Pediatric Drug-Resistant Tuberculosis: The Current and Future Prospects for Management and Prevention
Abstract
:1. Introduction
2. Molecular Tests—The Game Changers in TB Diagnostics
2.1. Xpert MTB/RIF Assay
2.2. Xpert Ultra (Cepheid Inc., Sunnyvale, CA, USA)
2.3. Xpert MTB/XDR Assay
2.4. Line Probe Assays
2.5. Whole Genome Sequencing (WGS)
2.6. CRISPR-MTB
2.7. Application of Molecular Tests with Improved Diagnostic Approaches in Children
2.7.1. Induced Sputum
2.7.2. Nasopharyngeal Aspirate
2.7.3. Stool
2.7.4. Tissue Biopsy and CSF
2.7.5. Combination of Two or More Specimens for Molecular Testing Methods
3. New Players in TB Therapeutics in Children
3.1. Clinical Pharmacological Studies in Children
3.2. New and Repurposed Drugs
3.2.1. Delamanid (DLM)
3.2.2. Bedaquiline (BDQ)
“A shorter all-oral bedaquiline-containing regimen of 9–12 months duration is recommended in eligible patients with confirmed multidrug- or rifampicin-resistant tuberculosis (MDR/RR-TB) who have not been exposed to treatment with second-line TB medicines used in this regimen for more than 1 month, and in whom resistance to fluoroquinolones has been excluded.”
4. Prevention of TB and DR TB
4.1. TB Preventive Therapy (TPT)
4.2. TB Vaccines
5. Challenges and the Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Union Against Tuberculosis and Lung Disease. Diagnostic CXR Atlas for Tuberculosis in Children: A Guide to Chest X-ray Interpretation, 2nd ed.; International Union Against Tuberculosis and Lung Disease: Paris, France, 2022. [Google Scholar]
- Dunn, J.J.; Starke, J.R.; Revell, P.A. Laboratory Diagnosis of Mycobacterium tuberculosis Infection and Disease in Children. J. Clin. Microbiol. 2016, 54, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.A.; Johnson, S.; Palmer, M.; van der Zalm, M.M.; Lopez-Varela, E.; Hughes, J.; Schaaf, H.S. Multidrug-Resistant Tuberculosis in Children and Adolescents: Current Strategies for Prevention and Treatment. Expert. Rev. Respir. Med. 2021, 15, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.A.; Manson, A.L.; Desjardins, C.A.; Abeel, T.; Earl, A.M. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: Progress, promise, and challenges. Genome Med. 2019, 11, 45. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Musser, J.M. Molecular Genetic Basis of Antimicrobial Agent Resistance in Mycobacterium Tuberculosis: 1998 Update. Tuber. Lung Dis. 1998, 79, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Dorman, S.E.; Schumacher, S.G.; Alland, D.; Nabeta, P.; Armstrong, D.T.; King, B.; Hall, S.L.; Chakravorty, S.; Cirillo, D.M.; Tukvadze, N.; et al. Xpert MTB/RIF Ultra for Detection of Mycobacterium Tuberculosis and Rifampicin Resistance: A Prospective Multicentre Diagnostic Accuracy Study. Lancet Infect. Dis. 2018, 18, 76–84. [Google Scholar] [CrossRef]
- Berhanu, R.H.; David, A.; da Silva, P.; Shearer, K.; Sanne, I.; Stevens, W.; Scott, L. Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTime MTB for Diagnosis of Pulmonary Tuberculosis in a High-HIV-Burden Setting. J. Clin. Microbiol. 2018, 56, e00560-18. [Google Scholar] [CrossRef]
- Dlamini, M.T.; Lessells, R.; Iketleng, T.; de Oliveira, T. Whole Genome Sequencing for Drug-Resistant Tuberculosis Management in South Africa: What Gaps Would This Address and What Are the Challenges to Implementation? J. Clin. Tuberc. Other Mycobact. Dis. 2019, 16, 100115. [Google Scholar] [CrossRef]
- Naidoo, K.; Dookie, N. Can the GeneXpert MTB/XDR Deliver on the Promise of Expanded, near-Patient Tuberculosis Drug-Susceptibility Testing? Lancet Infect. Dis. 2022, 22, e121–e127. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Chen, L.; Wang, W.; Yu, F.; Xiong, H. Whole-Genome Sequencing of Mycobacterium Tuberculosis for Prediction of Drug Resistance. Epidemiol. Infect. 2022, 150, e22. [Google Scholar] [CrossRef]
- Huang, Z.; LaCourse, S.M.; Kay, A.W.; Stern, J.; Escudero, J.N.; Youngquist, B.M.; Zheng, W.; Vambe, D.; Dlamini, M.; Mtetwa, G.; et al. CRISPR Detection of Circulating Cell-Free Mycobacterium Tuberculosis DNA in Adults and Children, Including Children with HIV: A Molecular Diagnostics Study. Lancet Microbe 2022, 3, e482–e492. [Google Scholar] [CrossRef]
- Ai, J.-W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.-Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X.; et al. CRISPR-Based Rapid and Ultra-Sensitive Diagnostic Test for Mycobacterium tuberculosis. Emerg. Microbes Infect. 2019, 8, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Zar, H.J.; Hanslo, D.; Apolles, P.; Swingler, G.; Hussey, G. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: A prospective study. Lancet 2005, 365, 130–134, Erratum in Lancet 2005, 365, 1926. [Google Scholar] [CrossRef] [PubMed]
- Detjen, A.K.; DiNardo, A.R.; Leyden, J.; Steingart, K.R.; Menzies, D.; Schiller, I.; Dendukuri, N.; Mandalakas, A.M. Xpert MTB/RIF Assay for the Diagnosis of Pulmonary Tuberculosis in Children: A Systematic Review and Meta-Analysis. Lancet Respir. Med. 2015, 3, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Savage, H.R.; Rickman, H.M.; Burke, R.M.; Odland, M.L.; Savio, M.; Ringwald, B.; Cuevas, L.E.; MacPherson, P. Accuracy of Upper Respiratory Tract Samples to Diagnose Mycobacterium Tuberculosis: A Systematic Review and Meta-Analysis. Lancet Microbe 2023, 4, e811–e821. [Google Scholar] [CrossRef]
- Mesman, A.W.; Rodriguez, C.; Ager, E.; Coit, J.; Trevisi, L.; Franke, M.F. Diagnostic Accuracy of Molecular Detection of Mycobacterium Tuberculosis in Pediatric Stool Samples: A Systematic Review and Meta-Analysis. Tuberculosis 2019, 119, 101878. [Google Scholar] [CrossRef]
- Seo, Y.S.; Kang, J.-M.; Kim, D.S.; Ahn, J.G. Xpert MTB/RIF Assay for Diagnosis of Extrapulmonary Tuberculosis in Children: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2020, 20, 14. [Google Scholar] [CrossRef]
- MacLean, E.; Sulis, G.; Denkinger, C.M.; Johnston, J.C.; Pai, M.; Ahmad Khan, F. Diagnostic Accuracy of Stool Xpert MTB/RIF for Detection of Pulmonary Tuberculosis in Children: A Systematic Review and Meta-Analysis. J. Clin. Microbiol. 2019, 57, e02057-18. [Google Scholar] [CrossRef]
- Gaur, M.; Singh, A.; Sharma, V.; Tandon, G.; Bothra, A.; Vasudeva, A.; Kedia, S.; Khanna, A.; Khanna, V.; Lohiya, S.; et al. Diagnostic Performance of Non-Invasive, Stool-Based Molecular Assays in Patients with Paucibacillary Tuberculosis. Sci. Rep. 2020, 10, 7102. [Google Scholar] [CrossRef]
- Kabir, S.; Rahman, S.M.M.; Ahmed, S.; Islam, M.S.; Banu, R.S.; Shewade, H.D.; Thekkur, P.; Anwar, S.; Banu, N.A.; Nasrin, R.; et al. Xpert Ultra Assay on Stool to Diagnose Pulmonary Tuberculosis in Children. Clin. Infect. Dis. 2021, 73, 226–234. [Google Scholar] [CrossRef]
- World Health Organization. WHO Operational Handbook on Tuberculosis; Module 4: Treatment—Drug-Resistant Tuberculosis Treatment. WHO Consolidated Guidelines on Tuberculosis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. Practical Manual of Processing Stool Samples for Diagnosis of Childhood TB; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Rai, A.; Prasad, R.; Das, B.K.; Anupurba, S.; Singh, U.K. Cerebrospinal fluid Gene XPERT (CBNAAT) in children with tuberculous meningitis. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 24, 100255. [Google Scholar] [CrossRef]
- Kay, A.W.; González Fernández, L.; Takwoingi, Y.; Eisenhut, M.; Vu, R.D.; Steingart, K.R.; Detjen, A.K.; Mandalakas, A.M. Xpert MTB/RIF and Xpert MTB/RIF Ultra Assays for Active Tuberculosis and Rifampicin Resistance in Children. Cochrane Database Syst. Rev. 2019, 8, CD013359. [Google Scholar] [CrossRef]
- Song, R.; Click, E.S.; McCarthy, K.D.; Heilig, C.M.; Mchembere, W.; Smith, J.P.; Fajans, M.; Musau, S.K.; Okeyo, E.; Okumu, A.; et al. Sensitive and Feasible Specimen Collection and Testing Strategies for Diagnosing Tuberculosis in Young Children. JAMA Pediatr. 2021, 175, e206069. [Google Scholar] [CrossRef] [PubMed]
- Du Cros, P.; Swaminathan, A.; Bobokhojaev, O.I.; Sharifovna, Z.D.; Martin, C.; Herboczek, K.; Höhn, C.; Seddon, J.A. Challenges and Solutions to Implementing Drug-Resistant Tuberculosis Programmes for Children in Central Asia. Public Health Action 2015, 5, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Tola, H.H.; Khadoura, K.J.; Jimma, W.; Nedjat, S.; Majdzadeh, R. Multidrug-Resistant Tuberculosis Treatment Outcome in Children in Developing and Developed Countries: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2020, 96, 12–18. [Google Scholar] [CrossRef]
- Garcia-Prats, A.J.; Svensson, E.M.; Weld, E.D.; Schaaf, H.S.; Hesseling, A.C. Current status of pharmacokinetic and safety studies of multidrug-resistant tuberculosis treatment in children. Int. J. Tuberc. Lung Dis. 2018, 22, 15–23. [Google Scholar] [CrossRef]
- Mase, S.R.; Jereb, J.A.; Gonzalez, D.; Martin, F.; Daley, C.L.; Fred, D.; Loeffler, A.M.; Menon, L.R.; Bamrah Morris, S.; Brostrom, R.; et al. Pharmacokinetics and Dosing of Levofloxacin in Children Treated for Active or Latent Multidrug-resistant Tuberculosis, Federated States of Micronesia and Republic of the Marshall Islands. Pediatr. Infect. Dis. J. 2016, 35, 414–421. [Google Scholar] [CrossRef]
- Garcia-Prats, A.J.; Schaaf, H.S.; Draper, H.R.; Garcia-Cremades, M.; Winckler, J.; Wiesner, L.; Hesseling, A.C.; Savic, R.M. Pharmacokinetics, optimal dosing, and safety of linezolid in children with multidrug-resistant tuberculosis: Combined data from two prospective observational studies. PLoS Med. 2019, 16, e1002789. [Google Scholar] [CrossRef]
- Radtke, K.K.; Hesseling, A.C.; Winckler, J.L.; Draper, H.R.; Solans, B.P.; Thee, S.; Wiesner, L.; van der Laan, L.E.; Fourie, B.; Nielsen, J.; et al. Moxifloxacin Pharmacokinetics, Cardiac Safety, and Dosing for the Treatment of Rifampicin-Resistant Tuberculosis in Children. Clin. Infect Dis. 2022, 74, 1372–1381. [Google Scholar] [CrossRef]
- World Health Organization. Use of Bedaquiline in Children and Adolescents with Multidrug- and Rifampicin-Resistant Tuberculosis: Information Note. Available online: https://www.who.int/publications/i/item/9789240074286 (accessed on 28 June 2023).
- World Health Organization. Use of Delamanid in Children and Adolescents with Multidrug- and Rifampicin-Resistant Tuberculosis: Information Note. Available online: https://www.who.int/publications/i/item/9789240074309 (accessed on 28 June 2023).
- Xavier, A.S.; Lakshmanan, M. Delamanid: A New Armor in Combating Drug-Resistant Tuberculosis. J. Pharmacol. Pharmacother. 2014, 5, 222–224. [Google Scholar] [CrossRef]
- Garcia-Prats, A.J.; Frias, M.; van der Laan, L.; De Leon, A.; Gler, M.T.; Schaaf, H.S.; Hesseling, A.C.; Malikaarjun, S.; Hafkin, J. Delamanid Added to an Optimized Background Regimen in Children with Multidrug-Resistant Tuberculosis: Results of a Phase I/II Clinical Trial. Antimicrob. Agents Chemother. 2022, 66, e0214421. [Google Scholar] [CrossRef]
- Pecora, F.; Dal Canto, G.; Veronese, P.; Esposito, S. Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid. Microorganisms 2021, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Ausi, Y.; Santoso, P.; Sunjaya, D.; Barliana, M.I. Between Curing and Torturing: Burden of Adverse Reaction in Drug-Resistant Tuberculosis Therapy. Patient Prefer. Adherence 2021, 15, 2597–2607. [Google Scholar] [CrossRef] [PubMed]
- Pontali, E.; Sotgiu, G.; D’Ambrosio, L.; Centis, R.; Migliori, G.B. Bedaquiline and Multidrug-Resistant Tuberculosis: A Systematic and Critical Analysis of the Evidence. Eur. Respir. J. 2016, 47, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Knight, G.M.; McQuaid, C.F.; Dodd, P.J.; Houben, R.M.G.J. Global Burden of Latent Multidrug-Resistant Tuberculosis: Trends and Estimates Based on Mathematical Modelling. Lancet Infect. Dis. 2019, 19, 903–912. [Google Scholar] [CrossRef]
- Kherabi, Y.; Tunesi, S.; Kay, A.; Guglielmetti, L. Preventive Therapy for Contacts of Drug-Resistant Tuberculosis. Pathogens 2022, 11, 1189. [Google Scholar] [CrossRef]
- Huynh, J.; Marais, B.J. Multidrug-Resistant Tuberculosis Infection and Disease in Children: A Review of New and Repurposed Drugs. Ther. Adv. Infect. 2019, 6, 204993611986473. [Google Scholar] [CrossRef]
- Wademan, D.T.; Hoddinott, G.; Purchase, S.E.; Seddon, J.A.; Hesseling, A.C.; Garcia-Prats, A.J.; Reis, R.; Reynolds, L.J. Practical and Psychosocial Challenges Faced by Caregivers Influence the Acceptability of Multidrug-Resistant Tuberculosis Preventive Therapy for Young Children. PLoS ONE 2022, 17, e0268560. [Google Scholar] [CrossRef]
- World Health Organization. WHO Operational Handbook on Tuberculosis; Module 1: Prevention: Tuberculosis Preventive Treatment. WHO Consolidated Guidelines on Tuberculosis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021; pp. 1–25. [Google Scholar]
- Roy, A.; Eisenhut, M.; Harris, R.J.; Rodrigues, L.C.; Sridhar, S.; Habermann, S.; Snell, L.; Mangtani, P.; Adetifa, I.; Lalvani, A.; et al. Effect of BCG Vaccination against Mycobacterium Tuberculosis Infection in Children: Systematic Review and Meta-Analysis. BMJ 2014, 349, g4643. [Google Scholar] [CrossRef]
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.; Whiting, P.F.; et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin. Infect Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef]
- Martin, C.; Aguilo, N.; Marinova, D.; Gonzalo-Asensio, J. Update on TB Vaccine Pipeline. Appl. Sci. 2020, 10, 2632. [Google Scholar] [CrossRef]
- Frick, M.; Treatment Action Group. Pipeline Report, 2021. Tuberculosis Vaccines; Treatment Action Group: New York, NY, USA, 2021. [Google Scholar]
- Indian Council of Medical Research Clinical Trials Registry—India (CTRI). Available online: http://ctri.nic.in/Clinicaltrials/advsearch.php (accessed on 8 March 2023).
- U.S National Institutes of Health; National Library of Medicine. Evaluation of Efficacy and Safety of VPM1002 in Comparison to BCG in Prevention of TB Infection in Infants (VPM1002). Available online: https://clinicaltrials.gov/ct2/show/study/NCT04351685 (accessed on 10 April 2023).
- National Institutes of Health; National Library of Medicine. Clinicaltrials.gov Efficacy, Safety and Immunogenicity Evaluation of MTBVAC in Newborns in Sub-Saharan Africa (MTBVACN3). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04975178 (accessed on 10 February 2023).
- Osman, M.; Harausz, E.P.; Garcia-Prats, A.J.; Schaaf, H.S.; Moore, B.K.; Hicks, R.M.; Achar, J.; Amanullah, F.; Barry, P.; Becerra, M.; et al. Treatment Outcomes in Global Systematic Review and Patient Meta-Analysis of Children with Extensively Drug-Resistant Tuberculosis. Emerg. Infect. Dis. 2019, 25, 441–450. [Google Scholar] [CrossRef] [PubMed]
Regimens | Regimen | Eligibility |
---|---|---|
Isoniazid monoresistance | 6-month regimen of (H)REZ-Lfx. In case Lfx cannot be used, (H)REZ to be given for 6 months. No need to add streptomycin. | For children of any age with isoniazid monoresistance. |
Shorter all-oral 9-month regimen for MDR/RR-TB | 4–6 months regimen of Bdq (6 months)-Lfx/Mfx-Cfz-Z-E-Hh-Eto /5-month regimen of Lfx/Mfx-Cfz-Z-E |
|
Shorter regimen for MDR/RR-TB with quinolone resistance | 6–9 month treatment regimen composed of bedaquiline, pretomanid, and linezolid—BPaL regimen * |
|
Longer regimen for MDR/RR-TB | 18-month regimen Bdq(6 m)-Lfx/Mfx-Lzd-Cfz | For those not eligible for a shorter all-oral bedaquiline-containing MDR TB regimen |
Antitubercular Drug | Dose |
---|---|
Bedaquiline | 400 mg OD × 2 weeks, then 200 mg 3 times per week |
Pretomanid | 200 mg OD |
Linezolid | 1200 mg OD (dose can be reduced in case of linezolid-induced neuropathy) |
Drug | Dosage | Major Side-Effect |
---|---|---|
Levofloxacin | 15–20 mg/kg | QT prolongation, psychiatric disturbance |
Moxifloxacin | 10–15 mg/kg 10 mg/kg in less than 6 months | QT prolongation, psychiatric disturbance |
Bedaquiline | For 100 mg tablet: (100 mg in 10 mL = 10 mg/mL) 0 to <3 months: 3 mL OD for 2 weeks; then 1 mL OD M/W/F for 22 weeks ≥3 to <6 months (3 to <10 kg): 6 mL OD for 2 weeks; then 2 mL OD M/W/F for 22 weeks ≥6 months (10 to <16 kg): 8 mL OD for 2 weeks; then 4 mL OD M/W/F for 22 weeks 16–30 kg: 2 tab OD ×2 weeks then 1 tab OD M/W/F for 22 weeks 30 to <46 kg: 4 tab OD × 2 weeks then 2 tablet OF M/W/F for 22 weeks | Drug interactions with drugs that inhibit or induce cytochrome P450 enzymes, QT prolongation |
For 20 mg dispersible tablet: 0 to <3 months: 1.5 OD for 2 weeks; then 0.5 OD M/W/F for 22 weeks ≥3 to <6 months: 3 OD for 2 weeks; then 1 OD M/W/F for 22 weeks ≥6 months (7 to 10 kg): 4 OD for 2 weeks; then 2 OD M/W/F for 22 weeks ≥6 months (10 to <16 kg): 6 OD for 2 weeks; then 3 OD M/W/F for 22 weeks 16–29 kg: 10 OD for 2 weeks then 5 tablet OD M/W/F × 22 weeks. >29 kg: 20 OD × 2 weeks then 10 DTS M/W/F × 22 weeks. | ||
Linezolid | For 1–15 kg 15 mg/kg OD; For >15 mg/kg 10–12 mg/kg OD | Bone marrow suppression, peripheral neuropathy, optic neuritis, gastrointestinal disorders |
Clofazamine | 2–5 mg/kg (give on alternate days if the daily dose is very high) | Can prolong QT when used with drugs that prolong QT like BDQ, DLM, and fluoroquinolones Orange discoloration of skin, conjunctiva, cornea, and body fluids; dry skin, pruritus, rash, ichthyosis, and xerosis; gastrointestinal intolerance; and photosensitivity Dose adjustment needed in severe hepatic insufficiency |
Cycloserine | 15–20 mg/kg | Inability to focus, weakness, depression, psychosis and suicidal ideation, seizures, peripheral neuropathy, lichen planus, and Stevens–Johnson syndrome. |
Ethambutol | 15–25 mg/kg | Ophthalmic, GI disturbance |
Delamanid | <3 months: 25 mg OD ≥3 months: <16 kg: 25 mg BD; 16 kg to <30 kg: 50 mg morning and 25 mg evening; >30 kg: 50 mg BD 12–17 years:100 mg BD | Nausea and vomiting, QT prolongation, hallucinations, paraesthesia |
Pyrazinamide | 30–40 mg/kg | Hepatotoxicity, arthralgia, GI disturbance, dermatological disorder |
Meropenem | 20–40 mg/kg/IV every 8 hourly (to be used with Clavulanic acid) | GI disturbances, seizures, hepatic and renal dysfunction |
Amikacin | 15–20 mg/kg/day (Max 1 g/day) | Nephrotoxicity, ototoxicity |
Streptomycin | 20–40 mg/kg (Max 1 g/day) | Ototoxicity |
Ethionamide or prothionamide | 15–20 mg/kg (Max 1 g/day) | Hypothyroidism |
P-amino salicylic acid | 200–300 mg/kg in 2 divided doses | Hypothyroidism, GI disturbance |
Isoniazid | 15–20 mg/kg/dose (To be given with pyridoxine) | Peripheral neuropathy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmapalan, D.; Mane, S.S. Pediatric Drug-Resistant Tuberculosis: The Current and Future Prospects for Management and Prevention. Pathogens 2023, 12, 1372. https://doi.org/10.3390/pathogens12111372
Dharmapalan D, Mane SS. Pediatric Drug-Resistant Tuberculosis: The Current and Future Prospects for Management and Prevention. Pathogens. 2023; 12(11):1372. https://doi.org/10.3390/pathogens12111372
Chicago/Turabian StyleDharmapalan, Dhanya, and Sushant Satish Mane. 2023. "Pediatric Drug-Resistant Tuberculosis: The Current and Future Prospects for Management and Prevention" Pathogens 12, no. 11: 1372. https://doi.org/10.3390/pathogens12111372
APA StyleDharmapalan, D., & Mane, S. S. (2023). Pediatric Drug-Resistant Tuberculosis: The Current and Future Prospects for Management and Prevention. Pathogens, 12(11), 1372. https://doi.org/10.3390/pathogens12111372