The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review
Abstract
:1. Introduction
2. Pathogenesis and Link with Microorganisms
3. Healthy Skin Microbiome
4. The Role of the Microbes in Skin Diseases Development and Progression
The Impact of Microbes on the Course of Atopic Dermatitis
5. The Skin Microbiome and Role of Microorganisms in CTCL
5.1. The Skin Microbiome and CTCL
5.2. Staphylococcus aureus
5.3. Cutavirus
6. Therapeutic Approaches in CTCL and Their Influence on the Skin Microbiome
6.1. Skin-Directed Therapy
6.2. Effect of Antibiotics on S. aureus Associated with CTCL
7. Conclusions and Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 Update of the WHO-EORTC Classification for Primary Cutaneous Lymphomas. Blood 2019, 133, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Ahern, K.; Gilmore, E.S.; Poligone, B. Pruritus in Cutaneous T-Cell Lymphoma: A Review. J. Am. Acad. Dermatol. 2012, 67, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.C.; Tejasvi, T.A.; Wilcox, R. Cutaneous T-Cell Lymphomas: 2021 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2021, 96, 1313–1328. [Google Scholar] [CrossRef]
- De Coninck, E.C.; Kim, Y.H.; Varghese, A.; Hoppe, R.T. Clinical Characteristics and Outcome of Patients with Extracutaneous Mycosis Fungoides. J. Clin. Oncol. 2001, 19, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Farrar, N.; Jones, G.W.; Wilson, L.D.; Fox, L.; Wong, R.K.; Kuten, A. Central Neurologic Involvement in Mycosis Fungoides: Ten Cases, Actuarial Risk Assessment, and Predictive Factors. Cancer, J. 2006, 12, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadié, M.; Simonetti, A.; Lutz, J.M.; et al. Incidence of Hematologic Malignancies in Europe by Morphologic Subtype: Results of the HAEMACARE Project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef]
- Criscione, V.D.; Weinstock, M.A. Incidence of Cutaneous T-Cell Lymphoma in the United States, 1973-2002. Arch. Dermatol. 2007, 143, 854–859. [Google Scholar] [CrossRef]
- Imam, M.H.; Shenoy, P.J.; Flowers, C.R.; Phillips, A.; Lechowicz, M.J. Incidence and Survival Patterns of Cutaneous T-Cell Lymphomas in the United States. Leuk. Lymphoma 2013, 54, 752–759. [Google Scholar] [CrossRef]
- Dobos, G.; de Masson, A.; Ram-Wolff, C.; Beylot-Barry, M.; Pham-Ledard, A.; Ortonne, N.; Ingen-Housz-Oro, S.; Battistella, M.; d’Incan, M.; Rouanet, J.; et al. Epidemiological Changes in Cutaneous Lymphomas: An Analysis of 8593 Patients from the French Cutaneous Lymphoma Registry. Br. J. Dermatol. 2021, 184, 1059–1067. [Google Scholar] [CrossRef]
- Korgavkar, K.; Xiong, M.; Weinstock, M. Changing Incidence Trends of Cutaneous T-Cell Lymphoma. JAMA Dermatol. 2013, 149, 1295–1299. [Google Scholar] [CrossRef]
- Ottevanger, R.; de Bruin, D.T.; Willemze, R.; Jansen, P.M.; Bekkenk, M.W.; de Haas, E.R.M.; Horvath, B.; van Rossum, M.M.; Sanders, C.J.G.; Veraart, J.C.J.M.; et al. Incidence of Mycosis Fungoides and Sézary Syndrome in the Netherlands between 2000 and 2020. Br. J. Dermatol. 2021, 185, 434. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.J.; Clark, R.A.; Watanabe, R.; Kupper, T.S. Sézary Syndrome and Mycosis Fungoides Arise from Distinct T-Cell Subsets: A Biologic Rationale for Their Distinct Clinical Behaviors. Blood 2010, 116, 767. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, M.; Morimura, S.; Suga, H.; Kawaguchi, M.; Miyagaki, T.; Ohmatsu, H.; Fujita, H.; Sato, S. CCR4 Is Expressed on Infiltrating Cells in Lesional Skin of Early Mycosis Fungoides and Atopic Dermatitis. J. Dermatol. 2015, 42, 613–615. [Google Scholar] [CrossRef]
- Kim, E.J.; Hess, S.; Richardson, S.K.; Newton, S.; Showe, L.C.; Benoit, B.M.; Ubriani, R.; Vittorio, C.C.; Junkins-Hopkins, J.M.; Wysocka, M.; et al. Immunopathogenesis and Therapy of Cutaneous T Cell Lymphoma. J. Clin. Investig. 2005, 115, 798–812. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Abe, R.; Sasaki, M.; Honda, A.; Furuichi, M.; Asano, Y.; Norisugi, O.; Shimizu, T.; Shimizu, H. Presence of Circulating CCR10+ T Cells and Elevated Serum CTACK/CCL27 in the Early Stage of Mycosis Fungoides. Clin. Cancer Res. 2006, 12, 2670–2675. [Google Scholar] [CrossRef]
- Kallinich, T.; Muche, J.M.; Qin, S.; Sterry, W.; Audring, H.; Kroczek, R.A. Chemokine Receptor Expression on Neoplastic and Reactive T Cells in the Skin at Different Stages of Mycosis Fungoides. J. Invest. Dermatol. 2003, 121, 1045–1052. [Google Scholar] [CrossRef]
- Ferenczi, K.; Fuhlbrigge, R.C.; Pinkus, J.L.; Pinkus, G.S.; Kupper, T.S. Increased CCR4 Expression in Cutaneous T Cell Lymphoma. J. Investig. Dermatol. 2002, 119, 1405–1410. [Google Scholar] [CrossRef]
- Krejsgaard, T.; Lindahl, L.M.; Mongan, N.P.; Wasik, M.A.; Litvinov, I.V.; Iversen, L.; Langhoff, E.; Woetmann, A.; Odum, N. Malignant Inflammation in Cutaneous T-cell Lymphoma—a Hostile Takeover. Semin. Immunopathol. 2017, 39, 269. [Google Scholar] [CrossRef]
- Litvinov, I.V.; Shtreis, A.; Kobayashi, K.; Glassman, S.; Tsang, M.; Woetmann, A.; Sasseville, D.; Ødum, N.; Duvic, M. Investigating Potential Exogenous Tumor Initiating and Promoting Factors for Cutaneous T-Cell Lymphomas (CTCL), a Rare Skin Malignancy. Oncoimmunology 2016, 5, e1175799. [Google Scholar] [CrossRef]
- Fanok, M.H.; Sun, A.; Fogli, L.K.; Narendran, V.; Eckstein, M.; Kannan, K.; Dolgalev, I.; Lazaris, C.; Heguy, A.; Laird, M.E.; et al. Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis of Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2018, 138, 1116–1125. [Google Scholar] [CrossRef]
- Mirvish, E.D.; Pomerantz, R.G.; Geskin, L.J. Infectious Agents in Cutaneous T-Cell Lymphoma. J. Am. Acad. Dermatol. 2011, 64, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Glatz, M.; Horiuchi, K.; Kawasaki, H.; Akiyama, H.; Kaplan, D.H.; Kong, H.H.; Amagai, M.; Nagao, K. Dysbiosis and Staphylococcus Aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity 2015, 42, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, M.A.; Corvec, S.; Saint-Jean, M.; Nguyen, J.M.; Khammari, A.; Dréno, B. Cutibacterium Acnes Phylotypes Diversity Loss: A Trigger for Skin Inflammatory Process. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2340–2348. [Google Scholar] [CrossRef]
- Szegedi, A.; Dajnoki, Z.; Bíró, T.; Kemény, L.; Törőcsik, D. Acne: Transient Arrest in the Homeostatic Host-Microbiota Dialog? Trends Immunol. 2019, 40, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Dréno, B.; Dagnelie, M.A.; Khammari, A.; Corvec, S. The Skin Microbiome: A New Actor in Inflammatory Acne. Am. J. Clin. Dermatol. 2020, 21, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326, 1694. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; Kong, H.H.; Segre, J.A.; Barnabas, B.; Blakesley, R.; Bouffard, G.; Brooks, S.; et al. Biogeography and Individuality Shape Function in the Human Skin Metagenome. Nature 2014, 514, 59. [Google Scholar] [CrossRef]
- Grice, E.A.; Segre, J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011, 9, 244. [Google Scholar] [CrossRef]
- Reid, G.; Younes, J.A.; Van Der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota Restoration: Natural and Supplemented Recovery of Human Microbial Communities. Nat. Rev. Microbiol. 2011, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Erin Chen, Y.; Fischbach, M.A.; Belkaid, Y. Skin Microbiota–Host Interactions. Nature 2018, 553, 427. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Bouladoux, N.; Wilhelm, C.; Molloy, M.J.; Salcedo, R.; Kastenmuller, W.; Deming, C.; Quinones, M.; Koo, L.; Conlan, S.; et al. Compartmentalized Control of Skin Immunity by Resident Commensals. Science 2012, 337, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Chehoud, C.; Rafail, S.; Tyldsley, A.S.; Seykora, J.T.; Lambris, J.D.; Grice, E.A. Complement Modulates the Cutaneous Microbiome and Inflammatory Milieu. Proc. Natl. Acad. Sci. USA 2013, 110, 15061–15066. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.L.S. Epidermidis Influence on Host Immunity: More Than Skin Deep. Cell Host Microbe 2015, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Nagy, I.; Pivarcsi, A.; Kis, K.; Koreck, A.; Bodai, L.; McDowell, A.; Seltmann, H.; Patrick, S.; Zouboulis, C.C.; Kemény, L. Propionibacterium Acnes and Lipopolysaccharide Induce the Expression of Antimicrobial Peptides and Proinflammatory Cytokines/Chemokines in Human Sebocytes. Microbes Infect. 2006, 8, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.J.M.; Scholz, C.F.P.; Enghild, J.; Rohde, H.; Kilian, M.; Thürmer, A.; Brzuszkiewicz, E.; Lomholt, H.B.; Brüggemann, H. Antagonism between Staphylococcus Epidermidis and Propionibacterium Acnes and Its Genomic Basis. BMC Genomics 2016, 17, 152. [Google Scholar] [CrossRef]
- Cogen, A.L.; Yamasaki, K.; Sanchez, K.M.; Dorschner, R.A.; Lai, Y.; MacLeod, D.T.; Torpey, J.W.; Otto, M.; Nizet, V.; Kim, J.E.; et al. Selective Antimicrobial Action Is Provided by Phenol-Soluble Modulins Derived from Staphylococcus Epidermidis, a Normal Resident of the Skin. J. Investig. Dermatol. 2010, 130, 192–200. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from Human Skin Commensal Bacteria Protect against Staphylococcus Aureus and Are Deficient in Atopic Dermatitis. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef]
- Naik, S.; Bouladoux, N.; Linehan, J.L.; Han, S.J.; Harrison, O.J.; Wilhelm, C.; Conlan, S.; Himmelfarb, S.; Byrd, A.L.; Deming, C.; et al. Commensal-Dendritic-Cell Interaction Specifies a Unique Protective Skin Immune Signature. Nature 2015, 520, 104–108. [Google Scholar] [CrossRef]
- Cooper, A.J.; Weyrich, L.S.; Dixit, S.; Farrer, A.G. The Skin Microbiome: Associations between Altered Microbial Communities and Disease. Australas. J. Dermatol. 2015, 56, 268–274. [Google Scholar]
- Perez, G.I.P.; Gao, Z.; Jourdain, R.; Ramirez, J.; Gany, F.; Clavaud, C.; Demaude, J.; Breton, L.; Blaser, M.J. Body Site Is a More Determinant Factor than Human Population Diversity in the Healthy Skin Microbiome. PLoS ONE 2016, 11, e0151990. [Google Scholar] [CrossRef] [PubMed]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; Becker, J.; et al. Topographic Diversity of Fungal and Bacterial Communities in Human Skin. Nature 2013, 498, 367–370. Available online: https://www.nature.com/articles/nature12171 (accessed on 26 July 2022). [CrossRef] [PubMed]
- Human Microbiome Project Consortium, T. Structure, Function and Diversity of the Healthy Human Microbiome The Human Microbiome Project Consortium*. Nature 2012, 486. [Google Scholar] [CrossRef] [PubMed]
- McCall, L.I.; Callewaert, C.; Zhu, Q.; Song, S.J.; Bouslimani, A.; Minich, J.J.; Ernst, M.; Ruiz-Calderon, J.F.; Cavallin, H.; Pereira, H.S.; et al. Home Chemical and Microbial Transitions across Urbanization. Nat. Microbiol. 2020, 5, 108. [Google Scholar] [CrossRef]
- Ying, S.; Zeng, D.N.; Chi, L.; Tan, Y.; Galzote, C.; Cardona, C.; Lax, S.; Gilbert, J.; Quan, Z.X. The Influence of Age and Gender on Skin-Associated Microbial Communities in Urban and Rural Human Populations. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Ehlers, C.; Ivens, U.I.; Møller, M.L.; Senderovitz, T.; Serup, J. Females Have Lower Skin Surface PH than Men. A Study on the Surface of Gender, Forearm Site Variation, Right/Left Difference and Time of the Day on the Skin Surface PH. Skin Res. Technol. 2001, 7, 90–94. [Google Scholar] [CrossRef]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; Becker, J.; et al. Human Skin Fungal Diversity. Nature 2013, 498, 367. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/ (accessed on 26 July 2022). [CrossRef]
- Oh, J.; Byrd, A.L.; Park, M.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854. [Google Scholar] [CrossRef]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; Mullikin, J.; et al. Temporal Shifts in the Skin Microbiome Associated with Disease Flares and Treatment in Children with Atopic Dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef]
- Quan, C.; Chen, X.Y.; Li, X.; Xue, F.; Chen, L.H.; Liu, N.; Wang, B.; Wang, L.Q.; Wang, X.P.; Yang, H.; et al. Psoriatic Lesions Are Characterized by Higher Bacterial Load and Imbalance between Cutibacterium and Corynebacterium. J. Am. Acad. Dermatol. 2020, 82, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Salava, A.; Lauerma, A. Role of the Skin Microbiome in Atopic Dermatitis. Clin. Transl. Allergy 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Sanford, J.A.; Gallo, R.L. Functions of the Skin Microbiota in Health and Disease. Semin. Immunol. 2013, 25, 370. [Google Scholar] [CrossRef] [PubMed]
- Wark, K.J.L.; Cains, G.D. The Microbiome in Hidradenitis Suppurativa: A Review. Dermatol. Ther. (Heidelb.) 2021, 11, 39–52. [Google Scholar] [CrossRef]
- Liang, X.; Ou, C.; Zhuang, J.; Li, J.; Zhang, F.; Zhong, Y.; Chen, Y. Interplay Between Skin Microbiota Dysbiosis and the Host Immune System in Psoriasis: Potential Pathogenesis. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- O’Neill, A.M.; Gallo, R.L. Host-Microbiome Interactions and Recent Progress into Understanding the Biology of Acne Vulgaris. Microbiome 2018, 6. [Google Scholar] [CrossRef]
- Chen, P.; He, G.; Qian, J.; Zhan, Y.; Xiao, R. Potential Role of the Skin Microbiota in Inflammatory Skin Diseases. J. Cosmet. Dermatol. 2021, 20, 400–409. [Google Scholar] [CrossRef]
- Mortz, C.G.; Andersen, K.E.; Dellgren, C.; Barington, T.; Bindslev-Jensen, C. Atopic Dermatitis from Adolescence to Adulthood in the TOACS Cohort: Prevalence, Persistence and Comorbidities. Allergy 2015, 70, 836–845. [Google Scholar] [CrossRef]
- Talpur, R.; Bassett, R.; Duvic, M. Prevalence and Treatment of Staphylococcus Aureus Colonization in Patients with Mycosis Fungoides and Sézary Syndrome. Br. J. Dermatol. 2008, 159, 105–112. [Google Scholar] [CrossRef]
- Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin Microflora and Bacterial Infections of the Skin. J. Investig. dermatology. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Takai, T.; Nakamura, T.; Mitsuishi, K.; Gunawan, H.; Suto, H.; Ogawa, T.; Wang, X.L.; Ikeda, S.; Okumura, K.; et al. Staphylococcus Aureus Extracellular Protease Causes Epidermal Barrier Dysfunction. J. Invest. Dermatol. 2010, 130, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Sugaya, M.; Miyagaki, T.; Ohmatsu, H.; Kawaguchi, M.; Takahashi, N.; Fujita, H.; Asano, Y.; Tada, Y.; Kadono, T.; et al. Skin Barrier Dysfunction and Low Antimicrobial Peptide Expression in Cutaneous T-Cell Lymphoma. Clin. Cancer Res. 2014, 20, 4339–4348. [Google Scholar] [CrossRef] [PubMed]
- Yazdanparast, T.; Yazdani, K.; Humbert, P.; Khatami, A.; Nasrollahi, S.A.; Firouzabadi, L.I.; Firooz, A. Biophysical Measurements and Ultrasonographic Findings in Chronic Dermatitis in Comparison with Uninvolved Skin. Indian, J. Dermatol. 2019, 64, 90. [Google Scholar] [CrossRef]
- Emge, D.A.; Bassett, R.L.; Duvic, M.; Huen, A.O. Methicillin-Resistant Staphylococcus Aureus (MRSA) Is an Important Pathogen in Erythrodermic Cutaneous T-Cell Lymphoma (CTCL) Patients. Arch. Dermatol. Res. 2015, 312, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Ridaura, V.K.; Bouladoux, N.; Claesen, J.; Erin Chen, Y.; Byrd, A.L.; Constantinides, M.G.; Merrill, E.D.; Tamoutounour, S.; Fischbach, M.A.; Belkaid, Y. Contextual Control of Skin Immunity and Inflammation by Corynebacterium. J. Exp. Med. 2018, 215, 785. [Google Scholar] [CrossRef]
- Vandecandelaere, I.; Depuydt, P.; Nelis, H.J.; Coenye, T. Protease Production by Staphylococcus Epidermidis and Its Effect on Staphylococcus Aureus Biofilms. Pathog. Dis. 2014, 70, 321–331. [Google Scholar] [CrossRef]
- Bier, K.; Schittek, B. Beneficial Effects of Coagulase-Negative Staphylococci on Staphylococcus Aureus Skin Colonization. Exp. Dermatol. 2021, 30, 1442–1452. [Google Scholar] [CrossRef]
- Götz, F.; Perconti, S.; Popella, P.; Werner, R.; Schlag, M. Epidermin and Gallidermin: Staphylococcal Lantibiotics. Int. J. Med. Microbiol. 2014, 304, 63–71. [Google Scholar] [CrossRef]
- Jang, I.T.; Yang, M.; Kim, H.J.; Park, J.K. Novel Cytoplasmic Bacteriocin Compounds Derived from Staphylococcus Epidermidis Selectively Kill Staphylococcus Aureus, Including Methicillin-Resistant Staphylococcus Aureus (MRSA). Pathogens 2020, 9, 87. [Google Scholar] [CrossRef]
- Cau, L.; Williams, M.R.; Butcher, A.M.; Nakatsuji, T.; Kavanaugh, J.S.; Cheng, J.Y.; Shafiq, F.; Higbee, K.; Hata, T.R.; Horswill, A.R.; et al. Staphylococcus Epidermidis Protease EcpA Can Be a Deleterious Component of the Skin Microbiome in Atopic Dermatitis. J. Allergy Clin. Immunol. 2021, 147, 955–966. [Google Scholar] [CrossRef]
- Nowicka, D.; Grywalska, E. The Role of Immune Defects and Colonization of Staphylococcus Aureus in the Pathogenesis of Atopic Dermatitis. Anal. Cell. Pathol. (Amst.) 2018, 2018. [Google Scholar] [CrossRef]
- Menberu, M.A.; Liu, S.; Cooksley, C.; Hayes, A.J.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Corynebacterium Accolens Has Antimicrobial Activity against Staphylococcus Aureus and Methicillin-Resistant, S. Aureus Pathogens Isolated from the Sinonasal Niche of Chronic Rhinosinusitis Patients. Pathog. (Basel, Switzerland) 2021, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.M.; Freire, M.O.; Gabrilska, R.A.; Rumbaugh, K.P.; Lemon, K.P. Staphylococcus Aureus Shifts toward Commensalism in Response to Corynebacterium Species. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.S.; Butterworth, C.M.; Mclaughlin, H.; Malka, S.; Samman, P.D. Mycosis Fungoides—A Disease of Antigen Persistence. Br. J. Dermatol. 1974, 91, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hwang, S.T. A Microbiota-Dependent, STAT3-Driven Mouse Model of Cutaneous T-Cell Lymphoma. J. Invest. Dermatol. 2018, 138, 1022–1026. [Google Scholar] [CrossRef]
- Salava, A.; Deptula, P.; Lyyski, A.; Laine, P.; Paulin, L.; Väkevä, L.; Ranki, A.; Auvinen, P.; Lauerma, A. Skin Microbiome in Cutaneous T-Cell Lymphoma by 16S and Whole-Genome Shotgun Sequencing. J. Invest. Dermatol. 2020, 140, 2304–2308. [Google Scholar] [CrossRef]
- Salava, A.; Pereira, P.; Aho, V.; Väkevä, L.; Paulin, L.; Auvinen, P.; Ranki, A.; Lauerma, A. Skin Microbiome in Small- and Large-Plaque Parapsoriasis. Acta Derm. Venereol. 2017, 97, 685–691. [Google Scholar] [CrossRef]
- Väkevä, L.; Sarna, S.; Vaalasti, A.; Pukkala, E.; Kariniemi, A.L.; Ranki, A. A Retrospective Study of the Probability of the Evolution of Parapsoriasis En Plaques into Mycosis Fungoides. Acta Derm. Venereol. 2005, 85, 318–323. [Google Scholar] [CrossRef]
- Gug, G.; Solovan, C. From Benign Inflammatory Dermatosis to Cutaneous Lymphoma. DNA Copy Number Imbalances in Mycosis Fungoides versus Large Plaque Parapsoriasis. Medicina (Kaunas) 2021, 57, 502. [Google Scholar] [CrossRef]
- Harkins, C.P.; MacGibeny, M.A.; Thompson, K.; Bubic, B.; Huang, X.; Brown, I.; Park, J.; Jo, J.H.; Segre, J.A.; Kong, H.H.; et al. Cutaneous T-Cell Lymphoma Skin Microbiome Is Characterized by Shifts in Certain Commensal Bacteria but Not Viruses When Compared with Healthy Controls. J. Invest. Dermatol. 2021. [Google Scholar] [CrossRef]
- Dehner, C.A.; Ruff, W.E.; Greiling, T.; Pereira, M.S.; Redanz, S.; McNiff, J.; Girardi, M.; Kriegel, M.A. Malignant T Cell Activation by a Bacillus Species Isolated from Cutaneous T-Cell Lymphoma Lesions. JID Innov. Ski. Sci. from Mol. to Popul. Heal. 2022, 2, 100084. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Seminario-Vidal, L.; Cohen, L.; Hussaini, M.; Yao, J.; Rutenberg, D.; Kim, Y.; Giualiano, A.; Robinson, L.A.; Sokol, L. Alterations in the Skin Microbiota Are Associated With Symptom Severity in Mycosis Fungoides. Front. Cell. Infect. Microbiol. 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Blaizot, R.; Ouattara, E.; Fauconneau, A.; Beylot-Barry, M.; Pham-Ledard, A. Infectious Events and Associated Risk Factors in Mycosis Fungoides/Sézary Syndrome: A Retrospective Cohort Study. Br. J. Dermatol. 2018, 179, 1322–1328. [Google Scholar] [CrossRef]
- Jackow, C.M.; Cather, J.C.; Hearne, V.; Asano, A.T.; Musser, J.M.; Duvic, M. Association of Erythrodermic Cutaneous T-Cell Lymphoma, Superantigen-Positive Staphylococcus Aureus, and Oligoclonal T-Cell Receptor V Beta Gene Expansion. Blood 1997, 89, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Huggins, R.H.; Lertsburapa, T.; Bauer, K.; Rademaker, A.; Gerami, P.; Guitart, J. Cutaneous T-Cell Lymphoma and Staphylococcus Aureus Colonization. J. Am. Acad. Dermatol. 2008, 59, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, P.I.; Lorber, B.; Vonderheid, E.C. Infections Complicating Mycosis Fungoides and Sézary Syndrome. JAMA J. Am. Med. Assoc. 1992, 267, 1354–1358. [Google Scholar] [CrossRef]
- Krejsgaard, T.; Willerslev-Olsen, A.; Lindahl, L.M.; Bonefeld, C.M.; Koralov, S.B.; Geisler, C.; Wasik, M.A.; Gniadecki, R.; Kilian, M.; Iversen, L.; et al. Staphylococcal Enterotoxins Stimulate Lymphoma-Associated Immune Dysregulation. Blood 2014, 124, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Yagi, H.; Ohshima, A.; Kurokawa, S.; Wakita, H.; Yokote, R.; Shirahama, S.; Furukawa, F.; Takigawa, M. Cutaneous Colonization with Staphylococci Influences the Disease Activity of Sézary Syndrome: A Potential Role for Bacterial Superantigens. Br. J. Dermatol. 1995, 133, 6–12. [Google Scholar] [CrossRef]
- Willerslev-Olsen, A.; Krejsgaard, T.; Lindahl, L.M.; Bonefeld, C.M.; Wasik, M.A.; Koralov, S.B.; Geisler, C.; Kilian, M.; Iversen, L.; Woetmann, A.; et al. Bacterial Toxins Fuel Disease Progression in Cutaneous T-Cell Lymphoma. Toxins (Basel) 2013, 5, 1402–1421. [Google Scholar] [CrossRef]
- Willerslev-Olsen, A.; Buus, T.B.; Nastasi, C.; Blümel, E.; Gluud, M.; Bonefeld, C.M.; Geisler, C.; Lindahl, L.M.; Vermeer, M.; Wasik, M.A.; et al. Staphylococcus Aureus Enterotoxins Induce FOXP3 in Neoplastic T Cells in Sézary Syndrome. Blood Cancer J. 2020, 10. [Google Scholar] [CrossRef]
- Woetmann, A.; Lovato, P.; Eriksen, K.W.; Krejsgaard, T.; Labuda, T.; Zhang, Q.; Mathiesen, A.M.; Geisler, C.; Svejgaard, A.; Wasik, M.A.; et al. Nonmalignant T Cells Stimulate Growth of T-Cell Lymphoma Cells in the Presence of Bacterial Toxins. Blood 2007, 109, 3325–3332. [Google Scholar] [CrossRef] [PubMed]
- Willerslev-Olsen, A.; Gjerdrum, L.M.R.; Lindahl, L.M.; Buus, T.B.; Pallesen, E.M.H.; Gluud, M.; Bzorek, M.; Nielsen, B.S.; Kamstrup, M.R.; Rittig, A.H.; et al. Staphylococcus Aureus Induces Signal Transducer and Activator of Transcription 5–Dependent MiR-155 Expression in Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2021, 141, 2449–2458. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Heald, P.W.; Yan, S.L.; Edelson, R.L. Stimulation of Cutaneous T-Cell Lymphoma Cells with Superantigenic Staphylococcal Toxins. J. Investig. Dermatol. 1992, 98, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, T.; Gellrich, S.; Lukowsky, A.; Mielke, A.; Audring, H.; Sterry, W.; Walden, P. Polyclonal Expansion of T Cells with the TCR Vβ Type of the Tumour Cell in Lesions of Cutaneous T-Cell Lymphoma: Evidence for Possible Superantigen Involvement. Br. J. Dermatol. 2004, 150, 1013–1017. [Google Scholar] [CrossRef]
- Vonderheid, E.G.; Bigler, R.D.; Hou, J.S.; Linnemann, T.; Gellrich, S.; Lukowsky, A.; Mielke, A.; Audring, H.; Sterry, W.; Walden, P. On the Possible Relationship between Staphylococcal Superantigens and Increased Vbeta5.1 Usage in Cutaneous T-Cell Lymphoma. Br. J. Dermatol. 2005, 152, 825–826. [Google Scholar] [CrossRef]
- Vonderheid, E.C.; Boselli, C.M.; Conroy, M.; Casaus, L.; Espinoza, L.C.; Venkataramani, P.; Bigler, R.D.; Houw, J.S. Evidence for Restricted Vb Usage in the Leukemic Phase of Cutaneous T Cell Lymphoma. J. Investig. Dermatol. 2005, 124, 651–661. [Google Scholar] [CrossRef]
- Grumann, D.; Nübel, U.; Bröker, B.M. Staphylococcus Aureus Toxins--Their Functions and Genetics. Infect. Genet. Evol. 2014, 21, 583–592. [Google Scholar] [CrossRef]
- Blümel, E.; Willerslev-Olsen, A.; Gluud, M.; Lindahl, L.M.; Fredholm, S.; Nastasi, C.; Krejsgaard, T.; Surewaard, B.G.J.; Koralov, S.B.; Hu, T.; et al. Staphylococcal Alpha-Toxin Tilts the Balance between Malignant and Non-Malignant CD4+ T Cells in Cutaneous T-Cell Lymphoma. Oncoimmunology 2019, 8. [Google Scholar] [CrossRef]
- Blümel, E.; Munir Ahmad, S.; Nastasi, C.; Willerslev-Olsen, A.; Gluud, M.; Fredholm, S.; Hu, T.; Surewaard, B.G.J.; Lindahl, L.M.; Fogh, H.; et al. Staphylococcus Aureus Alpha-Toxin Inhibits CD8 + T Cell-Mediated Killing of Cancer Cells in Cutaneous T-Cell Lymphoma. Oncoimmunology 2020, 9. [Google Scholar] [CrossRef]
- Phan, T.G.; Dreno, B.; da Costa, A.C.; Li, L.; Orlandi, P.; Deng, X.; Kapusinszky, B.; Siqueira, J.; Knol, A.C.; Halary, F.; et al. A New Protoparvovirus in Human Fecal Samples and Cutaneous T Cell Lymphomas (Mycosis Fungoides). Virology 2016, 496, 299–305. [Google Scholar] [CrossRef]
- Väisänen, E.; Fu, Y.; Hedman, K.; Söderlund-Venermo, M. Human Protoparvoviruses. Viruses 2017, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Vaïsänen, E.; Fu, Y.; Koskenmies, S.; Fyhrquist, N.; Wang, Y.; Keinonen, A.; Mäkisalo, H.; Väkevä, L.; Pitkänen, S.; Ranki, A.; et al. Cutavirus DNA in Malignant and Nonmalignant Skin of Cutaneous T-Cell Lymphoma and Organ Transplant Patients but Not of Healthy Adults. Clin. Infect. Dis. 2019, 68, 1904–1910. [Google Scholar] [CrossRef] [PubMed]
- Bergallo, M.; Daprà, V.; Fava, P.; Ponti, R.; Calvi, C.; Fierro, M.T.; Quaglino, P.; Galliano, I.; Montanari, P. Lack of Detection of Cutavirus DNA Using PCR Real Time in Cutaneous T-Cell Lymphomas. G. Ital. di Dermatologia e Venereol. 2020, 155, 772–774. [Google Scholar] [CrossRef]
- Sokołowska-Wojdyło, M.; Maj, J.; Robak, E.; Placek, W.; Wojas-Pelc, A.; Jankowska-Konsur, A.; Olek-Hrab, K.; Gniadecki, R.; Rudnicka, L. Primary Cutaneous Lymphomas—Diagnostic and Therapeutic Guidelines of the Polish Dermatological Society. Dermatol. Rev. Dermatol. 2017, 104, 243–268. [Google Scholar] [CrossRef]
- Batycka-Baran, A.; Reich, A.; Jankowska-Konsur, A.; Maj, J. New Trends in the Management of Mycosis Fungoides and Sezary Syndrome. Postep. Dermatol. I Alergol. 2009, 26, 41–55. [Google Scholar]
- Tarabadkar, E.S.; Shinohara, M.M. Skin Directed Therapy in Cutaneous T-Cell Lymphoma. Front. Oncol. 2019, 9. [Google Scholar] [CrossRef]
- Olek-Hrab, K.; Maj, J.; Chmielowska, E.; Jankowska-Konsur, A.; Olszewska, B.; Kręcisz, B.; Iwankowski, P.; Mackiewicz-Wysocka, M.; Adamski, Z.; Nowicki, R.; et al. Methotrexate in the Treatment of Mycosis Fungoides - a Multicenter Observational Study in 79 Patients. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3586–3594. [Google Scholar] [CrossRef]
- Phan, K.; Ramachandran, V.; Fassihi, H.; Sebaratnam, D.F. Comparison of Narrowband UV-B with Psoralen-UV-A Phototherapy for Patients with Early-Stage Mycosis Fungoides: A Systematic Review and Meta-Analysis. JAMA Dermatol. 2019, 155, 335–341. [Google Scholar] [CrossRef]
- Kwon, S.; Choi, J.Y.; Shin, J.W.; Huh, C.H.; Park, K.C.; Du, M.H.; Yoon, S.; Na, J.I. Changes in Lesional and Non-Lesional Skin Microbiome during Treatment of Atopic Dermatitis. Acta Derm. Venereol. 2019, 99, 284–290. [Google Scholar] [CrossRef]
- Gonzalez, M.E.; Schaffer, J.V.; Orlow, S.J.; Gao, Z.; Li, H.; Alekseyenko, A.V.; Blaser, M.J. Cutaneous Microbiome Effects of Fluticasone Propionate Cream and Adjunctive Bleach Baths in Childhood Atopic Dermatitis. J. Am. Acad. Dermatol. 2016, 75, 481–493. [Google Scholar] [CrossRef]
- Lossius, A.H.; Sundnes, O.; Ingham, A.C.; Edslev, S.M.; Bjørnholt, J.V.; Lilje, B.; Bradley, M.; Asad, S.; Haraldsen, G.; Skytt-Andersen, P.; et al. Shifts in the Skin Microbiota after UVB Treatment in Adult Atopic Dermatitis. Dermatology 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet Radiation, Both UVA and UVB, Influences the Composition of the Skin Microbiome. Exp. Dermatol. 2019, 28, 136. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.H. Antibiotics Can Improve CTCL. Blood 2019, 134, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Ghazawi, F.M.; Netchiporouk, E.; Litvinov, I.V. The Novel Role of Antibiotic Treatment in the Management of Cutaneous T-Cell Lymphoma (CTCL) Patients. J. Cutan. Med. Surg. 2020, 24, 410–411. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, L.M.; Iversen, L.; Ødum, N.; Kilian, M. Staphylococcus Aureus and Antibiotics in Cutaneous T-Cell Lymphoma. Dermatology 2021, 238, 3. [Google Scholar] [CrossRef]
- Lindahl, L.M.; Willerslev-Olsen, A.; Gjerdrum, L.M.R.; Nielsen, P.R.; Blümel, E.; Rittig, A.H.; Celis, P.; Herpers, B.; Becker, J.C.; Stausbøl-Grøn, B.; et al. Antibiotics Inhibit Tumor and Disease Activity in Cutaneous T-Cell Lymphoma. Blood 2019, 134, 1072–1083. [Google Scholar] [CrossRef]
- El Sayed, H.; Shalaby, S.; Abdel-Halim, M.R.E.; Aboelfadl, D.M.; Samir, N. Efficacy of Doxycycline in the Treatment of Early Stages of Mycosis Fungoides: A Randomized Controlled Trial. J. Dermatolog. Treat. 2021, 32, 424–431. [Google Scholar] [CrossRef]
- Alexander-Savino, C.V.; Hayden, M.S.; Richardson, C.; Zhao, J.; Poligone, B. Doxycycline Is an NF-ΚB Inhibitor That Induces Apoptotic Cell Death in Malignant T-Cells. Oncotarget 2016, 7, 75954–75967. [Google Scholar] [CrossRef]
- Lewis, D.J.; Holder, B.B.; Duvic, M. The “Duvic Regimen” for Erythrodermic Flares Secondary to Staphylococcus Aureus in Mycosis Fungoides and Sézary Syndrome. Int. J. Dermatol. 2018, 57, 123–124. [Google Scholar] [CrossRef]
- Lewis, D.J. Cutaneous Microbiota in the Pathogenesis of Cutaneous T-Cell Lymphoma and the Role of Antibiotic Therapy. Int. J. Dermatol. 2020, 59, e223–e224. [Google Scholar] [CrossRef]
- Barnes, T.M.; Greive, K.A. Use of Bleach Baths for the Treatment of Infected Atopic Eczema. Australas. J. Dermatol. 2013, 54, 251–258. [Google Scholar] [CrossRef] [PubMed]
Study | Cases | Controls | Sample Sites | CTCL Stage/Subtype | Methods | Therapy at Sampling |
---|---|---|---|---|---|---|
Salava et al. [76] | 20 MF | healthy-appearing skin on the contralateral side of the body | extremities (5 thigh, 2 forearm, 1 upper arm, 1 shin); trunk (5 flank, 2 abdomen, 1 back, 1 buttock, 1 inguinal fold), 1 neck | IA-IIB | 16S rRNA sequencing and WGS | 11 bexarotene, 2 MTX, 6 no treatment |
Harkins et al. [80] | 4 MF and 2 SS (lesional and non-lesional skin) | 10 healthy individuals (site-matched samples; age- and sex-matched individuals) | right and left lower back and bilateral posterior thighs | MF IA to IIIA SS IVA1 | shotgun metagenomic sequencing | 1 TCS, 1 TCS + PUVA, 1 TCS + photopheresis + IFα, 1 TS + bexarotene, 1 TS + MTX, 1 TCS + photopheresis + bexarotene |
Dehner et al. [81] | 7 MF | 5 healthy individuals (body-site–matched skin samples); Non-lesional skin samples from MF patients (2 inches next to each matched lesion) | 4 arm, 2 leg, 2 foot | MF IB, Follicular MF | 16S rRNA sequencing | 3 bexarotene + mechlorethamine, 4 no treatment |
Zhang et al. [82] | 39 MF | non-lesional skin in the contralateral side | 14 trunk, 7 buttock, 14 extremities, 4 head and neck | I-IV | 16s rRNA sequencing | 12 no treatment, 15 TCS, 3 topical nitrogen mustard, 2 topical bexarotene, 2 topical imiquimod, 4 phototherapy, 1 RTH, 9 systemic therapy, 4 adjuvant bleach bath |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyko, M.; Jankowska-Konsur, A. The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens 2022, 11, 935. https://doi.org/10.3390/pathogens11080935
Łyko M, Jankowska-Konsur A. The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens. 2022; 11(8):935. https://doi.org/10.3390/pathogens11080935
Chicago/Turabian StyleŁyko, Magdalena, and Alina Jankowska-Konsur. 2022. "The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review" Pathogens 11, no. 8: 935. https://doi.org/10.3390/pathogens11080935
APA StyleŁyko, M., & Jankowska-Konsur, A. (2022). The Skin Microbiome in Cutaneous T-Cell Lymphomas (CTCL)—A Narrative Review. Pathogens, 11(8), 935. https://doi.org/10.3390/pathogens11080935