Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. DNA Extraction
2.3. Real-Time PCR
2.4. Evaluation of the Duplex PCR’s Specificity and Performance Characteristics
2.5. Comparison of the Duplex PCR Method with the ISO Methods on Artificially Contaminated Bacterial Suspensions
2.6. Evaluation of the Duplex PCR Method on Naturally Contaminated Neck Skin Samples
2.7. Statistical Analysis
3. Results
3.1. Performance Efficiency of the Developed Duplex PCR
3.2. Specificity and Sensitivity of the Duplex PCR
3.3. Evaluation of the Duplex PCR Method to Detect Salmonella in the Presence of Campylobacter
3.4. Comparison of Campylobacter spp. Counts Obtained by the Duplex PCR Method before and after the Pre-Enrichment Step with the Microbiological Method (EN ISO 10272-2)
3.5. Evaluation of the Duplex PCR Method to Detect Salmonella spp. and Quantify Campylobacter spp. on Naturally Contaminated Broiler Neck Skins Compared with the Microbiological Method (EN ISO 6579-1 and EN ISO 10272-2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA; ECDC. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar]
- EFSA; ECDC. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar]
- EFSA. Scientific Opinion on Campylobacter in broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [Google Scholar] [CrossRef]
- Skarp, C.P.A.; Hanninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, P.; Mourao, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Official Journal of the European Union. Commission Regulation (EC). No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073&from=fr, (accessed on 15 January 2023).
- Official Journal of the European Union. Commission Regulation (EU). No 2017/1495 of 23 August 2017 Amending Regulation (EC) No 2073/2005 as Regards Campylobacter in Broiler Carcases. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1495&from=FR (accessed on 15 January 2023).
- Official Bulletin. Instruction Technique DGAL/SDSSA/2018-23 du 09/01/2018—L’Introduction d’un Critère Campylobacter—Des Mesures de Flexibilité pour les Petites Structures et les Allègements Possibles en Cas de Résultats Favorables. Available online: https://info.agriculture.gouv.fr/gedei/site/bo-agri/instruction-2018-23 (accessed on 15 January 2023).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO (International Organization for Standardization): Geneva, Switzerland, 2017; Volume 1, p. 50.
- ISO 10272-2: 2017; Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp.—Part 2: Colony-Count Technique. ISO (International Organization for Standardization): Geneva, Switzerland, 2017; Volume 1, p. 19.
- Anis, N.; Bonifait, L.; Quesne, S.; Bauge, L.; Yassine, W.; Guyard-Nicodeme, M.; Chemaly, M. Survival of Campylobacter jejuni Co-Cultured with Salmonella spp. in Aerobic Conditions. Pathogens 2022, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.; Nordentoft, S.; Pedersen, K.; Madsen, M. Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. J. Clin. Microbiol. 2004, 42, 5125–5132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malorny, B.; Paccassoni, E.; Fach, P.; Bunge, C.; Martin, A.; Helmuth, R. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 2004, 70, 7046–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Meth. Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Ngulukun, S.S. Taxonomy and physiological charachteristics of Campylobacter spp. In Campylobacter: Features, Detection, and Prevention of Foodborne Disease, 1st ed.; Klein, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 41–60. [Google Scholar]
- Botteldoorn, N.; Van Coillie, E.; Piessens, V.; Rasschaert, G.; Debruyne, L.; Heyndrickx, M.; Herman, L.; Messens, W. Quantification of Campylobacter spp. in chicken carcass rinse by real-time PCR. J. Appl. Microbiol. 2008, 105, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Lofstrom, C.; Krause, M.; Josefsen, M.H.; Hansen, F.; Hoorfar, J. Validation of a same-day real-time PCR method for screening of meat and carcass swabs for Salmonella. BMC Microbiol. 2009, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thepault, A.; Poezevara, T.; Quesne, S.; Rose, V.; Chemaly, M.; Rivoal, K. Prevalence of Thermophilic Campylobacter in Cattle Production at Slaughterhouse Level in France and Link Between C. jejuni Bovine Strains and Campylobacteriosis. Front. Microbiol. 2018, 9, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papic, B.; Pate, M.; Henigman, U.; Zajc, U.; Gruntar, I.; Biasizzo, M.; Ocepek, M.; Kusar, D. New Approaches on Quantification of Campylobacter jejuni in Poultry Samples: The Use of Digital PCR and Real-time PCR against the ISO Standard Plate Count Method. Front. Microbiol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kralik, P.; Ricchi, M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hue, O.; Allain, V.; Laisney, M.J.; Le Bouquin, S.; Lalande, F.; Petetin, I.; Rouxel, S.; Quesne, S.; Gloaguen, P.Y.; Picherot, M.; et al. Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiol. 2011, 28, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Le Bouquin, S.; Lalande, F.; Allain, V.; Rouxel, S.; Petetin, I.; Quesne, S.; Laisney, M.-J.; Gloaguen, P.-Y.; Picherot, M.; et al. Prevalence of Salmonella spp. on broiler chicken carcasses and risk factors at the slaughterhouse in France in 2008. Food Control 2011, 22, 1158–1164. [Google Scholar] [CrossRef]
- Chaisowwong, W.; Kusumoto, A.; Hashimoto, M.; Harada, T.; Maklon, K.; Kawamoto, K. Physiological characterization of Campylobacter jejuni under cold stresses conditions: Its potential for public threat. J. Vet. Med. Sci. 2012, 74, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, K.; Pan, H.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.; Liao, X. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs-Reitsma, W.F.; Jongenburger, I.; de Boer, E.; Biesta-Peters, E.G. Validation by interlaboratory trials of EN ISO 10272—Microbiology of the food chain—Horizontal method for detection and enumeration of Campylobacter spp.—Part 2: Colony-count technique. Int. J. Food Microbiol. 2019, 288, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Heise, J.; Thieck, M.; Wulsten, I.F.; Pacholewicz, E.; Iwobi, A.N.; Govindaswamy, J.; Zeller-Peronnet, V.; Scheuring, S.; Luu, H.Q.; et al. Challenging the “gold standard” of colony-forming units—Validation of a multiplex real-time PCR for quantification of viable Campylobacter spp. in meat rinses. Int. J. Food Microbiol. 2021, 359, 109417. [Google Scholar] [CrossRef] [PubMed]
Campylobacter Strains | Salmonella Strains | Other Bacterial Strains |
---|---|---|
C. jejuni C97Anses640 | S. Blegdam 421 | Escherichia coli CIP 53.126 |
C. jejuni AC0473 (ST-21) | S. Typhimurium S17LNR1383 | Proteus mirabilis CIP 103181T |
C. jejuni AC0400 (ST-45) | S. Enteritidis S17LNR1420 | Klebsiella pneumonia K11RS01 |
C. jejuni AC4322 (ST-464) | S. Infantis S20LNR0009 | Pseudomonas aeruginosa CIP 76.110 |
C. jejuni AC0302 (ST-206) | S. Hadar S20LNR0028 | Yersinia enterocolitica CIP 81.41 |
C. jejuni AC0541 (ST-257) | S. Virchow S19LNR0182 | Shigella flexneri CIP 82.48 |
C. jejuni AC0306 (ST-61) | S. Indiana S20LNR0422 | Staphylococcus aureus CIP 76.25 |
C. jejuni AC0272 (ST-48) | S. Saintpaul S20LNR0439 | Listeria monocytogene CIP 59.53 |
C. jejuni AC0190 (ST-353) | S. Derby S20LNR0321 | Enterocococus faecalis CIP 103214 |
C. jejuni AC0484 (ST-354) | S. Livingstone S20LNR0708 | Rhodococcus hoaggi ATCC 6939 |
C. jejuni AC0290 (ST-460) | S. Mbandaka S20LNR0056 | Citrobacter braakii ATCC 51113 |
C. jejuni AC0332 (ST-22) | S. Rissen S20LNR1127 | Arcobacter butzleri CIP 103493 |
C. jejuni AC0571 (ST-283) | S. Montevideo S20LNR1226 | Arcobacter skirrowi CIP 1035588 |
C. jejuni AC0587 (ST692) | S. Napoli S20LNR0121 | |
C. jejuni AC0630 (ST443) | S. Dublin S20TA004 | |
C. jejuni AC0662 (ST-1150) | S. Gallinarum S19LNR0801 | |
C. jejuni C0066 (ST-1034) | S. Anatum S20LNR1294 | |
C. jejuni C0125 (ST-658) | S. Senftenberg S20LNR1352 | |
C. jejuni C0816 (ST-573) | S. Kedougou S20TYP002 | |
C. jejuni C0386 (ST-42) | S. Agona S20LNR0146 | |
C. jejuni C0398 (ST-446) | S. Chester S20LNR0560 | |
C. jejuni 70.2T | S. Newport S20LNR0763 | |
C. jejuni 103778 | S. Kentucky S18LNR1175 | |
C. coli CIP 70.80T | S. Panama S20LNR1113 | |
C. lari CIP 1027221 | S. Give S20LNR1119 | |
C. fetus C03FM1499 | S. Venezia S20LNR1316 | |
C. hyointestinalis C12PT516 |
Target | Primer/Probe | Sequence 5′-3′ | Amplicon Size (bp) | Final Concentration (nM) | Reference |
---|---|---|---|---|---|
Campylobacter spp. (16S rRNA gene) | campF2 (forward) | CACGTGCTACAATGGCATAT | 108 | 900 | [12] |
campR2 (reverse) | GGCTTCATGCTCTCGAGTT | 900 | |||
campP2 (probe) | HEX 2-CAGAGAACAATCCGAACTGGGACA-BHQ1 3 | 125 | |||
Salmonella spp. (ttr 1 locus) | ttr6 (forward) | CTCACCAGGAGATTACAACATGG | 95 | 100 | [13] |
ttr4 (reverse) | AGCTCAGACCAAAAGTGACCATC | 100 | |||
ttr5 (probe) | FAM 4-CACCGACGGCGAGACCGACTTT-BHQ1 | 125 |
Campylobacter Standard (Mean Values ± SD) | |
---|---|
Slope | −3.3 ± 0.0 |
Correlation coefficient (R2) | 1.000 ± 0.000 |
Efficacy in % | 99.7 ± 1.5 |
n Standard curves | 10 |
Salmonella Standard (Mean Values ± SD) | |
Slope | −3.4 ± 0.1 |
Correlation coefficient (R2) | 1.000 ± 0.000 |
Efficacy in % | 97.7 ± 2.4 |
n Standard curves | 10 |
Expected Log CFU/Reaction | Average Observed log CFU/Reaction ± SD | Coefficient of Variation (%) |
---|---|---|
0.23 | 0.24 ± 0.16 | 67.70 |
1.23 | 1.22 ± 0.06 | 4.83 |
2.23 | 2.21 ± 0.05 | 2.14 |
3.23 | 3.25 ± 0.07 | 2.20 |
4.23 | 4.24 ± 0.06 | 1.46 |
5.23 | 5.26 ± 0.08 | 1.55 |
6.23 | 6.20 ± 0.10 | 1.59 |
Campylobacter Concentration (log CFU/mL) | Cq for Salmonella Amplification After Enrichment (Mean ± SD) | Salmonella Detection by the ISO Method |
---|---|---|
6 | 15.58 ± 0.39 | presence |
5 | 15.51 ± 0.69 | presence |
4 | 15.42 ± 0.66 | presence |
3 | 15.00 ± 0.36 | presence |
2 | 14.93 ± 0.50 | presence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anis, N.; Bonifait, L.; Quesne, S.; Baugé, L.; Chemaly, M.; Guyard-Nicodème, M. Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality? Pathogens 2023, 12, 338. https://doi.org/10.3390/pathogens12020338
Anis N, Bonifait L, Quesne S, Baugé L, Chemaly M, Guyard-Nicodème M. Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality? Pathogens. 2023; 12(2):338. https://doi.org/10.3390/pathogens12020338
Chicago/Turabian StyleAnis, Nagham, Laetitia Bonifait, Ségolène Quesne, Louise Baugé, Marianne Chemaly, and Muriel Guyard-Nicodème. 2023. "Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality?" Pathogens 12, no. 2: 338. https://doi.org/10.3390/pathogens12020338
APA StyleAnis, N., Bonifait, L., Quesne, S., Baugé, L., Chemaly, M., & Guyard-Nicodème, M. (2023). Simultaneous Detection of Salmonella spp. and Quantification of Campylobacter spp. in a Real-Time Duplex PCR: Myth or Reality? Pathogens, 12(2), 338. https://doi.org/10.3390/pathogens12020338