The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Mesocosm Preparation
2.3. FIB and Bacteriophage Enumeration
2.4. Data Analyses
3. Results
3.1. Effect of Predator Source and Sunlight on FIB and Coliphage Decay
3.2. Decay of FIB Compared to Coliphage
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Sinclair, R.G.; Jones, E.L.; Gerba, C.P. Viruses in recreational water-borne disease outbreaks: A review. J. Appl. Microbiol. 2009, 107, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Graciaa, D.S.; Cope, J.R.; Roberts, V.A.; Cikesh, B.L.; Kahler, A.M.; Vigar, M.; Hilborn, E.D.; Wade, T.J.; Backer, L.C.; Montgomery, S.P.; et al. Outbreaks Associated with Untreated Recreational Water—United States, 2000–2014. Am. J. Transplant. 2018, 18, 2083–2087. [Google Scholar] [CrossRef] [Green Version]
- Hlavsa, M.C.; Roberts, V.A.; Kahler, A.M.; Hilborn, E.D.; Mecher, T.R.; Beach, M.J.; Wade, T.J.; Yoder, J.S. Outbreaks of Illness Associated with Recreational Water--United States, 2011-2012. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Zlot, A.; Simckes, M.; Vines, J.; Reynolds, L.; Sullivan, A.; Scott, M.K.; McLuckie, J.M.; Kromer, D.; Hill, V.R.; Yoder, J.S.; et al. Norovirus outbreak associated with a natural lake used for recreation—Oregon, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 485–490. [Google Scholar] [CrossRef] [Green Version]
- EPA-821-R-10-004; Method A: Enterococci in Water by TaqMan Quantitative Polymerase Chain Reaction (qPCR) Assay. United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Korajkic, A.; McMinn, B.R.; Harwood, V.J. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. Int. J. Environ. Res. Public Health 2018, 15, 2842. [Google Scholar] [CrossRef] [Green Version]
- Fout, G.S.; Borchardt, M.A.; Kieke, B.A., Jr.; Karim, M.R. Human virus and microbial indicator occurrence in public-supply groundwater systems: Meta-analysis of 12 international studies. Hydrogeol. J. 2017, 25, 903–919. [Google Scholar] [CrossRef] [Green Version]
- Korajkic, A.; Wanjugi, P.; Brooks, L.; Cao, Y.; Harwood, V.J. Persistence and Decay of Fecal Microbiota in Aquatic Habitats. Microbiol. Mol. Biol. Rev. MMBR 2019, 83, e00005–e00019. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Zhou, Q.; Tao, W.; Sun, Y.; Zeng, Z. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. Environ. Pollut. 2018, 238, 291–298. [Google Scholar] [CrossRef]
- Wang, M.; Xiong, W.; Liu, P.; Xie, X.; Zeng, J.; Sun, Y.; Zeng, Z. Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. Front. Microbiol. 2018, 9, 2474. [Google Scholar] [CrossRef] [Green Version]
- Lekunberri, I.; Subirats, J.; Borrego, C.M.; Balcazar, J.L. Exploring the contribution of bacteriophages to antibiotic resistance. Environ. Pollut. 2017, 220, 981–984. [Google Scholar] [CrossRef]
- Ross, J.; Topp, E. Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction. Appl. Environ. Microbiol. 2015, 81, 7905–7913. [Google Scholar] [CrossRef] [Green Version]
- 820-R-15-098; Review of Coliphages as Possible Indicators of Fecal Contamination for Ambient Water Quality. United States Environmental Protection Agency: Washington, DC, USA, 2015.
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, W.J. Virus Taxonomy: Classification and Nomenclature of Viruses; Ninth Report of the International Committee on Taxonomy of Viruses; International Committee on Taxonomy of Viruses: London, UK, 2011. [Google Scholar]
- Griffith, J.F.; Weisberg, S.B.; Arnold, B.F.; Cao, Y.; Schiff, K.C.; Colford, J.M., Jr. Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches. Water Res. 2016, 94, 371–381. [Google Scholar] [CrossRef]
- Wade, T.J.; Sams, E.; Brenner, K.P.; Haugland, R.; Chern, E.; Beach, M.; Wymer, L.; Rankin, C.C.; Love, D.; Li, Q.; et al. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: A prospective cohort study. Environ. Health A Glob. Access Sci. Source 2010, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedenmann, A.; Kruger, P.; Dietz, K.; Lopez-Pila, J.M.; Szewzyk, R.; Botzenhart, K. A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci, Clostridium perfringens, and somatic coliphages. Environ. Health Perspect. 2006, 114, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colford, J.M.; Wade, T.J.; Schiff, K.C.; Wright, C.C.; Griffith, J.F.; Sandhu, S.K.; Burns, S.; Sobsey, M.; Lovelace, G.; Weisberg, S.B. Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology 2007, 18, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMinn, B.R.; Rhodes, E.R.; Huff, E.M.; Korajkic, A. Decay of infectious adenovirus and coliphages in freshwater habitats is differentially affected by ambient sunlight and the presence of indigenous protozoa communities. Virol. J. 2020, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Wanjugi, P.; Sivaganesan, M.; Korajkic, A.; Kelty, C.A.; McMinn, B.; Ulrich, R.; Harwood, V.J.; Shanks, O.C. Differential decomposition of bacterial and viral fecal indicators in common human pollution types. Water Res. 2016, 105, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Korajkic, A.; McMinn, B.R.; Shanks, O.C.; Sivaganesan, M.; Fout, G.S.; Ashbolt, N.J. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river. Appl. Environ. Microbiol. 2014, 80, 3952–3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korajkic, A.; McMinn, B.R.; Harwood, V.J.; Shanks, O.C.; Fout, G.S.; Ashbolt, N.J. Differential decay of enterococci and Escherichia coli originating from two fecal pollution sources. Appl. Environ. Microbiol. 2013, 79, 2488–2492. [Google Scholar] [CrossRef] [Green Version]
- Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 2005, 3, 537–546. [Google Scholar] [CrossRef]
- Pace, M.L.; Cole, J.J. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb. Ecol. 1994, 28, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feichtmayer, J.; Deng, L.; Griebler, C. Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems. Front. Microbiol. 2017, 8, 2192. [Google Scholar] [CrossRef] [PubMed]
- Baltar, F.; Aristegui, J.; Gasol, J.M.; Herndl, G.J. Microbial functioning and community structure variability in the mesopelagic and epipelagic waters of the subtropical northeast atlantic ocean. Appl. Environ. Microbiol. 2012, 78, 3309–3316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, H. The relative importance of different ciliate taxa in the pelagic food web of lake constance. Microb. Ecol. 1989, 18, 261–273. [Google Scholar] [CrossRef]
- Boenigk, J.; Arndt, H. Bacterivory by heterotrophic flagellates: Community structure and feeding strategies. Antonie Van Leeuwenhoek 2002, 81, 465–480. [Google Scholar] [CrossRef]
- Korajkic, A.; Wanjugi, P.; Harwood, V.J. Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl. Environ. Microbiol. 2013, 79, 5329–5337. [Google Scholar] [CrossRef] [Green Version]
- Wanjugi, P.; Fox, G.A.; Harwood, V.J. The Interplay Between Predation, Competition, and Nutrient Levels Influences the Survival of Escherichia coli in Aquatic Environments. Microb. Ecol. 2016, 72, 526–537. [Google Scholar] [CrossRef]
- Wanjugi, P.; Harwood, V.J. The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environ. Microbiol. 2013, 15, 517–526. [Google Scholar] [CrossRef]
- Pirlot, S.; Unrein, F.; Descy, J.P.; Servais, P. Fate of heterotrophic bacteria in Lake Tanganyika (East Africa). FEMS Microbiol. Ecol. 2007, 62, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Menon, P.; Billen, G.; Servais, P. Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems. Water Res. 2003, 37, 4151–4158. [Google Scholar] [CrossRef]
- Burian, A.; Pinn, D.; Peralta-Maraver, I.; Sweet, M.; Mauvisseau, Q.; Eyice, O.; Bulling, M.; Rothig, T.; Kratina, P. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J. 2022, 16, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Parfrey, L.W.; Walters, W.A.; Lauber, C.L.; Clemente, J.C.; Berg-Lyons, D.; Teiling, C.; Kodira, C.; Mohiuddin, M.; Brunelle, J.; Driscoll, M.; et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front. Microbiol. 2014, 5, 298. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, P.D.; Marchesi, J.R. Micro-eukaryotic diversity of the human distal gut microbiota: Qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2008, 2, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Dick, L.K.; Stelzer, E.A.; Bertke, E.E.; Fong, D.L.; Stoeckel, D.M. Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Appl. Environ. Microbiol. 2010, 76, 3255–3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Krauss, S.; Feichtmayer, J.; Hofmann, R.; Arndt, H.; Griebler, C. Grazing of heterotrophic flagellates on viruses is driven by feeding behaviour. Environ. Microbiol Rep 2014, 6, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.D.; Power, M.E.; Butler, B.J.; Dayeh, V.R.; Slawson, R.; Lee, L.E.; Lynn, D.H.; Bols, N.C. Use of Tetrahymena thermophila to study the role of protozoa in inactivation of viruses in water. Appl. Environ. Microbiol. 2007, 73, 643–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booncharoen, N.; Mongkolsuk, S.; Sirikanchana, K. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater. Appl. Microbiol. Biotechnol. 2018, 102, 6235–6246. [Google Scholar] [CrossRef]
- Yang, Y.; Griffiths, M.W. Comparative persistence of subgroups of F-specific RNA phages in river water. Appl. Environ. Microbiol. 2013, 79, 4564–4567. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.L.; Boehm, A.B.; Davies-Colley, R.J.; Dodd, M.C.; Kohn, T.; Linden, K.G.; Liu, Y.; Maraccini, P.A.; McNeill, K.; Mitch, W.A.; et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches. Environ. Sci. Process. Impacts 2018, 20, 1089–1122. [Google Scholar] [CrossRef]
- Boehm, A.B.; Silverman, A.I.; Schriewer, A.; Goodwin, K. Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Res. 2019, 164, 114898. [Google Scholar] [CrossRef]
- Dean, K.; Mitchell, J. Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. Water Res. 2022, 211, 118051. [Google Scholar] [CrossRef]
- McMinn, B.R.; Ashbolt, N.J.; Korajkic, A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett. Appl. Microbiol. 2017, 65, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Korajkic, A.; McMinn, B.R.; Ashbolt, N.J.; Sivaganesan, M.; Harwood, V.J.; Shanks, O.C. Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment. Sci. Total Environ. 2019, 650, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Korajkic, A.; Parfrey, L.W.; McMinn, B.R.; Baeza, Y.V.; VanTeuren, W.; Knight, R.; Shanks, O.C. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water. Water Res. 2015, 69, 30–39. [Google Scholar] [CrossRef]
- Mattioli, M.C.; Sassoubre, L.M.; Russell, T.L.; Boehm, A.B. Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. Water Res. 2017, 108, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Balleste, E.; Garcia-Aljaro, C.; Blanch, A.R. Assessment of the decay rates of microbial source tracking molecular markers and faecal indicator bacteria from different sources. J. Appl. Microbiol. 2018, 125, 1938–1949. [Google Scholar] [CrossRef]
- Bae, S.; Wuertz, S. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res. 2009, 43, 4850–4859. [Google Scholar] [CrossRef] [PubMed]
- Batani, G.; Perez, G.; de la Escalera, G.M.; Piccini, C.; Fazi, S. Competition and protist predation are important regulators of riverine bacterial community composition and size distribution. J Freshw. Ecol 2016, 31, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Doblin, M.A.; Dobbs, F.C. Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships’ ballast water. Mar Pollut Bull 2006, 52, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Oemcke, D.J.; Hans van Leeuwen, J. Ozonation of the marine dinoflagellate alga Amphidinium sp.—Implications for ballast water disinfection. Water Res. 2005, 39, 5119–5125. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A.; Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 1992, 58, 3721–3729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worsfold, N.T.; Warren, P.H.; Petchey, O.L. Context-dependent effects of predator removal from experimental microcosm communities. Oikos 2009, 118, 1319–1326. [Google Scholar] [CrossRef]
- EPA-821-R-14-010; Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified Membrane-Thermotolerant Escherichia coli Agar (Modified mTEC). United States Environmental Protection Agency: Washington, DC, USA, 2014.
- EPA-821-R-06-009; Method 1600: Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus Indoxyl -β -D Glucoside Agar (mEI). United States Environmental Protection Agency: Washington, DC, USA, 2006.
- Adams, M.H. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Guzman-Herrador, B.; Carlander, A.; Ethelberg, S.; Freiesleben de Blasio, B.; Kuusi, M.; Lund, V.; Lofdahl, M.; MacDonald, E.; Nichols, G.; Schonning, C.; et al. Waterborne outbreaks in the Nordic countries, 1998 to 2012. Eurosurveillance 2015, 20, 21160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, I.; Sokhna, C.; Raoult, D.; Bittar, F. Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS ONE 2012, 7, e40888. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.D.; Chang, H.W.; Kim, K.H.; Roh, S.W.; Kim, M.S.; Jung, M.J.; Lee, S.W.; Kim, J.Y.; Yoon, J.H.; Bae, J.W. Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. J. Microbiol. 2008, 46, 491–501. [Google Scholar] [CrossRef]
- Comtet-Marre, S.; Parisot, N.; Lepercq, P.; Chaucheyras-Durand, F.; Mosoni, P.; Peyretaillade, E.; Bayat, A.R.; Shingfield, K.J.; Peyret, P.; Forano, E. Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet. Front. Microbiol. 2017, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- Berdjeb, L.; Pollet, T.; Domaizon, I.; Jacquet, S. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. Bmc Microbiol 2011, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Comte, J.; Jacquet, S.; Viboud, S.; Fontvieille, D.; Millery, A.; Paolini, G.; Domaizon, I. Microbial community structure and dynamics in the largest natural French lake (Lake Bourget). Microb. Ecol. 2006, 52, 72–89. [Google Scholar] [CrossRef]
- Graham, J.M.; Kent, A.D.; Lauster, G.H.; Yannarell, A.C.; Graham, L.E.; Triplett, E.W. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: Diversity in a dinoflagellate dominated system. Microb. Ecol. 2004, 48, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Khomich, M.; Kauserud, H.; Logares, R.; Rasconi, S.; Andersen, T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol. Ecol. 2017, 93, fiw231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauli, W.; Jax, K.; Berger, S. Chapter 3: Protozoa in Wastewater Treatment: Function and Importance. In The Handbook of Environmental Chemistry Vol. 2 Part K Biodegradation and Persistence; Beek, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Maritz, J.M.; Ten Eyck, T.A.; Elizabeth Alter, S.; Carlton, J.M. Patterns of protist diversity associated with raw sewage in New York City. ISME J. 2019, 13, 2750–2763. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Fetzer, I.; Harms, H.; Chatzinotas, A. Diversity of protists and bacteria determines predation performance and stability. ISME J. 2013, 7, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Olive, M.; Gan, C.; Carratala, A.; Kohn, T. Control of Waterborne Human Viruses by Indigenous Bacteria and Protists Is Influenced by Temperature, Virus Type, and Microbial Species. Appl. Environ. Microbiol. 2020, 86, e01992-19. [Google Scholar] [CrossRef]
- Olive, M.; Moerman, F.; Fernandez-Cassi, X.; Altermatt, F.; Kohn, T. Removal of Waterborne Viruses by Tetrahymena pyriformis Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. Environ. Sci. Technol. 2022, 56, 4062–4070. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Berdjeb, L.; Sime-Ngando, T.; Jacquet, S. Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in Lake Bourget (France). Environ. Microbiol. 2011, 13, 616–630. [Google Scholar] [CrossRef]
- Surbeck, C.Q.; Jiang, S.C.; Grant, S.B. Ecological control of fecal indicator bacteria in an urban stream. Environ. Sci. Technol. 2010, 44, 631–637. [Google Scholar] [CrossRef]
- Parikka, K.J.; Le Romancer, M.; Wauters, N.; Jacquet, S. Deciphering the virus-to-prokaryote ratio (VPR): Insights into virus-host relationships in a variety of ecosystems. Biol. Rev. 2017, 92, 1081–1100. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Pot-Hogeboom, W.M.; Kooti, W.; Pot, R. F–Specific Bacteriophages as Indicators of the Disinfection Efficiency of Secondary Effluent with Ultraviolet Radiation. Ozone Sci. Eng. 1987, 9, 353–367. [Google Scholar] [CrossRef]
- Korajkic, A.; McMinn, B.R.; Herrmann, M.P.; Pemberton, A.C.; Kelleher, J.; Oshima, K.; Villegas, E.N. Performance evaluation of a dead-end hollowfiber ultrafiltration method for enumeration of somatic and F+ coliphage from recreational waters. J. Virol. Methods 2021, 296, 114245. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abba, A.; Miino, M.C.; Caccamo, F.M.; Torretta, V.; Rada, E.C.; Sorlini, S. Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at? Int. J. Environ. Res. Public Health 2020, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Wanjugi, P.; Sivaganesan, M.; Korajkic, A.; McMinn, B.; Kelty, C.A.; Rhodes, E.; Cyterski, M.; Zepp, R.; Oshima, K.; Stachler, E.; et al. Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Res. 2018, 140, 200–210. [Google Scholar] [CrossRef] [PubMed]
- McMinn, B.R.; Rhodes, E.R.; Huff, E.M.; Wanjugi, P.; Ware, M.M.; Nappier, S.P.; Cyterski, M.; Shanks, O.C.; Oshima, K.; Korajkic, A. Comparison of somatic and F+ coliphage enumeration methods with large volume surface water samples. J. Virol. Methods 2018, 261, 63–66. [Google Scholar] [CrossRef] [PubMed]
- McMinn, B.R.; Huff, E.M.; Rhodes, E.R.; Korajkic, A. Concentration and quantification of somatic and F+ coliphages from recreational waters. J. Virol. Methods 2017, 249, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Zimmer-Faust, A.G.; Griffith, J.F.; Steele, J.A.; Asato, L.; Chiem, T.; Choi, S.; Diaz, A.; Guzman, J.; Padilla, M.; Quach-Cu, J.; et al. Assessing cross-laboratory performance for quantifying coliphage using EPA Method 1642. J. Appl. Microbiol. 2022, 133, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Skraber, S.; Gassilloud, B.; Schwartzbrod, L.; Gantzer, C. Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome. Water Res. 2004, 38, 2927–2933. [Google Scholar] [CrossRef]
- Bae, J.; Schwab, K.J. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl. Environ. Microbiol. 2008, 74, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, A.E.; Muniesa, M.; Mendez, X.; Valero, F.; Lucena, F.; Jofre, J. Removal and inactivation of indicator bacteriophages in fresh waters. J. Appl. Microbiol. 2002, 92, 338–347. [Google Scholar] [CrossRef]
- Noble, R.T.; Lee, I.M.; Schiff, K.C. Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J. Appl. Microbiol. 2004, 96, 464–472. [Google Scholar] [CrossRef]
- Sinton, L.W.; Hall, C.H.; Lynch, P.A.; Davies-Colley, R.J. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ. Microbiol. 2002, 68, 1122–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinton, L.W.; Finlay, R.K.; Lynch, P.A. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl. Environ. Microbiol. 1999, 65, 3605–3613. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Toze, S.; Veal, C.; Fisher, P.; Zhang, Q.; Zhu, Z.G.; Staley, C.; Sadowsky, M.J. Comparative decay of culturable faecal indicator bacteria, microbial source tracking marker genes, and enteric pathogens in laboratory microcosms that mimic a sub-tropical environment. Sci. Total Environ. 2021, 751, 141475. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.M.; Zaruk, N.; Tenenbaum, L.; Netzan, Y. Comparative survival of Cryptosporidium, coxsackievirus A9 and Escherichia coli in stream, brackish-and sea waters. Water Sci. Technol. 2003, 47, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Zhang, Q.; Kozak, S.; Beale, D.; Gyawali, P.; Sadowsky, M.J.; Simpson, S. Comparative decay of sewage-associated marker genes in beach water and sediment in a subtropical region. Water Res. 2019, 149, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Gyawali, P.; Sidhu, J.P.; Toze, S. Relative inactivation of faecal indicator bacteria and sewage markers in freshwater and seawater microcosms. Lett. Appl. Microbiol. 2014, 59, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Designation | Light Intensity (Sun/Shade) | Protozoa Removed by Filtration | Overall Effects Studied |
---|---|---|---|
A | High (Sun) | Wastewater protozoa removed | Effect of lake protozoa on decay rates of indicators under high light intensity |
B | Low (Shade) | Wastewater protozoa removed | Effect of lake protozoa on decay rates of indicators under low light intensity |
C | High (Sun) | Lakewater protozoa removed | Effect of wastewater protozoa on decay rates of indicators under high light intensity |
D | Low (Shade) | Lakewater protozoa removed | Effect of wastewater protozoa on decay rates of indicators under low light intensity |
Indicator | Time Point (days) | Factor | |||||
---|---|---|---|---|---|---|---|
Source of Predators a | Sunlight | Interaction b | |||||
% | p Value | % | p Value | % | p Value | ||
E. coli | T1 | 86.37 | <0.0001 | 1.513 | 0.2398 | 4.895 | 0.0542 |
T3 | 85.43 | 0.0004 | 0.126 | 0.7657 | 13.57 | 0.0224 | |
T5 | 81.43 | 0.0001 | 0.519 | 0.5561 | 10.65 | 0.0265 | |
T8 | 64.70 | 0.0008 | 5.350 | 0.1719 | 10.93 | 0.0643 | |
T14 | 20.45 | 0.0118 | 57.11 | 0.0013 | 18.16 | 0.0148 | |
Enterococci | T1 | 96.72 | <0.0001 | 0.033 | 0.7506 | 0.806 | 0.1424 |
T3 | 98.46 | <0.0001 | 0.309 | 0.1821 | 0.309 | 0.1821 | |
T5 | 75.05 | <0.0001 | 19.53 | 0.0001 | 2.270 | 0.0431 | |
T8 | 42.59 | 0.0043 | 35.12 | 0.0071 | 0.420 | 0.7054 | |
T14 | 13.84 | 0.1770 | 59.67 | 0.0224 | 1.806 | 0.5950 | |
F+ coliphage | T1 | 13.06 | 0.2147 | 13.80 | 0.2034 | 15.63 | 0.1787 |
T3 | 1.713 | 0.6984 | 5.678 | 0.4854 | 7.708 | 0.4189 | |
T5 | 5.885 | 0.2175 | 45.59 | 0.0057 | 22.48 | 0.0303 | |
T8 | 13.81 | 0.1422 | 33.97 | 0.0340 | 10.51 | 0.1933 | |
T14 | 0.753 | 0.6851 | 19.17 | 0.0821 | 66.04 | 0.0100 | |
Somatic coliphage | T1 | 54.89 | 0.0019 | 8.966 | 0.1028 | 15.00 | 0.0444 |
T3 | 86.57 | <0.0001 | 0.493 | 0.5945 | 0.111 | 0.7989 | |
T5 | 47.29 | 0.0059 | 25.23 | 0.0266 | 0.003 | 0.9775 | |
T8 | 10.72 | 0.0174 | 77.91 | <0.0001 | 1.762 | 0.2605 | |
T14 | 0.775 | 0.6236 | 82.75 | 0.0029 | 0.426 | 0.7143 |
E. coli | Enterococci | F+ Coliphage | Somatic Coliphage | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment 1 | ||||||||||||||||
Days | A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D |
T1 | 2.60 ± 0.19 | 2.39 ± 0.16 | 0.13 ± 0.53 | 0.87 ± 0.27 | 2.92 ± 0.10 | 3.10 ± 0.22 | 0.66 ± 0.33 | 0.39 ± 0.26 | 0.35 ± 0.11 | 0.34 ± 0.15 | 0.15 ± 0.08 | 0.35 ± 0.14 | 0.03 ± 0.04 | 0.02 ± 0.06 | 0.08 ± 0.02 | 0.17 ± 0.02 |
T3 | 2.97 ± 0.09 | 2.49 ± 0.07 | 1.10 ± 0.52 | 1.69 ± 0.06 | 3.34 ± 0.09 | 3.03 ± 0.18 | 1.19 ± 0.23 | 0.93 ± 0.01 | 1.42 ± 0.05 | 1.34 ± 0.14 | 1.40 ± 0.07 | 1.40 ± 0.02 | 0.90 ± 0.05 | 0.90 ± 0.05 | 0.70 ± 0.03 | 0.68 ± 0.06 |
T5 | 2.46 ± 0.12 | 2.12 ± 0.08 | 0.79 ± 0.47 | 1.33 ± 0.04 | 4.93 ± 0.35 | 3.27 ± 0.23 | 2.08 ± 0.21 | 1.27 ± 0.39 | 1.82 ± 0.12 | 1.60 ± 0.63 | 2.62 ± 0.21 | 1.34 ± 0.17 | 0.99 ± 0.14 | 1.16 ± 0.04 | 1.23 ± 0.15 | 1.40 ± 0.06 |
T8 | 2.99 ± 0.74 | 2.16 ± 0.08 | 1.30 ± 0.24 | 1.45 ± 0.11 | 5.86 ± 0.06 | 4.98 ± 0.53 | 4.90 ± 0.35 | 4.19 ± 0.43 | 2.48 ± 0.22 | 2.37 ± 0.20 | 2.75 ± 0.02 | 2.39 ± 0.10 | 1.57 ± 0.29 | 0.71 ± 0.16 | 2.10 ± 0.26 | 0.94 ± 0.10 |
T14 | 5.87 ± 0.18 | 2.70 ± 0.66 | 3.52 ± 0.18 | 2.63 ± 0.36 | 5.43 ± 0.12 | 3.44 ± 0.90 | 4.32 ± 1.14 | 2.92 ± 0.11 | 2.91 ± 0.06 | 2.85 ± 0.05 | 2.76 ± 0.03 | 2.98 ± 0.06 | 2.54 ± 0.06 | 1.27 ± 0.57 | 2.77 ± 0.04 | 1.30 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korajkic, A.; McMinn, B.R.; Harwood, V.J. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023, 12, 378. https://doi.org/10.3390/pathogens12030378
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens. 2023; 12(3):378. https://doi.org/10.3390/pathogens12030378
Chicago/Turabian StyleKorajkic, Asja, Brian R. McMinn, and Valerie J. Harwood. 2023. "The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage" Pathogens 12, no. 3: 378. https://doi.org/10.3390/pathogens12030378
APA StyleKorajkic, A., McMinn, B. R., & Harwood, V. J. (2023). The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens, 12(3), 378. https://doi.org/10.3390/pathogens12030378