Genotypic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolated from an Egyptian University Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. Identification of Bacterial Isolates
2.4. Antimicrobial Susceptibility Testing and Phenotypic Detection of Carbapenemases
2.5. Multiplex PCR for Capsular Typing of K. pneumoniae and Detection of Carbapenemases-Encoding Genes
2.6. Statistical Analysis
3. Results
3.1. Distribution of Isolated K. pneumoniae in Clinical Samples
3.2. Antibiotic Susceptibility Patterns and Phenotypic Detection of Carbapenemases
3.3. Carbapenemase-Encoding Genes Distribution
3.4. Correlation between Genotypic and Phenotypic Assays
3.5. Prevalence of Capsular Types in Isolates Harboring Carbapenemases-Encoding Genes
3.6. Correlation between Source, Antimicrobial Resistance Pattern, Multiple Antibiotic Resistance (MAR) Index, Distribution of Carbapenemase-Encoding Genes, and Capsular Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA J. 2015, 13, 4036. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Righi, E.; Carnelutti, A.; Graziano, E.; Russo, A. Multidrug-resistant Klebsiella pneumoniae: Challenges for treatment, prevention and infection control. Expert Rev. Anti-Infect. Ther. 2018, 16, 749–761 . [Google Scholar] [CrossRef]
- Pendleton, J.N.; Gormanm, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef]
- Bengoechea, J.A.; Sa Pessoa, J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol. Rev. 2019, 43, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Kreiswirth, B.N. Convergence of carbapenem-resistance and hypervirulence in Klebsiella pneumoniae. Lancet Infect. Dis. 2018, 18, 2–3. [Google Scholar] [CrossRef]
- Wyres, K.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Tian, P.; Tan, T. Research advances in the virulence factors of Klebsiella pneumonia—A review. Acta Microbiol. Sin 2015, 55, 1245–1252. [Google Scholar]
- Cortés, G.; Borrell, N.; de Astorza, B.; Gómez, C.; Sauleda, J.; Albertí, S. Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect. Immun. 2002, 70, 2583–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri, G.P.; Sithebe, N.P.; Ateba, C.N. Identification of Klebsiella species isolate from Modimola dam (Mafikeng) North West Province South Africa. J. Afr. J. Microbiol. Res. 2011, 5, 3958–3963. [Google Scholar]
- Fevre, C.; Passet, V.; Deletoile, A.; Barbe, V.; Frangeul, L.; Almeida, A.S.; Brisse, S. PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma. PLoS Negl. Trop. Dis. 2011, 5, e1052. [Google Scholar] [CrossRef]
- Wyres, K.L.; Wick, R.R.; Gorrie, C.; Jenney, A.; Follador, R.; Thomson, N.R.; Holt, K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genom. 2016, 2, e000102. [Google Scholar] [CrossRef]
- Pan, Y.J.; Lin, T.L.; Chen, C.T.; Chen, Y.Y.; Hsieh, P.F.; Hsu, C.R.; Wang, J.T. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci. Rep. 2015, 5, 15573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siu, L.K.; Fung, C.P.; Chang, F.Y.; Lee, N.; Yeh, K.M.; Koh, T.H.; Ip, M. Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J. Clin. Microbiol. 2011, 49, 3761–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Cao, X.L.; Shen, H.; Zhang, Z.F.; Ning, M.Z.; Zhou, W.Q. Investigations on the virulence, serotypes and genotyping of Klebsiella pneumoniae producing KPC-2. Chin. J. Clin. Lab. Sci. 2015, 33, 591–595. [Google Scholar]
- Wasfi, R.; Elkhatib, F.W.; Ashour, M.H. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep. 2016, 6, 38929. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.R.; Ali, M.Y.; Waly, N.G.F.M.; Halby, H.M.; El-Baky, R.M.A. The Inc FII Plasmid and its Contribution in the Transmission of blaNDM-1 and blaKPC-2 in Klebsiella pneumoniae in Egypt. Antibiotics 2019, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Forbes, B.A.; Sahm, D.F.; Weissfeld, A.S. Study Guide for Bailey and Scott’s Diagnostic Microbiology-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute [CLSI]. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; Supplement M100, Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2021. [Google Scholar]
- Tambekar, D.; Dhanorkar, D.; Gulhane, S.; Khandelwal, V.; Dudhane, M. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr. J. Biotechnol. 2006, 5, 1562–1565. [Google Scholar]
- Zhang, S.; Yang, G.; Ye, Q.; Wu, Q.; Zhang, J.; Huang, Y. Phenotypic and Genotypic Characterization of Klebsiella pneumoniae Isolated From Retail Foods in China. Front. Microbiol. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Costa, A.D.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Ssekatawa, K.; Byarugaba, D.K.; Nakavuma, J.L.; Kato, C.D.; Ejobi, F.; Tweyongyere, R.; Eddie, W.M. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob. Resist. Infect. Control 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Thomson, N.R. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twenhafel, N.A.; Whitehouse, C.A.; Stevens, E.L.; Hottel, H.E.; Foster, C.D.; Gamble, S.; Steele, K.E. Multisystemic abscesses in African green monkeys (Chlorocebus aethiops) with invasive Klebsiella pneumoniae—Identification of the hypermucoviscosity phenotype. Vet. Pathol. 2008, 45, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaiarsa, S.; Comandatore, F.; Gaibani, P.; Corbella, M.; Dalla Valle, C.; Epis, S.; Sassera, D. Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics. Antimicrob. Agents Chemother. 2015, 59, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Abo Samra, M.A.A.; Ali, N.K.; El-Madboly, A.A.E. Detection of Multi-Drug Resistant Klebsiella pneumoniae in Al-Zahraa University Hospital. Egypt. J. Hosp. Med. 2019, 75, 3006–3012. [Google Scholar] [CrossRef]
- Parrott, A.M.; Shi, J.; Aaron, J.; Green, D.A.; Whittier, S.; Wu, F. Detection of multiple hypervirulent Klebsiella pneumoniae strains in a New York City hospital through screening of virulence genes. Clin. Microbiol. Infect. 2021, 27, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Palmeiro, J.K.; De Souza, R.F.; Schörner, M.A.; Passarelli-Araujo, H.; Grazziotin, A.L.; Vidal, N.M.; Dalla-Costa, L.M. Molecular epidemiology of multidrug-resistant Klebsiella pneumoniae isolates in a Brazilian tertiary hospital. Front. Microbiol. 2019, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Sedighi, P.; Zarei, O.; Karimi, K.; Taheri, M.; Karami, P.; Shokoohizadeh, L. Molecular typing of Klebsiella pneumoniae clinical isolates by Enterobacterial repetitive intergenic consensus polymerase chain reaction. Int. J. Microbiol. 2020, 2020, 1–5. [Google Scholar] [CrossRef]
- Farhadi, M.; Ahanjan, M.; Goli, H.R.; Haghshenas, M.R.; Gholami, M. High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 1–9. [Google Scholar] [CrossRef]
- Pereira, A.; Petrucci, T.; Simões, M.J. Klebsiella pneumoniae do Serotipo K1 e do Clone Hipervirulento ST23: Primeiro Caso Documentado em Portuga. Acta Med. Port. 2017, 30. [Google Scholar] [CrossRef] [Green Version]
- Moghadas, A.J.; Kalantari, F.; Sarfi, M.; Shahhoseini, S.; Mirkalantari, S. Evaluation of virulence factors and antibiotic resistance patterns in clinical urine isolates of Klebsiella pneumoniae in Semnan, Iran. Jundishapur J. Microbiol. 2018, 11, e63637. [Google Scholar] [CrossRef] [Green Version]
- Kotb, S.; Lyman, M.; Ismail, G.; Abd El Fattah, M.; Girgis, S.A.; Etman, A.; Talaat, M. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare–associated Infections Surveillance Data, 2011–2017. Antimicrob. Resist. Infect. Control 2020, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElMahallawy, H.A.; Zafer, M.M.; Amin, M.A.; Ragab, M.M.; Al-Agamy, M.H. Spread of carbapenem resistant Enterobacteriaceae at tertiary care cancer hospital in Egypt. Infect. Dis. 2018, 50, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Ogbolu, D.O.; Webber, M.A. High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria. Int. J. Antimicrob. Agents 2014, 43, 412–417. [Google Scholar] [CrossRef]
- Elramalli, A.; Almshawt, N.; Ahmed, M.O. Current problematic and emergence of carbapenemase-producing bacteria: A brief report from a Libyan hospital. Pan Afr. Med. J. 2017, 26, 180. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.M.; Wang, S.; Chiu, H.C.; Kao, C.Y.; Wen, L.L. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Raheel, A.; Azab, H.; Hessam, W.; Abbadi, S.; Ezzat, A. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal University Hospitals in Ismailia, Egypt. Microbes Infect. Dis. 2020, 1, 24–33. [Google Scholar] [CrossRef]
- Perovic, O.; Ismail, H.; Quan, V.; Bamford, C.; Nana, T.; Chibabhai, V.; Singh-Moodley, A. Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at tertiary hospitals in South Africa, 2015 to 2018. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Kollenda, H.; Frickmann, H.; Helal, R.B.; Wiemer, D.F.; Naija, H.; El Asli, M.S.; Moussa, M.B. Screening for carbapenemases in ertapenem-resistant Enterobacteriaceae collected at a Tunisian hospital between 2014 and 2018. Eur. J. Microbiol. Immunol. 2019, 9, 9–13. [Google Scholar] [CrossRef]
- Mahrach, Y.; Mourabit, N.; Arakrak, A.; Bakkali, M.; Laglaoui, A. Phenotypic and molecular study of carbapenemase-producing Enterobacteriaceae in a regional hospital in northern Morocco. J. Clin. Med. Sci. 2019, 3, 113. [Google Scholar]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791. [Google Scholar] [CrossRef]
- Lopes, E.; Saavedra, M.J.; Costa, E.; de Lencastre, H.; Poirel, L.; Aires-de-Sousa, M. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in northern Portugal: Predominance of KPC-2 and OXA-48. J. Glob. Antimicrob. Resist. 2020, 22, 349–353. [Google Scholar] [CrossRef]
- Hussein, N.H.; Hussein AL-Kakei, S.N.; Taha, B.M. The predominance of Klebsiella pneumoniae carbapenemase (KPC-type) gene among high-level carbapenem-resistant Klebsiella pneumoniae isolates in Baghdad, Iraq. Mol. Biol. Rep. 2022, 49, 4653–4658. [Google Scholar] [CrossRef]
- Elmonir, W.; Abd El-Aziz, N.K.; Tartor, Y.H.; Moustafa, S.M.; Abo Remela, E.M.; Eissa, R.; Saad, H.A.; Tawab, A.A. Emergence of Colistin and Carbapenem Resistance in Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae Isolated from Chickens and Humans in Egypt. Biology 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Singh-Moodley, A.; Perovic, O. Antimicrobial susceptibility testing in predicting the presence of carbapenemase genes in Enterobacteriaceae in South Africa. BMC Infect. Dis. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kateete, D.P.; Nakanjako, R.; Namugenyi, J.; Erume, J.; Joloba, M.L.; Najjuka, C.F. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago hospital in Kampala, Uganda (2007–2009). Springerplus 2016, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Okoche, D.; Asiimwe, B.B.; Katabazi, F.A.; Kato, L.; Najjuka, C.F. Prevalence and characterization of carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral Hospital, Uganda. PLoS ONE 2015, 10, e0135745. [Google Scholar] [CrossRef] [PubMed]
- Ampaire, L.M.; Katawera, V.; Nyehangane, D.; Boum, Y.; Bazira, J. Epidemiology of carbapenem resistance among multi-drug resistant Enterobacteriaceae in Uganda. Br. Microbiol. Res. J. 2015, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Wade, D.M.; Hankins, M.; Smyth, D.A.; Rhone, E.E.; Mythen, M.G.; Howell, D.C.; Weinman, J.A. Detecting acute distress and risk of future psychological morbidity in critically ill patients: Validation of the intensive care psychological assessment tool. Crit. Care 2014, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Masseron, A.; Poirel, L.; Ali, B.J.; Syed, M.A.; Nordmann, P. Molecular characterization of multidrug-resistance in Gram-negative bacteria from the Peshawar teaching hospital, Pakistan. New Microbes New Infect. 2019, 32, 100605. [Google Scholar] [CrossRef]
- Sadeghi, M.R.; Ghotaslou, R.; Akhi, M.T.; Asgharzadeh, M.; Hasani, A. Molecular characterization of extended-spectrum β-lactamase, plasmid-mediated AmpC cephalosporinase and carbapenemase genes among Enterobacteriaceae isolates in five medical centres of East and West Azerbaijan, Iran. J. Med. Microbiol. 2016, 65, 1322–1331. [Google Scholar] [CrossRef]
- Haji, S.H.; Aka, S.T.H.; Ali, F.A. Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS ONE 2021, 16, e0259005. [Google Scholar] [CrossRef]
- Solgi, H.; Badmasti, F.; Aminzadeh, Z.; Giske, C.G.; Pourahmad, M.; Vaziri, F.; Shahcheraghi, F. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: First report of co-production of bla NDM-7 and bla OXA-48. Eur. J. Clin. Microbiol. Infect Dis. 2017, 36, 2127–2135. [Google Scholar] [CrossRef]
- Di Tella, D.; Tamburro, M.; Guerrizio, G.; Fanelli, I.; Sammarco, M.L.; Ripabelli, G. Molecular Epidemiological Insights into Colistin-Resistant and Carbapenemases-Producing Clinical Klebsiella pneumoniae Isolates. Infect Drug Resist. 2019, 12, 3783–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! J. Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem resistance: A review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.T.; Lai, S.Y.; Yi, W.C.; Hsueh, P.R.; Liu, K.L.; Chang, S.C. Klebsiella pneumoniae genotype K1: An emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin. Infect Dis. 2007, 45, 284–293. [Google Scholar] [CrossRef]
- Fung, C.P.; Chang, F.Y.; Lee, S.C.; Hu, B.S.; Kuo, B.I.; Liu, C.Y.; Siu, L.K. A global emerging disease of Klebsiella pneumoniae liver abscess: Is serotype K1 an important factor for complicated endophthalmitis? Gut 2002, 50, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.J.; Fang, H.C.; Yang, H.C.; Lin, T.L.; Hsieh, P.F.; Tsai, F.C.; Wang, J.T. Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J. Clin. Microbiol. 2008, 46, 2231–2240. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.T.; Wang, Y.P.; Wang, F.D.; Fung, C.P. Community-onset Klebsiella pneumoniae pneumonia in Taiwan: Clinical featurof the disease and associated microbiological characteristics of isolates from pneumonia and nasopharynx. Front. Microbiol. 2015, 6, 122. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.P.; Fang, C.T.; Lai, S.Y.; Chang, S.C.; Wang, J.T. Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J. Infect Dis. 2006, 193, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Hegerle, N.; Nkeze, J.; Sen, S.; Jamindar, S.; Nasrin, S.; Sen, S.; Permala-Booth, J.; Sinclair, J.; Tapia, M.D.; et al. The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. Front. Microbiol. 2020, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Soltani, E.; Hasani, A.; Rezaee, M.A.; Nahandi, M.; Hasani, A.; Gholizadeh, P. An Alliance of Carbapenem-Resistant Klebsiella pneumoniae with Precise Capsular Serotypes and Clinical Determinants: A Disquietude in Hospital Setting. Can. J. Infect Dis. Med. Microbiol. 2022, 21, 6086979. [Google Scholar] [CrossRef] [PubMed]
Primers Targeting Capsular-Encoding Genes | ||
---|---|---|
Target Genes | Primer Sequence (5′-3′) | Amplicon Size (bp) |
khe | F: TGA TTG CAT TCG CCA CTG G R: GGT CAA CCC AAC GAT CCT G | 428 |
WzyK1 | F: GGT GCT CTT TAC ATC ATT GC R: GCA ATG GCC ATT TGC GTT AG | 1283 |
WzyK2 | F: GAC CCG ATA TTC ATA CTT GAC AGA G R: CCT GAA GTA AAA TCG TAA ATA GAT GGC | 641 |
WzxK5 | F: TGG TAG TGA TGC TCG CGA R: CCT GAA CCC ACC CCA ATC | 280 |
WzyK20 | F: CGG TGC TAC AGT GCA TCA TT R: GTT ATA CGA TGC TCA GTC GC | 741 |
WzxK54 | F: CAT TAG CTC AGT GGT TGG CT R: GCT TGA CAA ACA CCA TAG CAG | 881 |
Wzy57 | F: CTC AGG GCT AGA AGT GTC AT R: CAC TAA CCC AGA AAG TCG AG | 1037 |
WzyK3 | F: TAG GCA ATT GAC TTT AGG TG R: AGT GAA TCA GCC TTC ACC T | 549 |
Primers targeting carbapenemases-encoding genes | ||
BlaKPC | F-ATG TCA CTG TAT CGC CGT CT R-TTT TCA GAG CCT TAC TGC CC | 538 |
BlaIMP-1 | F-TGA GCA AGT TAT CTG TAT TC R-TTA GTT GCT TGG TTT TGA TG | 139 |
BlaIMP-2 | F-GGC AGT CGC CCT AAA ACA AA R-TAG TTA CTT GGC TGT GAT GG | 139 |
BlaVIM | F-GAT GGT GTT TGG TCG CAT A R-CGA ATG CGC AGC ACC AG | 390 |
BlaNDM | F-GGT TTG GCG ATC TGG TTT TC R-CGG AAT GGC TCA TCA CGA TC | 521 |
BlaOXA-48 | F-TTG GTG GCA TCG ATT ATC GG R-GAG CAC TTC TTT TGT GAT GGC | 281 |
Sample Type (Number) | Klebsiella pneumoniae Isolates |
---|---|
Urine (216) | 80 (50%) |
Pus swab (103) | 40 (25%) |
Sputum (78) | 20 (12.5%) |
Tracheal aspirate (55) | 10 (6.25%) |
Blood (48) | 10 (6.25%) |
Total (500) | 160 (100%) |
Carbapenemase Gene Tested | Gene Prevalence in Total Klebsiella Pneumoniae Isolates |
---|---|
BlaKPC | 7 (4%) |
BlaIMP-1&2 | 12 (7.5%) |
BlaVIM | 24 (15%) |
BlaNDM | 6 (3.8%) |
BlaOXA-48 | 25 (15.5%) |
Total | 74 (46.25%) |
Carbapenemase Gene Tested | Number of Isolates Harboring Carbapenemases |
---|---|
BlaKPC | 4 |
BlaIMP-1&2 | 8 |
BlaVIM | 21 |
BlaNDM | 2 |
BlaOXA-48 | 17 |
BlaNDM and BlaOXA-48 | 1 |
BlaKPC and BlaIMP-1&2 | 1 |
BlaKPC and BlaOXA-48 | 1 |
BlaIMP-1&2 and BlaOXA-48 | 2 |
BlaVIM and BlaOXA-48 | 2 |
BlaVIM and BlaNDM | 1 |
BlaNDM, BlaKPC, and BlaOXA-48 | 1 |
BlaIMP-1&2, BlaNDM, and BlaOXA-48 | 1 |
Total | 62 |
Carbapenemase-Encoding Genes | Number of Isolates Harboring the Gene | Number of Isolates Harboring the Gene and Phenotypically Resistant | Number of Isolates Harboring the Gene and Phenotypically Sensitive | Percentage of Resistance Conferred by Gene Presence |
---|---|---|---|---|
BlaKPC | 7 | 5 | 2 | 71.43% |
BlaIMP-1&2 | 12 | 9 | 3 | 75% |
BlaVIM | 24 | 22 | 2 | 91.67% |
BlaNDM | 6 | 4 | 2 | 66.67% |
BlaOXA-48 | 25 | 22 | 3 | 88% |
Pattern Number | Code Number | Antimicrobial Resistance Pattern | MAR Index | Carbapenemase Genes | Capsular Genes |
---|---|---|---|---|---|
1 | 1 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaKPC | K1 |
2 | 3 U | AMO, SXT, CXM, TPZ, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaVIM | K54 |
3 | 7 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CIP, CTX, IMI, MEM, ERT | 1.0 | blaIMP-1&2 | K1 |
4 | 9 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaOXA-48 | K20 |
5 | 17 U | AMO, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaVIM | K1 |
6 | 19 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaOXA-48 | K54 |
7 | 23 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | K1 |
8 | 27 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaVIM | K54 |
9 | 31 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaOXA-48 | K1 |
10 | 33 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | K20 |
11 | 43 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaVIM | K57 |
12 | 45 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaIMP-1&2 | K54 |
13 | 48 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaKPC, blaIMP-1&2 | K1 |
14 | 54 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaVIM | K57 |
15 | 58 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaNDM | K2 |
16 | 64 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaOXA-48 | K57 |
17 | 67 U | AMO, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.77 | blaOXA-48 | K54 |
18 | 75 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaVIM | K54 |
19 | 77 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaVIM | K1 |
20 | 79 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaIMP-1&2,blaOXA-48 | - |
21 | 91 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaVIM | K20 |
22 | 107 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaVIM, blaOXA-48 | K1 |
23 | 110 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaVIM | K57 |
24 | 114 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | K1 |
25 | 116 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaVIM, blaOXA-48 | K54 |
26 | 121 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaVIM | K1 |
27 | 124 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | K1 |
28 | 128 U | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaKPC | - |
29 | 129 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaNDM, blaKPC&,blaOXA-48 | K54 |
30 | 134 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | K20 |
31 | 137 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaIMP-1&2 | - |
32 | 139 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, ERT | 0.92 | blaVIM | K1 |
33 | 144 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | K1 |
34 | 156 U | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaVIM, blaNDM | K54 |
35 | 4 P | AMO, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaOXA-48 | K57 |
36 | 15 P | AMO, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.77 | blaNDM,blaOXA-48 | K57 |
37 | 35 P | AMO, SXT, CXM, TPZ, CRO, FEB, CAZ, CTX, CTP, IMI, MEM, ERT | 0.92 | blaKPC | K57 |
38 | 42 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | K2 |
39 | 50 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaOXA-48 | K20 |
40 | 66 P | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP | 0.69 | blaVIM | K2 |
41 | 69 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaIMP-1&2 | K1 |
42 | 71 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | - |
43 | 82 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaKPC | K57 |
44 | 87 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | - |
45 | 89 P | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaOXA-48 | K57 |
46 | 96 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaIMP-1&2,blaOXA-48 | K1 |
47 | 98 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | - |
48 | 106 P | AMO, SXT, CXM, TPZ, FOX, CRO FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaIMP-1&2 | K54 |
49 | 113 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, ERT | 0.92 | blaOXA-48 | K20 |
50 | 120 P | AMO, SXT, CXM, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.85 | blaIMP-1&2 | K57 |
51 | 122 P | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 0.92 | blaIMP-1&2 | K54 |
52 | 130 P | AMO, SXT, CXM, TPZ, FOX, CRO FEB, CAZ, CTX, CIP | 0.77 | blaVIM | K1 |
53 | 135 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CTP, IMI, MEM, ERT | 1.0 | blaIMP-1&2,blaNDM, blaOXA-48 | K57 |
54 | 140 P | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | K54 |
55 | 40 S | AMO, SXT, CXM, TPZ, CRO, FEB, CAZ, CTX, CTP, IMI, MEM, ERT | 0.92 | blaNDM | K1 |
56 | 62 S | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP, IMI, MEM, ERT | 1.0 | blaKPC, blaOXA-48 | K1 |
57 | 101 S | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, CIP | 0.77 | blaOXA-48 | K57 |
58 | 151 S | AMO, SXT, CXM, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaIMP-1&2 | K57 |
59 | 60 B | AMO, SXT, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.92 | blaVIM | K57 |
60 | 84 B | AMO, CXM, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.69 | blaOXA-48 | K1 |
61 | 10 T | AMO, CXM, TPZ, FOX, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaVIM | K2 |
62 | 24 T | AMO, SXT, CXM, TPZ, CRO, FEB, CAZ, CTX, IMI, MEM, ERT | 0.85 | blaOXA-48 | K57 |
BlaOXA-48 (n = 25) | BlaVIM (n = 24) | BlaIMP1&2 (n = 12) | blaKPC (n = 7) | blaNDM (n = 6) | χ2 | p-Value | |
---|---|---|---|---|---|---|---|
K1 | 6 (24%) | 9 (37.5%) | 4 (33.3%) | 3 (42.9%) | 1 (16.7%) | 2.170 | 0.733 |
K2 | 1 (4%) | 2 (8.3%) | 0 (0%) | 0 (0%) | 1 (16.7%) | 2.876 | 0.481 |
K20 | 4 (16%) | 2 (8.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 2.663 | 0.554 |
K54 | 5 (20%) | 5 (20.8%) | 3 (25%) | 1 (14.3%) | 2 (33.3%) | 1.152 | 0.932 |
K57 | 7 (28%) | 4 (16.7%) | 3 (25%) | 2 (28.6%) | 2 (33.3%) | 1.752 | 0.817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, M.S.; Hagras, M.M.; Shalaby, M.M.; Zamzam, Y.A.; Elkolaly, R.M.; Abdelwahab, M.A.; Maxwell, S.Y. Genotypic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolated from an Egyptian University Hospital. Pathogens 2023, 12, 121. https://doi.org/10.3390/pathogens12010121
Taha MS, Hagras MM, Shalaby MM, Zamzam YA, Elkolaly RM, Abdelwahab MA, Maxwell SY. Genotypic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolated from an Egyptian University Hospital. Pathogens. 2023; 12(1):121. https://doi.org/10.3390/pathogens12010121
Chicago/Turabian StyleTaha, Marwa S., Maha M. Hagras, Marwa M. Shalaby, Yosra Abdelmonem Zamzam, Reham M. Elkolaly, Marwa A. Abdelwahab, and Sara Youssef Maxwell. 2023. "Genotypic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolated from an Egyptian University Hospital" Pathogens 12, no. 1: 121. https://doi.org/10.3390/pathogens12010121
APA StyleTaha, M. S., Hagras, M. M., Shalaby, M. M., Zamzam, Y. A., Elkolaly, R. M., Abdelwahab, M. A., & Maxwell, S. Y. (2023). Genotypic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Isolated from an Egyptian University Hospital. Pathogens, 12(1), 121. https://doi.org/10.3390/pathogens12010121