Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors
Abstract
:1. Introduction
2. Promoters Used for Transcriptional Targeting of AAV Vectors to the Myocardium
2.1. Myosin Light Chain (MLC)-2v Promoter
2.2. Atrial Natriuretic Factor (ANF) Promoter
2.3. Sarcolipin (SLN) Promoter
2.4. Cardiac Troponin T (cTnT) Promoter
2.5. Alpha Myosin Heavy Chain (αMHC) Promoter
2.6. Muscle Creatine Kinase (MCK) Promoter
2.7. Desmin Promoter
2.8. SPc5-12 Synthetic Promoter
3. Cardio-Specific Enhancers
4. Cis-Regulatory Elements of the Cardiac Conduction System (CCS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helms, A.S.; Thompson, A.D.; Day, S.M. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl. Sci. 2022, 7, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kariya, T.; Ishikawa, K. Targeted Delivery of Therapeutic Agents to the Heart. Nat. Rev. Cardiol. 2021, 18, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Geisler, A.; Jungmann, A.; Kurreck, J.; Poller, W.; Katus, H.A.; Vetter, R.; Fechner, H.; Müller, O.J. MicroRNA122-Regulated Transgene Expression Increases Specificity of Cardiac Gene Transfer upon Intravenous Delivery of AAV9 Vectors. Gene Ther. 2011, 18, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Kraszewska, I.; Tomczyk, M.; Andrysiak, K.; Biniecka, M.; Geisler, A.; Fechner, H.; Zembala, M.; Stępniewski, J.; Dulak, J.; Jaźwa-Kusior, A. Variability in Cardiac MiRNA-122 Level Determines Therapeutic Potential of MiRNA-Regulated AAV Vectors. Mol. Ther. Methods Clin. Dev. 2020, 17, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Hampsey, M. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery. Microbiol. Mol. Biol. Rev. 1998, 62, 465–503. [Google Scholar] [CrossRef] [PubMed]
- Haberle, V.; Stark, A. Eukaryotic Core Promoters and the Functional Basis of Transcription Initiation. Nat. Rev. Mol. Cell Biol. 2018, 19, 621–637. [Google Scholar] [CrossRef]
- Elgin, S.C. The Formation and Function of DNase I Hypersensitive Sites in the Process of Gene Activation. J. Biol. Chem. 1988, 263, 19259–19262. [Google Scholar] [CrossRef]
- Müller, O.J.; Katus, H.A.; Bekeredjian, R. Targeting the Heart with Gene Therapy-Optimized Gene Delivery Methods. Cardiovasc. Res. 2007, 73, 453–462. [Google Scholar] [CrossRef]
- Chamberlain, K.; Riyad, J.M.; Garnett, T.; Kohlbrenner, E.; Mookerjee, A.; Elmastour, F.; Benard, L.; Chen, J.; VandenDriessche, T.; Chuah, M.K.; et al. A Calsequestrin Cis-Regulatory Motif Coupled to a Cardiac Troponin T Promoter Improves Cardiac Adeno-Associated Virus Serotype 9 Transduction Specificity. Hum. Gene Ther. 2018, 29, 927–937. [Google Scholar] [CrossRef]
- Werfel, S.; Jungmann, A.; Lehmann, L.; Ksienzyk, J.; Bekeredjian, R.; Kaya, Z.; Leuchs, B.; Nordheim, A.; Backs, J.; Engelhardt, S.; et al. Rapid and Highly Efficient Inducible Cardiac Gene Knockout in Adult Mice Using AAV-Mediated Expression of Cre Recombinase. Cardiovasc. Res. 2014, 104, 15–23. [Google Scholar] [CrossRef]
- Pleger, S.T.; Most, P.; Boucher, M.; Soltys, S.; Chuprun, J.K.; Pleger, W.; Gao, E.; Dasgupta, A.; Rengo, G.; Remppis, A.; et al. Stable Myocardial-Specific AAV6-S100A1 Gene Therapy Results in Chronic Functional Heart Failure Rescue. Circulation 2007, 115, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hao, Y.; Nie, X.; Zhang, X.; Yang, G.; Wang, Q. Construction of PR39 Recombinant AAV under Control of the HRE Promoter and the Effect of Recombinant AAV on Gene Therapy of Ischemic Heart Disease. Exp. Ther. Med. 2012, 4, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Skopenkova, V.V.; Egorova, T.V.; Bardina, M.V. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021, 13, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J. Feher Quantitative Human Physiology: An Introduction. In Academic Press Series in Biomedical Engineering, 2nd ed.; Elsevier: Amsterdam, The Netherlands; AP: Boston, MA, USA, 2017; ISBN 978-0-12-800883-6. [Google Scholar]
- Minamisawa, S.; Wang, Y.; Chen, J.; Ishikawa, Y.; Chien, K.R.; Matsuoka, R. Atrial Chamber-Specific Expression of Sarcolipin Is Regulated during Development and Hypertrophic Remodeling. J. Biol. Chem. 2003, 278, 9570–9575. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.; Kurtz, A. Influence of Salt Intake on Atrial Natriuretic Peptide Gene Expression in Rats. Pflugers Arch. 1997, 433, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.; Lyon, R.C.; Chen, J. Functions of Myosin Light Chain-2 (MYL2) in Cardiac Muscle and Disease. Gene 2015, 569, 14–20. [Google Scholar] [CrossRef]
- Anderson, P.A.W.; Greig, A.; Mark, T.M.; Malouf, N.N.; Oakeley, A.E.; Ungerleider, R.M.; Allen, P.D.; Kay, B.K. Molecular Basis of Human Cardiac Troponin T Isoforms Expressed in the Developing, Adult, and Failing Heart. Circ. Res. 1995, 76, 681–686. [Google Scholar] [CrossRef]
- Molkentin, J.D.; Jobe, S.M.; Markham, B.E. Alpha-Myosin Heavy Chain Gene Regulation: Delineation and Characterization of the Cardiac Muscle-Specific Enhancer and Muscle-Specific Promoter. J. Mol. Cell. Cardiol. 1996, 28, 1211–1225. [Google Scholar] [CrossRef]
- Padala, S.K.; Cabrera, J.-A.; Ellenbogen, K.A. Anatomy of the Cardiac Conduction System. Pacing Clin. Electrophysiol. PACE 2021, 44, 15–25. [Google Scholar] [CrossRef]
- Rothmann, T.; Katus, H.A.; Hartong, R.; Perricaudet, M.; Franz, W.M. Heart Muscle-Specific Gene Expression Using Replication Defective Recombinant Adenovirus. Gene Ther. 1996, 3, 919–926. [Google Scholar]
- Franz, W.M.; Rothmann, T.; Frey, N.; Katus, H.A. Analysis of Tissue-Specific Gene Delivery by Recombinant Adenoviruses Containing Cardiac-Specific Promoters. Cardiovasc. Res. 1997, 35, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Muller, O.; Leuchs, B.; Pleger, S.; Grimm, D.; Franz, W.; Katus, H.; Kleinschmidt, J. Improved Cardiac Gene Transfer by Transcriptional and Transductional Targeting of Adeno-Associated Viral Vectors. Cardiovasc. Res. 2006, 70, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Raake, P.W.; Hinkel, R.; Müller, S.; Delker, S.; Kreuzpointner, R.; Kupatt, C.; Katus, H.A.; Kleinschmidt, J.A.; Boekstegers, P.; Müller, O.J. Cardio-Specific Long-Term Gene Expression in a Porcine Model after Selective Pressure-Regulated Retroinfusion of Adeno-Associated Viral (AAV) Vectors. Gene Ther. 2008, 15, 12–17. [Google Scholar] [CrossRef]
- Müller, O.J.; Schinkel, S.; Kleinschmidt, J.A.; Katus, H.A.; Bekeredjian, R. Augmentation of AAV-Mediated Cardiac Gene Transfer after Systemic Administration in Adult Rats. Gene Ther. 2008, 15, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Raake, P.W.J.; Schlegel, P.; Ksienzyk, J.; Reinkober, J.; Barthelmes, J.; Schinkel, S.; Pleger, S.; Mier, W.; Haberkorn, U.; Koch, W.J.; et al. AAV6.ΒARKct Cardiac Gene Therapy Ameliorates Cardiac Function and Normalizes the Catecholaminergic Axis in a Clinically Relevant Large Animal Heart Failure Model. Eur. Heart J. 2013, 34, 1437–1447. [Google Scholar] [CrossRef] [PubMed]
- Gruh, I.; Wunderlich, S.; Winkler, M.; Schwanke, K.; Heinke, J.; Blömer, U.; Ruhparwar, A.; Rohde, B.; Li, R.-K.; Haverich, A.; et al. Human CMV Immediate-Early Enhancer: A Useful Tool to Enhance Cell-Type-Specific Expression from Lentiviral Vectors. J. Gene Med. 2008, 10, 21–32. [Google Scholar] [CrossRef]
- Lee, C.-J.; Fan, X.; Guo, X.; Medin, J.A. Promoter-Specific Lentivectors for Long-Term, Cardiac-Directed Therapy of Fabry Disease. J. Cardiol. 2011, 57, 115–122. [Google Scholar] [CrossRef]
- Phillips, M.I.; Tang, Y.; Schmidt-Ott, K.; Qian, K.; Kagiyama, S. Vigilant Vector: Heart-Specific Promoter in an Adeno-Associated Virus Vector for Cardioprotection. Hypertension 2002, 39, 651–655. [Google Scholar] [CrossRef]
- Su, H.; Joho, S.; Huang, Y.; Barcena, A.; Arakawa-Hoyt, J.; Grossman, W.; Kan, Y.W. Adeno-Associated Viral Vector Delivers Cardiac-Specific and Hypoxia-Inducible VEGF Expression in Ischemic Mouse Hearts. Proc. Natl. Acad. Sci. USA 2004, 101, 16280–16285. [Google Scholar] [CrossRef]
- Small, E.M.; Krieg, P.A. Transgenic Analysis of the Atrialnatriuretic Factor (ANF) Promoter: Nkx2-5 and GATA-4 Binding Sites Are Required for Atrial Specific Expression of ANF. Dev. Biol. 2003, 261, 116–131. [Google Scholar] [CrossRef]
- Takahashi, T.; Allen, P.D.; Izumo, S. Expression of A-, B-, and C-Type Natriuretic Peptide Genes in Failing and Developing Human Ventricles. Correlation with Expression of the Ca(2+)-ATPase Gene. Circ. Res. 1992, 71, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Scott, L.; Campbell, H.M.; Pan, X.; Alsina, K.M.; Reynolds, J.; Philippen, L.E.; Hulsurkar, M.; Lagor, W.R.; Li, N.; et al. Atrial-Specific Gene Delivery Using an Adeno-Associated Viral Vector. Circ. Res. 2019, 124, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Hulsurkar, M.M.; Lahiri, S.K.; Moore, O.; Moreira, L.M.; Abu-Taha, I.; Kamler, M.; Dobrev, D.; Nattel, S.; Reilly, S.; Wehrens, X.H.T. Atrial-Specific LKB1 Knockdown Represents a Novel Mouse Model of Atrial Cardiomyopathy With Spontaneous Atrial Fibrillation. Circulation 2021, 144, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.R.; Knowlton, K.U.; Zhu, H.; Chien, S. Regulation of Cardiac Gene Expression during Myocardial Growth and Hypertrophy: Molecular Studies of an Adaptive Physiologic Response. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1991, 5, 3037–3046. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Kohlbrenner, E.; Kim, O.; Hajjar, R.J.; Jeong, D. Enhancing Atrial-specific Gene Expression Using a Calsequestrin Cis-Regulatory Module 4 with a Sarcolipin Promoter. J. Gene Med. 2018, 20, e3060. [Google Scholar] [CrossRef] [PubMed]
- Rincon, M.Y.; Sarcar, S.; Danso-Abeam, D.; Keyaerts, M.; Matrai, J.; Samara-Kuko, E.; Acosta-Sanchez, A.; Athanasopoulos, T.; Dickson, G.; Lahoutte, T.; et al. Genome-Wide Computational Analysis Reveals Cardiomyocyte-Specific Transcriptional Cis-Regulatory Motifs That Enable Efficient Cardiac Gene Therapy. Mol. Ther. 2015, 23, 43–52. [Google Scholar] [CrossRef]
- Zheng, J.; Yancey, D.M.; Ahmed, M.I.; Wei, C.-C.; Powell, P.C.; Shanmugam, M.; Gupta, H.; Lloyd, S.G.; McGiffin, D.C.; Schiros, C.G.; et al. Increased Sarcolipin Expression and Adrenergic Drive in Humans With Preserved Left Ventricular Ejection Fraction and Chronic Isolated Mitral Regurgitation. Circ. Heart Fail. 2014, 7, 194–202. [Google Scholar] [CrossRef]
- Pashmforoush, M.; Lu, J.T.; Chen, H.; Amand, T.S.; Kondo, R.; Pradervand, S.; Evans, S.M.; Clark, B.; Feramisco, J.R.; Giles, W.; et al. Nkx2-5 Pathways and Congenital Heart Disease. Cell 2004, 117, 373–386. [Google Scholar] [CrossRef]
- Jin, J.P. Alternative RNA Splicing-Generated Cardiac Troponin T Isoform Switching: A Non-Heart-Restricted Genetic Programming Synchronized in Developing Cardiac and Skeletal Muscles. Biochem. Biophys. Res. Commun. 1996, 225, 883–889. [Google Scholar] [CrossRef]
- Wei, B.; Jin, J.-P. TNNT1, TNNT2, and TNNT3: Isoform Genes, Regulation, and Structure-Function Relationships. Gene 2016, 582, 1–13. [Google Scholar] [CrossRef]
- Prasad, K.-M.R.; Xu, Y.; Yang, Z.; Acton, S.T.; French, B.A. Robust Cardiomyocyte-Specific Gene Expression Following Systemic Injection of AAV: In Vivo Gene Delivery Follows a Poisson Distribution. Gene Ther. 2011, 18, 43–52. [Google Scholar] [CrossRef]
- Bezzerides, V.J.; Caballero, A.; Wang, S.; Ai, Y.; Hylind, R.J.; Lu, F.; Heims-Waldron, D.A.; Chambers, K.D.; Zhang, D.; Abrams, D.J.; et al. Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca2+/Calmodulin-Dependent Kinase II. Circulation 2019, 140, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, A.; Denjoy, I.; Guicheney, P. Catecholaminergic Polymorphic Ventricular Tachycardia. Circ. Arrhythm. Electrophysiol. 2012, 5, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Grund, A.; Szaroszyk, M.; Korf-Klingebiel, M.; Malek Mohammadi, M.; Trogisch, F.A.; Schrameck, U.; Gigina, A.; Tiedje, C.; Gaestel, M.; Kraft, T.; et al. TIP30 Counteracts Cardiac Hypertrophy and Failure by Inhibiting Translational Elongation. EMBO Mol. Med. 2019, 11, e10018. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, L.H.; Jebessa, Z.H.; Kreusser, M.M.; Horsch, A.; He, T.; Kronlage, M.; Dewenter, M.; Sramek, V.; Oehl, U.; Krebs-Haupenthal, J.; et al. A Proteolytic Fragment of Histone Deacetylase 4 Protects the Heart from Failure by Regulating the Hexosamine Biosynthetic Pathway. Nat. Med. 2018, 24, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, R.; Huggins, G.S.; Snyder, R.O. Cardiomyocyte-Specific Gene Expression Following Recombinant Adeno-Associated Viral Vector Transduction. J. Biol. Chem. 2002, 277, 18979–18985. [Google Scholar] [CrossRef]
- Brady, R.O.; Gal, A.E.; Bradley, R.M.; Martensson, E.; Warshaw, A.L.; Laster, L. Enzymatic Defect in Fabry’s Disease: Ceramidetrihexosidase Deficiency. N. Engl. J. Med. 1967, 276, 1163–1167. [Google Scholar] [CrossRef]
- Nakao, K.; Minobe, W.; Roden, R.; Bristow, M.R.; Leinwand, L.A. Myosin Heavy Chain Gene Expression in Human Heart Failure. J. Clin. Investig. 1997, 100, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Jaynes, J.B.; Chamberlain, J.S.; Buskin, J.N.; Johnson, J.E.; Hauschka, S.D. Transcriptional Regulation of the Muscle Creatine Kinase Gene and Regulated Expression in Transfected Mouse Myoblasts. Mol. Cell. Biol. 1986, 6, 2855–2864. [Google Scholar] [CrossRef]
- Hauser, M.A.; Robinson, A.; Hartigan-O’Connor, D.; Williams-Gregory, D.; Buskin, J.N.; Apone, S.; Kirk, C.J.; Hardy, S.; Hauschka, S.D.; Chamberlain, J.S. Analysis of Muscle Creatine Kinase Regulatory Elements in Recombinant Adenoviral Vectors. Mol. Ther. 2000, 2, 16–25. [Google Scholar] [CrossRef]
- Salva, M.Z.; Himeda, C.L.; Tai, P.W.; Nishiuchi, E.; Gregorevic, P.; Allen, J.M.; Finn, E.E.; Nguyen, Q.G.; Blankinship, M.J.; Meuse, L.; et al. Design of Tissue-Specific Regulatory Cassettes for High-Level RAAV-Mediated Expression in Skeletal and Cardiac Muscle. Mol. Ther. 2007, 15, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, S.; Bird, A.; Koeberl, D. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease. Hum. Gene Ther. 2015, 26, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Eastman, E.M.; Schwartz, R.J.; Draghia-Akli, R. Synthetic Muscle Promoters: Activities Exceeding Naturally Occurring Regulatory Sequences. Nat. Biotechnol. 1999, 17, 241–245. [Google Scholar] [CrossRef]
- Malerba, A.; Sidoli, C.; Lu-Nguyen, N.; Herath, S.; Le Heron, A.; Abdul-Razak, H.; Jarmin, S.; VandenDriessche, T.; Chuah, M.K.; Dickson, G.; et al. Dose-Dependent Microdystrophin Expression Enhancement in Cardiac Muscle by a Cardiac-Specific Regulatory Element. Hum. Gene Ther. 2021, 32, 1138–1146. [Google Scholar] [CrossRef]
- Pacak, C.A.; Sakai, Y.; Thattaliyath, B.D.; Mah, C.S.; Byrne, B.J. Tissue Specific Promoters Improve Specificity of AAV9 Mediated Transgene Expression Following Intra-Vascular Gene Delivery in Neonatal Mice. Genet. Vaccines Ther. 2008, 6, 13. [Google Scholar] [CrossRef]
- Ghaderi, S.; Alidadiani, N.; Soleimani Rad, J.; Heidari, H.R.; Dilaver, N.; Mansoori, B.; Rhabarghazi, R.; Parvizi, R.; Khaze Shahgoli, V.; Baradaran, B. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector. Adv. Pharm. Bull. 2018, 8, 29–38. [Google Scholar] [CrossRef]
- Akerberg, B.N.; Gu, F.; VanDusen, N.J.; Zhang, X.; Dong, R.; Li, K.; Zhang, B.; Zhou, B.; Sethi, I.; Ma, Q.; et al. A Reference Map of Murine Cardiac Transcription Factor Chromatin Occupancy Identifies Dynamic and Conserved Enhancers. Nat. Commun. 2019, 10, 4907. [Google Scholar] [CrossRef] [PubMed]
- Gacita, A.M.; Fullenkamp, D.E.; Ohiri, J.; Pottinger, T.; Puckelwartz, M.J.; Nobrega, M.A.; McNally, E.M. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation 2021, 143, 1302–1316. [Google Scholar] [CrossRef]
- Cheng, S. Long-Term Outcomes in Individuals With Prolonged PR Interval or First-Degree Atrioventricular Block. JAMA 2009, 301, 2571. [Google Scholar] [CrossRef]
- Nussinovitch, U.; Gepstein, L. Optogenetics for in Vivo Cardiac Pacing and Resynchronization Therapies. Nat. Biotechnol. 2015, 33, 750–754. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, T.; Liu, C.; Gu, S.; Chen, Y. Generation of Shox2-Cre Allele for Tissue Specific Manipulation of Genes in the Developing Heart, Palate, and Limb: Generation and Application of Shox2-Cre Allele. Genesis 2013, 51, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xian, W.; Bellin, M.; Dorn, T.; Tian, Q.; Goedel, A.; Dreizehnter, L.; Schneider, C.M.; Ward-van Oostwaard, D.; Ng, J.K.M.; et al. Subtype-Specific Promoter-Driven Action Potential Imaging for Precise Disease Modelling and Drug Testing in HiPSC-Derived Cardiomyocytes. Eur. Heart J. 2017, 38, 292–301. [Google Scholar] [CrossRef] [PubMed]
- van Weerd, J.H.; Badi, I.; van den Boogaard, M.; Stefanovic, S.; van de Werken, H.J.G.; Gomez-Velazquez, M.; Badia-Careaga, C.; Manzanares, M.; de Laat, W.; Barnett, P.; et al. A Large Permissive Regulatory Domain Exclusively Controls Tbx3 Expression in the Cardiac Conduction System. Circ. Res. 2014, 115, 432–441. [Google Scholar] [CrossRef] [PubMed]
- van Duijvenboden, K.; Ruijter, J.M.; Christoffels, V.M. Gene Regulatory Elements of the Cardiac Conduction System. Brief. Funct. Genom. 2014, 13, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.A.; Bosada, F.M.; van Weerd, J.H.; van Duijvenboden, K.; Wang, J.; Mommersteeg, M.T.M.; Hooijkaas, I.B.; Wakker, V.; de Gier-de Vries, C.; Coronel, R.; et al. T-Box Transcription Factor 3 Governs a Transcriptional Program for the Function of the Mouse Atrioventricular Conduction System. Proc. Natl. Acad. Sci. USA 2020, 117, 18617–18626. [Google Scholar] [CrossRef]
Promoter | Specificity |
---|---|
MLC-2v | The 1.5 kb promoter coupled to the CMV enhancer increased luciferase expression in mice systemically delivered by AAV2; some ectopic expression in liver, lung, and skeletal muscle remained [23]. |
The 1.5 kb promoter coupled to CMV enhancer in an AAV9 vector restored S100A1 expression in left ventricular myocardium of pigs after coronary venous retrofusion in a model of ischemic cardiomyopathy [11]. | |
A 281 bp promoter fragment specifically drives (low) GFP expression in mice delivered by AAV2 and neonatal rat myocardium [8]. | |
A 263 bp promoter fragment coupled to 567 bp CMV enhancer drives GFP expression in murine heart on levels comparable to CMV promoter after systemic delivery by AAV9, but ectopic expression in liver remained [3]. | |
ANF | The 653 bp promoter mediates (low) atria specific GFP expression after systemic delivery by AAV9 in mice [33]. |
SLN | The 1029 bp promoter coupled to 219 bp Cas2 enhancer element systemically delivered by AAV9 increased luciferase and GFP expression in murine atria and reduces off-target expression, compared to SLN promoter only [37]. |
cTnT | A 418 pb chicken promoter sequence drives luciferase and GFP expression in murine myocardium best when systemically delivered by AAV9 followed by AAV8, with significantly reduced ectopic expression compared to CMV promoter; lower expression levels when delivered by AAV1, AAV2, or AAV6 [42]. |
The 418 bp chicken promoter coupled to 219 bp Cas2 enhancer element drives high and stable luciferase expression in mice systemically delivered by AAV9 and further increased specificity compared to cTnT promoter alone [9]. | |
The chicken cTnT promoter (Addgene 105543) restored AIP expression in a mouse model for inherited cardiac arrythmia and iPCS of human patients when systemically delivered by AAV9 [43]. | |
A 544 bp human cTnT promoter element integrated in AAV9 vector mediates Cre recombinase expression in a LacZ reporter mouse line after systemic injection, mainly in heart with minimal off-target expression [10]. | |
αMHC | A 363 bp truncated promoter restores gene expression specifically in cultured rat cardiomyocytes and in murine myocardium after local injection [47]. |
A 363 bp promoter fragment coupled to several enhancer elements mediates specific and high myocardial expression in mice systemically delivered by AAV9; highest cardio specific expression was mediated by CS-CRM4, a 219 bp sequence of Casq2 enhancer [37]. | |
MCK | The 770 bp MHCK7 expression cassette consists of a 565 bp core MCK promoter fragment + 50 bp sequence of the first non-coding exon coupled to modified MCK enhancer (deleted region between E-box and MEF2); TSS was replaced with a Inr consensus sequence and addition of a 188bp αMHC- enhancer element. The MHCK7 promoter mediates high-level microdytrophin expression in a mouse model of Duchenne muscular dystrophy systemically delivered by AAV6 (reduced ectopic expression remained) [52] and is already approved in a gene therapy drug (NCT03375164). MCK promoters mediate transgene expression after intravenous injection. |
The 837 bp CK8 expression cassette is like the MHCK7 promoter but contains two copies of the MCK enhancer and lacks the αMHC-enhancer element; an AAV9 vector harboring CK8 controls microdystrophin expression in a phase II trial (NCT03368742). | |
SPc5-12 | The 334 bp SPc5-12 synthetic promoter coupled to 215 bp CS-CRM4 in a AAV9 drives luciferase expression in murine heart and skeletal muscle after systemic injection [37]. |
The 334 bp SPc5-12 promoter coupled to 215 bp CS-CRM4 systemically delivered by AAV9 increases microdystrophin expression in cardiac and skeletal muscles in a mouse model for Duchenne muscular dystrophy [55]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schröder, L.C.; Frank, D.; Müller, O.J. Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens 2023, 12, 1301. https://doi.org/10.3390/pathogens12111301
Schröder LC, Frank D, Müller OJ. Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens. 2023; 12(11):1301. https://doi.org/10.3390/pathogens12111301
Chicago/Turabian StyleSchröder, Lena C., Derk Frank, and Oliver J. Müller. 2023. "Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors" Pathogens 12, no. 11: 1301. https://doi.org/10.3390/pathogens12111301
APA StyleSchröder, L. C., Frank, D., & Müller, O. J. (2023). Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens, 12(11), 1301. https://doi.org/10.3390/pathogens12111301