Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Molecular Methods
2.3. Phenotypic and Microbiological Tests
2.4. Susceptibility Testing
3. Results
3.1. Epidemiological Analysis of the Isolates
3.2. Molecular Characterization and Genetic Relatedness of Isolates
3.3. Susceptibility Testing of Double Carbapenemase Producers
3.4. Performance of Phenotypic Detection Tests of Double Carbapenemase Producers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadese, B.K.; Darkoh, C.; Desantis, S.M.; Mgbere, O.; Fujimoto, K. Clinical epidemiology of carbapenem-resistant Enterobacterales in the Greater Houston region of Texas: A 6-year trend and surveillance analysis HHS Public Access. J. Glob. Antimicrob. Resist. 2022, 30, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, M.; Kassa, Y.; Gedefie, A.; Ashagire, M. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect. Drug Resist. 2021, 14, 4363–4374. [Google Scholar] [CrossRef] [PubMed]
- Kochan, T.J.; Nozick, S.H.; Medernach, R.L.; Cheung, B.H.; Gatesy, S.W.M.; Lebrun-Corbin, M.; Mitra, S.D.; Khalatyan, N.; Krapp, F.; Qi, C.; et al. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect. Dis. 2021, 22, 603. [Google Scholar] [CrossRef]
- Peirano, G.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D.D. Emerging Antimicrobial-Resistant High-Risk Klebsiella pneumoniae Clones ST307 and ST147. Antimicrob. Agents Chemother. 2020, 64, e01148-20. [Google Scholar] [CrossRef] [PubMed]
- Pasteran, F.G.; Otaegui, L.; Guerriero, L.; Radice, G.; Maggiora, R.; Rapoport, M.; Faccone, D.; Di Martino, A.; Galas, M. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg. Infect. Dis. 2008, 14, 1178–1180. [Google Scholar] [CrossRef] [PubMed]
- Pasteran, F.; Meo, A.; Gomez, S.; Derdoy, L.; Albronoz, E.; Faccone, D.; Guerriero, L.; Archuby, D.; Tarzia, A.; López, M.; et al. Emergence of genetically related NDM-1-producing Providencia rettgeri strains in Argentina. J. Glob. Antimicrob. Resist. 2014, 2, 344–345. [Google Scholar] [CrossRef]
- Gomez, S.A.; Pasteran, F.G.; Faccone, D.; Tijet, N.; Rapoport, M.; Lucero, C.; Lastovetska, O.; Albornoz, E.; Galas, M.; KPC Group; et al. Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin. Microbiol. Infect. 2011, 17, 1520–1524. [Google Scholar] [CrossRef] [Green Version]
- Cejas, D.; Elena, A.; Guevara Nuñez, D.; Sevillano Platero, P.; De Paulis, A.; Magariños, F.; Alfonso, C.; Berger, M.A.; Fernández-Canigia, L.; Gutkind, G.; et al. Changing epidemiology of KPC-producing Klebsiella pneumoniae in Argentina: Emergence of hypermucoviscous ST25 and high-risk clone ST307. J. Glob. Antimicrob. Resist. 2019, 18, 238–242. [Google Scholar] [CrossRef]
- Martino, F.; Tijet, N.; Melano, R.; Petroni, A.; Heinz, E.; De Belder, D.; Faccone, D.; Rapoport, M.; Biondi, E.; Rodrigo, V.; et al. Isolation of five Enterobacteriaceae species harbouring blaNDM-1 and mcr-1 plasmids from a single paediatric patient. PLoS ONE 2019, 14, e0221960. [Google Scholar] [CrossRef] [Green Version]
- Farfour, E.; Lecuru, M.; Dortet, L.; Le Guen, M.; Cerf, C.; Karnycheff, F.; Bonnin, R.A.; Vasse, M.; Lesprit, P.; SARS-CoV-2 Hospital Foch Study Group. Carbapenemase-producing Enterobacterales outbreak: Another dark side of COVID-19. Am. J. Infect. Control 2020, 48, 1533–1536. [Google Scholar] [CrossRef]
- Weiner-Lastinger, L.M.; Pattabiraman, V.; Konnor, R.Y.; Patel, P.R.; Wong, E.; Xu, S.Y.; Smith, B.; Edwards, J.R.; Dudeck, M.A. The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2022, 43, 12–25. [Google Scholar] [CrossRef]
- Programa Nacional de Control de Calidad en Bacteriología INEI-ANLIS “Dr. Carlos G Malbran”. Emergencia de Enterobacterales Doble Productores de Carbapenemasa. April 2021, pp. 1–12. Available online: http://antimicrobianos.com.ar/category/alerta/ (accessed on 17 March 2023).
- Pan American Health Organization. Epidemiological Alert: Emergence and Increase of New Combinations of Carbapenemases in Enterobacterales in Latin America and the Caribbean. 22 October 2021, pp. 1–8. Available online: https://www.paho.org/es/documentos/alerta-epidemiologica-emergencia-e-incremento-nuevas-combinaciones-carbapenemasas (accessed on 17 March 2023).
- Thomas, G.R.; Corso, A.; Pasterán, F.; Shal, J.; Sosa, A.; Pillonetto, M.; de Souza Peral, R.T.; Hormazábal, J.C.; Araya, P.; Saavedra, S.Y.; et al. Increased Detection of Carbapenemase-Producing Enterobacterales Bacteria in Latin America and the Caribbean during the COVID-19 Pandemic. Emerg. Infect. Dis. 2022, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobianos, Servicio INEI-ANLIS “Dr. Carlos G. Malbran”. Reglas de Derivación. 2021. Available online: http://antimicrobianos.com.ar/ATB/wp-content/uploads/2020/12/Reglas-de-derivacion-2021-v1.pdf (accessed on 17 March 2023).
- De Belder, D.; Lucero, C.; Rapoport, M.; Rosato, A.; Faccone, D.; Petroni, A.; Pasteran, F.; Albornoz, E.; Corso, A.; Gomez, S.A. Genetic Diversity of KPC-Producing Escherichia coli, Klebsiella oxytoca, Serratia marcescens, and Citrobacter freundii Isolates from Argentina. Microb. Drug Resist. 2018, 24, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasteran, F.; Ceriana, P.; Lucero, C.; Faccone, D.; Gomez, S.; De Belder, D.; Sanz, M.B.; De Mendieta, J.M.; Martino, F.; Corso, A. Emergence of Enterobacterales with co-expression of two carbapenemases during COVID-19 pandemic in Argentina: KPC+NDM, NDM+OXA-48 and KPC+IMP. In Proceedings of the 31st ECCMID, Vienna, Austria, 9–12 July 2021. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Pasteran, F.; Danze, D.; Menocal, A.; Cabrera, C.; Castillo, I.; Albornoz, E.; Lucero, C.; Rapoport, M.; Ceriana, P.; Corso, A. Simple Phenotypic Tests To Improve Accuracy in Screening Chromosomal and Plasmid-Mediated Colistin Resistance in Gram-Negative Bacilli. J. Clin. Microbiol. 2020, 59, e01701-20. [Google Scholar] [CrossRef] [PubMed]
- Clinical Breakpoints - Breakpoints and Guidance. EUCAST Consultations. 2022. Available online: https://www.eucast.org/publications_and_documents/consultations (accessed on 17 March 2023).
- U.S. Food and Drug Administration. Antibacterial Susceptibility Test Interpretive Criteria. 2022. Available online: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria (accessed on 17 March 2023).
- Instituto Nacional de Epidemiología, Dr. Juan, H. Jara. Programa Nacional de Epidemiología y Control de Infecciones Hospitalarias de Argentina. Reporte de Vigilancia de Infecciones Asociadas al Cuidado de la Salud (VIHDA) en Unidades COVID 2020–2021. 2022. Available online: http://sgc.anlis.gob.ar/handle/123456789/2447 (accessed on 17 March 2023).
- Cejas, D.; Magariños, F.; Elena, A.; Ferrara, M.; Ormazábal, C.; Yernazian, M.V.; Gutkind, G.; Radice, M. Emergence and clonal expansion of Klebsiella pneumoniae ST307, simultaneously producing KPC-3 and NDM-1. Rev. Argent. Microbiol. 2022, 54, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Mansour, W.; Grami, R.; Ben Haj Khalifa, A.; Dahmen, S.; Châtre, P.; Haenni, M.; Aouni, M.; Madec, J.-Y. Dissemination of multidrug-resistant blaCTX-M-15/IncFIIk plasmids in Klebsiella pneumoniae isolates from hospital- and community-acquired human infections in Tunisia. Diagn. Microbiol. Infect. Dis. 2015, 83, 298–304. [Google Scholar] [CrossRef]
- Habeeb, M.A.; Haque, A.; Nematzadeh, S.; Iversen, A.; Giske, C.G. High prevalence of 16S rRNA methylase RmtB among CTX-M extended-spectrum β-lactamase-producing Klebsiella pneumoniae from Islamabad, Pakistan. Int. J. Antimicrob. Agents 2013, 41, 524–526. [Google Scholar] [CrossRef]
- Gona, F.; Barbera, F.; Pasquariello, A.C.; Grossi, P.; Gridelli, B.; Mezzatesta, M.L.; Caio, C.; Stefani, S.; Conaldi, P.G. In vivo multiclonal transfer of bla(KPC-3) from Klebsiella pneumoniae to Escherichia coli in surgery patients. Clin. Microbiol. Infect. 2014, 20, O633–O635. [Google Scholar] [CrossRef] [Green Version]
- Aggoune, N.; Tali-Maamar, H.; Assaous, F.; Benamrouche, N.; Naim, M.; Rahal, K. Emergence of plasmid mediated carbapenemase OXA-48 in a Klebsiella pneumoniae strain in Algeria. J. Glob. Antimicrob. Resist. 2014, 2, 327–329. [Google Scholar] [CrossRef]
- Ocampo, A.M.; Chen, L.; Cienfuegos, A.V.; Roncancio, G.; Chavda, K.D.; Kreiswirth, B.N.; Natalia Jiménez, J. A Two-Year Surveillance in Five Colombian Tertiary Care Hospitals Reveals High Frequency of Non-CG258 Clones of Carbapenem-Resistant Klebsiella pneumoniae with Distinct Clinical Characteristics. Antimicrob. Agents Chemother. 2016, 60, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; da Silva, Q.M.; Matté, G.R.; Sato, M.I.Z.; Matté, M.H. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil. Environ. Sci. Pollut. Res. Int. 2016, 23, 4953–4958. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, E.; Poulou, A.; Politi, L.; Sgouropoulos, I.; Metallidis, S.; Kachrimanidou, M.; Pournaras, S.; Tsakris, A.; Skoura, L. Hospital outbreak due to a Klebsiella pneumoniae ST147 clonal strain co-producing KPC-2 and VIM-1 carbapenemases in a tertiary teaching hospital in Northern Greece. Int. J. Antimicrob. Agents 2018, 52, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zhao, D.; Song, G.; Li, J.; Xu, Y.; Wang, Z. Risk Factors, Molecular Epidemiology, and Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection for Hospital-Acquired Pneumonia: A Matched Case-Control Study in Eastern China During 2015–2017. Microb. Drug Resist. 2021, 27, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Piza-Buitrago, A.; Rincón, V.; Donato, J.; Saavedra, S.Y.; Duarte, C.; Morero, J.; Falquet, L.; Reguero, M.T.; Barreto-Hernández, E. Genome-based characterization of two Colombian clinical Providencia rettgeri isolates co-harboring NDM-1, VIM-2, and other β-lactamases. BMC Microbiol. 2020, 20, 345. [Google Scholar] [CrossRef] [PubMed]
- Arana, D.M.; Ortega, A.; González-Barberá, E.; Lara, N.; Bautista, V.; Gómez-Ruíz, D.; Sáez, D.; Fernández-Romero, S.; Aracil, B.; Pérez-Vázquez, M.; et al. Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2. J. Antimicrob. Chemother. 2017, 72, 3283–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballash, G.A.; Albers, A.L.; Mollenkopf, D.F.; Sechrist, E.; Adams, R.J.; Wittum, T.E. Antimicrobial resistant bacteria recovered from retail ground meat products in the US include a Raoultella ornithinolytica co-harboring bla KPC-2 and bla NDM-5. Sci. Rep. 2021, 11, 14041. [Google Scholar] [CrossRef]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance. Clin. Infect. Dis. 2021, 72, e169-83. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Magkafouraki, E.; Scoulica, E. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1755–1759. [Google Scholar] [CrossRef]
- Pasteran, F.; Chavez, M.; Ceriana, P.; Lucero, C.; Albornoz, E.; Rapoport, M.; Menocal, A.; De Mendieta, J.; Gomez, S.; Corso, A. Validation of the Avibactam Agar Tests (avitest) to Determine Aztreonam Plus Avibactam (atm-avi) Susceptibility for Carbapenemase Producing Enterobacterales (cpe). In ASM MICROBE; ASM, Ed.; American Society for Microbiology: Washington, DC, 2022. [Google Scholar]
Species | CC | ST | No. Isolates | PFGE | No. Isolates | Htal. Code (n) | Carbapenemase (n) * |
---|---|---|---|---|---|---|---|
K. pneumoniae | 307 | 307 | 37 | A | 21 | H1(1); H3(1); H17(1) | blaKPC-2 + blaNDM-5 (3) |
H23(1) | blaKPC-2 + blaNDM-1 (1) | ||||||
H1(4); H3(1); H17(10); H23(1) | blaKPC + blaNDM (16) | ||||||
H7(1) | blaKPC + blaIMP (1) | ||||||
C | 3 | H2(1) | blaKPC-2 + blaNDM-1 (1) | ||||
H2(2) | blaKPC + blaNDM (2) | ||||||
F | 2 | H5(1) | blaKPC-2 + blaNDM-1 (1) | ||||
H5(1) | blaKPC + blaNDM (1) | ||||||
Q | 2 | H6(1) | blaKPC-2 + blaNDM-5 (1) | ||||
H6(1) | blaKPC + blaNDM (1) | ||||||
E | 1 | H2(1) | blaKPC-2 + blaNDM-1 (1) | ||||
H | 1 | H12(1) | blaKPC-2 + blaNDM-1 (1) | ||||
P | 1 | H27(1) | blaKPC-2 + blaIMP-8 (1) | ||||
S | 1 | H1(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AA | 1 | H11(1) | blaKPC-3 + blaNDM-1 (1) | ||||
AC | 1 | H20(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AD | 1 | H18(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AG | 1 | H16(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AH | 1 | H22(1) | blaKPC-3 + blaNDM-1 (1) | ||||
5993 | 1 | A | 1 | H1(1) | blaKPC-2 + blaNDM-1 (1) | ||
11 | 11 | 22 | R | 9 | H1(9) | blaKPC-2 + blaNDM-5 (1) | |
blaKPC + blaNDM (8) | |||||||
B | 4 | H2(4) | blaKPC-2 + blaNDM-1 (1) | ||||
blaKPC + blaNDM (3) | |||||||
T | 2 | H1(2) | blaKPC-2 + blaNDM-1 (1) | ||||
blaKPC + blaNDM (1) | |||||||
U | 2 | H24(1); H26(1) | blaKPC-2 + blaNDM-5 (1) | ||||
blaKPC + blaNDM (1) | |||||||
J | 1 | H9(1) | blaKPC-2 + blaNDM-5 (1) | ||||
O | 1 | H1(1) | blaKPC-2 + blaNDM-5 (1) | ||||
W | 1 | H13(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AI | 1 | H1(1) | blaKPC-2 + blaNDM-5 (1) | ||||
AJ | 1 | H25(1) | blaKPC-2 + blaNDM-5 (1) | ||||
258 | 7 | V | 2 | H8(2) | blaKPC-2 + blaNDM-5 (1) | ||
blaKPC + blaNDM (1) | |||||||
G | 1 | H4(1) | blaKPC-2 + blaNDM-5 (1) | ||||
L | 1 | H2(1) | blaKPC-2 + blaNDM-1 (1) | ||||
M | 1 | H10(1) | blaKPC-2 + blaNDM-1 (1) | ||||
N | 1 | H7(1) | blaKPC-2 + blaIMP-8 (1) | ||||
AB | 1 | H19(1) | blaKPC-2 + blaNDM-5 (1) | ||||
45 | 45 | 3 | D | 3 | H1(3) | blaKPC-2 + blaNDM-1 (1) | |
blaKPC + blaNDM (2) | |||||||
147 | 147 | 1 | AE | 1 | H18(1) | blaKPC-2 + blaNDM-5 + blaOXA-163 (1) | |
219 | 219 | 1 | K | 1 | H4(1) | blaKPC-2 + blaNDM-5 (1) | |
485 | 485 | 1 | I | 1 | H2(1) | blaKPC-2 + blaNDM-1 (1) | |
15 | 5995 | 1 | Z | 1 | H9(1) | blaKPC-2 + blaNDM-5 (1) | |
ND | 225 | 1 | AF | 1 | H21(1) | blaKPC-2 + blaNDM-5 (1) | |
ND | 5994 | 1 | Y | 1 | H15(1) | blaKPC-2 + blaNDM-5 (1) | |
ND | 2217 | 1 | X | 1 | H14(1) | blaKPC-2 + blaNDM-1 (1) | |
K. oxytoca | NA | NA | 2 | 1KO | 1 | H1(1) | blaKPC-2 + blaIMP-8 (1) |
2KO | 1 | H4(1) | blaKPC-2 + blaNDM-5 (1) | ||||
C. freundii | NA | NA | 2 | 1CF | 1 | H13(1) | blaKPC-2 + blaNDM-1 (1) |
2CF | 1 | H28(1) | blaKPC-2 + blaNDM-1 (1) | ||||
E. coli | 399 | 4774 | 1 | NA | 1 | H14(1) | blaKPC-2 + blaNDM-1 (1) |
Aztreonam-avibactam | |||||||||
All sample | Type of carbapenemase combinations | K. pneumoniaeclones | |||||||
KPC-2 + NDM-1 | KPC-2 + NDM-5 | KPC-2 + IMP-8 | KPC-3 + NDM-1 | ST307 | ST11 | ST258 | Others * | ||
(n: 82) | (n: 16) | (n: 20) | (n: 4) | (n: 2) | (n: 38) | (n: 22) | (n: 7) | (n: 15) | |
MIC50 (µg/ml) | 0.12 | 0.12 | 0.12 | ND | ND | 0.12 | 0.12 | 0.12 | 0.03 |
MIC90 (µg/ml) | 0.25 | 0.25 | 0.25 | ND | ND | 0.12 | 0.25 | 0.25 | 0.5 |
Range (µg/ml) | <=0.03–0.5 | 0.03–0.25 | 0.03–0.5 | 0.03 | 0.03–0.12 | <=0.03–0.25 | 0.12–0.25 | 0.06–0.25 | 0.03–0.5 |
Aztreonam-relebactam | |||||||||
All sample | Type of carbapenemase combinations | K. pneumoniaeclones | |||||||
KPC-2 + NDM-1 | KPC-2 + NDM-5 | KPC-2 + IMP-8 | KPC-3 + NDM-1 | ST307 | ST11 | ST258 | Others * | ||
(n: 82) | (n: 16) | (n: 20) | (n: 4) | (n: 2) | (n: 38) | (n: 22) | (n: 7) | (n: 15) | |
MIC50 (µg/ml) | 0.5 | 0.25 | 0.5 | ND | ND | 0.5 | 0.25 | 2 | 0.5 |
MIC90 (µg/ml) | 2 | 1 | 2 | ND | ND | 1 | 0.5 | 8 | 1 |
Range (µg/ml) | <=0.03–8 | 0.03–1 | 0.03–8 | 0.03–0.12 | 0.25–4 | 0.06–2 | 0.12–0.5 | 0.5–8 | 0.03–2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccone, D.; Gomez, S.A.; de Mendieta, J.M.; Sanz, M.B.; Echegorry, M.; Albornoz, E.; Lucero, C.; Ceriana, P.; Menocal, A.; Martino, F.; et al. Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic. Pathogens 2023, 12, 479. https://doi.org/10.3390/pathogens12030479
Faccone D, Gomez SA, de Mendieta JM, Sanz MB, Echegorry M, Albornoz E, Lucero C, Ceriana P, Menocal A, Martino F, et al. Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic. Pathogens. 2023; 12(3):479. https://doi.org/10.3390/pathogens12030479
Chicago/Turabian StyleFaccone, Diego, Sonia A. Gomez, Juan Manuel de Mendieta, María Belén Sanz, Mariano Echegorry, Ezequiel Albornoz, Celeste Lucero, Paola Ceriana, Alejandra Menocal, Florencia Martino, and et al. 2023. "Emergence of Hyper-Epidemic Clones of Enterobacterales Clinical Isolates Co-Producing KPC and Metallo-Beta-Lactamases during the COVID-19 Pandemic" Pathogens 12, no. 3: 479. https://doi.org/10.3390/pathogens12030479