Current Research on HIV Drug Resistance—A Topical Collection with “Pathogens”
Conflicts of Interest
References
- World Health Organization. Global Action Plan on HIV Drug Resistance 2017–2021; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Coffin, J.M. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science 1995, 267, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.D. Perspectives series: Host/pathogen interactions. Dynamics of HIV-1 replication in vivo. J. Clin. Investig. 1997, 99, 2565–2567. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Arias, L. Targeting HIV: Antiretroviral therapy and development of drug resistance. Trends Pharmacol. Sci. 2002, 23, 381–388. [Google Scholar] [CrossRef]
- Larder, B.A.; Darby, G.; Richman, D.D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 1989, 243, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Sandstrom, P.; Paredes, R.; Harrigan, P.R.; Brumme, C.J.; Avila, R.S.; Noguera-Julian, M.; Parkin, N.; Kantor, R. Are We Ready for NGS HIV Drug Resistance Testing? The Second “Winnipeg Consensus” Symposium. Viruses 2020, 12, 586. [Google Scholar] [CrossRef]
- Li, M.; Liang, S.; Zhou, C.; Chen, M.; Liang, S.; Liu, C.; Zuo, Z.; Liu, L.; Feng, Y.; Song, C.; et al. HIV Drug Resistance Mutations Detection by Next-Generation Sequencing during Antiretroviral Therapy Interruption in China. Pathogens 2021, 10, 264. [Google Scholar] [CrossRef]
- Seatla, K.K.; Maruapula, D.; Choga, W.T.; Morerinyane, O.; Lockman, S.; Novitsky, V.; Kasvosve, I.; Moyo, S.; Gaseitsiwe, S. Limited HIV-1 Subtype C nef 3′PPT Variation in Combination Antiretroviral Therapy Naive and Experienced People Living with HIV in Botswana. Pathogens 2021, 10, 1027. [Google Scholar] [CrossRef]
- Malet, I.; Subra, F.; Charpentier, C.; Collin, G.; Descamps, D.; Calvez, V.; Marcelin, A.G.; Delelis, O. Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors. mBio 2017, 8, e00922-17. [Google Scholar] [CrossRef]
- Dicker, I.B.; Samanta, H.K.; Li, Z.; Hong, Y.; Tian, Y.; Banville, J.; Remillard, R.R.; Walker, M.A.; Langley, D.R.; Krystal, M. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J. Biol. Chem. 2007, 282, 31186–31196. [Google Scholar] [CrossRef]
- Rabi, S.A.; Laird, G.M.; Durand, C.M.; Laskey, S.; Shan, L.; Bailey, J.R.; Chioma, S.; Moore, R.D.; Siliciano, R.F. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J. Clin. Investig. 2013, 123, 3848–3860. [Google Scholar] [CrossRef]
- Fun, A.; Wensing, A.M.; Verheyen, J.; Nijhuis, M. Human Immunodeficiency Virus Gag and protease: Partners in resistance. Retrovirology 2012, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Malet, I.; Delelis, O.; Nguyen, T.; Leducq, V.; Abdi, B.; Morand-Joubert, L.; Calvez, V.; Marcelin, A.G. Variability of the HIV-1 3′ polypurine tract (3′PPT) region and implication in integrase inhibitor resistance. J. Antimicrob. Chemother. 2019, 74, 3440–3444. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sluis-Cremer, N. Mutations in the HIV-1 3′-Polypurine Tract and Integrase Strand Transfer Inhibitor Resistance. Antimicrob. Agents Chemother. 2021, 65, e02432-20. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Tagny, C.T.; Mbanya, D.; Fonsah, J.Y.; Nchindap, E.; Kenmogne, L.; Jihyun, M.; Njamnshi, A.K.; Kanmogne, G.D. Variability in HIV-1 Integrase Gene and 3′-Polypurine Tract Sequences in Cameroon Clinical Isolates, and Implications for Integrase Inhibitors Efficacy. Int. J. Mol. Sci. 2020, 21, 1553. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Cane, P.A.; Pillay, D.; Mbisa, J.L. Coevolved Multidrug-Resistant HIV-1 Protease and Reverse Transcriptase Influences Integrase Drug Susceptibility and Replication Fitness. Pathogens 2021, 10, 1070. [Google Scholar] [CrossRef]
- Kiekens, A.; Mosha, I.H.; Zlatic, L.; Bwire, G.M.; Mangara, A.; de Dierckx, C.B.; Decouttere, C.; Vandaele, N.; Sangeda, R.Z.; Swalehe, O.; et al. Factors Associated with HIV Drug Resistance in Dar es Salaam, Tanzania: Analysis of a Complex Adaptive System. Pathogens 2021, 10, 1535. [Google Scholar] [CrossRef]
- World Health Organization. HIV Drug Resistance Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Garcia-Morales, C.; Tapia-Trejo, D.; Matias-Florentino, M.; Quiroz-Morales, V.S.; Davila-Conn, V.; Beristain-Barreda, A.; Cardenas-Sandoval, M.; Becerril-Rodriguez, M.; Iracheta-Hernandez, P.; Macias-Gonzalez, I.; et al. HIV Pretreatment Drug Resistance Trends in Mexico City, 2017–2020. Pathogens 2021, 10, 1587. [Google Scholar] [CrossRef]
- Caro-Vega, Y.; Alarid-Escudero, F.; Enns, E.A.; Sosa-Rubi, S.; Chivardi, C.; Pineirua-Menendez, A.; Garcia-Morales, C.; Reyes-Teran, G.; Sierra-Madero, J.G.; Avila-Rios, S. Retention in Care, Mortality, Loss-to-Follow-Up, and Viral Suppression among Antiretroviral Treatment-Naive and Experienced Persons Participating in a Nationally Representative HIV Pre-Treatment Drug Resistance Survey in Mexico. Pathogens 2021, 10, 1569. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Boehm, M.; Tarasova, O.; Di, T.G.; Abecasis, A.B.; Sonnerborg, A.; Bailey, A.J.; Kireev, D.; Zazzi, M.; The EuResist Network Study Group; et al. Spectrum of Atazanavir-Selected Protease Inhibitor-Resistance Mutations. Pathogens 2022, 11, 546. [Google Scholar] [CrossRef]
- Munyuza, C.; Ji, H.; Lee, E.R. Probe Capture Enrichment Methods for HIV and HCV Genome Sequencing and Drug Resistance Genotyping. Pathogens 2022, 11, 693. [Google Scholar] [CrossRef]
- Chua, R.J.; Capina, R.; Ji, H. Point-of-Care Tests for HIV Drug Resistance Monitoring: Advances and Potentials. Pathogens 2022, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Sandstrom, P. Overview of the Analytes Applied in Genotypic HIV Drug Resistance Testing. Pathogens 2022, 11, 739. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H. Current Research on HIV Drug Resistance—A Topical Collection with “Pathogens”. Pathogens 2022, 11, 966. https://doi.org/10.3390/pathogens11090966
Ji H. Current Research on HIV Drug Resistance—A Topical Collection with “Pathogens”. Pathogens. 2022; 11(9):966. https://doi.org/10.3390/pathogens11090966
Chicago/Turabian StyleJi, Hezhao. 2022. "Current Research on HIV Drug Resistance—A Topical Collection with “Pathogens”" Pathogens 11, no. 9: 966. https://doi.org/10.3390/pathogens11090966
APA StyleJi, H. (2022). Current Research on HIV Drug Resistance—A Topical Collection with “Pathogens”. Pathogens, 11(9), 966. https://doi.org/10.3390/pathogens11090966