recently HIV-infected individuals in 2013 in Germany. J. Int. AIDS Soc. 2014, 17, 19670. [Google Scholar] [CrossRef]
- Hauser, A.; Meixenberger, K.; Machnowska, P.; Fiedler, S.; Hanke, K.; Hofmann, A.; Bartmeyer, B.; Bremer, V.; Bannert, N.; Kuecherer, C. Robust and sensitive subtype-generic HIV-1 pol genotyping for use with dried serum spots in epidemiological studies. J. Virol. Methods 2018, 259, 32–38. [Google Scholar] [CrossRef]
- Kaduskar, O.; Bhatt, V.; Prosperi, C.; Hayford, K.; Hasan, A.Z.; Deshpande, G.R.; Tilekar, B.; Vivian Thangaraj, J.W.; Kumar, M.S.; Gupta, N.; et al. Optimization and Stability Testing of Four Commercially Available Dried Blood Spot Devices for Estimating Measles and Rubella IgG Antibodies. mSphere 2021, 6, e0049021. [Google Scholar] [CrossRef]
- Manak, M.M.; Hack, H.R.; Shutt, A.L.; Danboise, B.A.; Jagodzinski, L.L.; Peel, S.A. Stability of Human Immunodeficiency Virus Serological Markers in Samples Collected as HemaSpot and Whatman 903 Dried Blood Spots. J. Clin. Microbiol. 2018, 56, e00933-18. [Google Scholar] [CrossRef] [Green Version]
- Prosperi, C.; Kaduskar, O.; Bhatt, V.; Hasan, A.Z.; Vivian Thangaraj, J.W.; Kumar, M.S.; Sabarinathan, R.; Kumar, S.; Duraiswamy, A.; Deshpande, G.R.; et al. Diagnostic Accuracy of Dried Blood Spots Collected on HemaSpot HF Devices Compared to Venous Blood Specimens To Estimate Measles and Rubella Seroprevalence. mSphere 2021, 6, e0133020. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, C.; Nagashima, S.; Isomura, M.; Ko, K.; Chuon, C.; Akita, T.; Katayama, K.; Woodring, J.; Hossain, M.S.; Takahashi, K.; et al. Evaluation of the efficiency of dried blood spot-based measurement of hepatitis B and hepatitis C virus seromarkers. Sci. Rep. 2020, 10, 3857. [Google Scholar] [CrossRef] [PubMed]
- Hirshfield, S.; Teran, R.A.; Downing, M.J., Jr.; Chiasson, M.A.; Tieu, H.V.; Dize, L.; Gaydos, C.A. Quantification of HIV-1 RNA Among Men Who Have Sex With Men Using an At-Home Self-Collected Dried Blood Spot Specimen: Feasibility Study. JMIR Public Health Surveill. 2018, 4, e10847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, K.; DeLong, A.; Balamane, M.; Schreier, L.; Orido, M.; Chepkenja, M.; Kemboi, E.; D’Antuono, M.; Chan, P.A.; Emonyi, W.; et al. HemaSpot, a Novel Blood Storage Device for HIV-1 Drug Resistance Testing. J. Clin. Microbiol. 2016, 54, 223–225. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.M., Jr.; Burns, D.A.; Huong, J.T.; Mathis, R.L.; Winters, M.A.; Tanner, M.; De La Rosa, A.; Yen-Lieberman, B.; Armstrong, W.; Taege, A.; et al. Dried-plasma transport using a novel matrix and collection system for human immunodeficiency virus and hepatitis C virus virologic testing. J. Clin. Microbiol. 2009, 47, 1491–1496. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.M.J.; Burns, D.A.; Thompson, A.M.; Mathis, R.L.; Holodniy, M.; Huong, J.T.; De La Rosa, A.; Yen-Lieberman, B.; Armstrong, W.; Taege, A.; et al. Comparison of HIV-1 viral load and resistance genotyping between frozen plasma and a novel dried plasma transportation matrix. Antivir. Ther. 2004, 9, S135. [Google Scholar]
- Zanoni, M.; Cortes, R.; Diaz, R.S.; Sucupira, M.C.; Ferreira, D.; Inocencio, L.A.; Vilhena, C.; Loveday, C.; Lloyd, R.M., Jr.; Holodniy, M. Comparative effectiveness of dried plasma HIV-1 viral load testing in Brazil using ViveST for sample collection. J. Clin. Virol. 2010, 49, 245–248. [Google Scholar] [CrossRef]
- Zanoni, M.; Giron, L.B.; Vilhena, C.; Sucupira, M.C.; Lloyd, R.M., Jr.; Diaz, R.S. Comparative effectiveness of dried-plasma hepatitis B virus viral load (VL) testing in three different VL commercial platforms using ViveST for sample collection. J. Clin. Microbiol. 2012, 50, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Diallo, K.; Lehotzky, E.; Zhang, J.; Zhou, Z.; de Rivera, I.L.; Murillo, W.E.; Nkengasong, J.; Sabatier, J.; Zhang, G.; Yang, C. Evaluation of a dried blood and plasma collection device, SampleTanker((R)), for HIV type 1 drug resistance genotyping in patients receiving antiretroviral therapy. AIDS Res. Hum. Retrovir. 2014, 30, 67–73. [Google Scholar] [CrossRef]
- Kantor, R.; DeLong, A.; Balamane, M.; Schreier, L.; Lloyd, R.M., Jr.; Injera, W.; Kamle, L.; Mambo, F.; Muyonga, S.; Katzenstein, D.; et al. HIV diversity and drug resistance from plasma and non-plasma analytes in a large treatment programme in western Kenya. J. Int. AIDS Soc. 2014, 17, 19262. [Google Scholar] [CrossRef]
Specimens | Specimen Collection/Preparation | Applications | Pros | Cons |
---|---|---|---|---|
Plasma |
|
|
|
|
Serum |
|
|
|
|
Whole blood |
|
|
|
|
PBMCs |
|
|
|
|
Dried filter paper analytes | ||||
DBS |
|
|
|
|
DPS |
|
|
|
|
DSS |
|
| ||
Dried analytes collected with the newer generation of devices | ||||
HemaSpot |
|
|
|
|
ViveSTTM |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Sandstrom, P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens 2022, 11, 739. https://doi.org/10.3390/pathogens11070739
Ji H, Sandstrom P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens. 2022; 11(7):739. https://doi.org/10.3390/pathogens11070739
Chicago/Turabian StyleJi, Hezhao, and Paul Sandstrom. 2022. "Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing" Pathogens 11, no. 7: 739. https://doi.org/10.3390/pathogens11070739
APA StyleJi, H., & Sandstrom, P. (2022). Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens, 11(7), 739. https://doi.org/10.3390/pathogens11070739