Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Catheter Adhesion Studies
2.3. Adhesion and Invasion Assays
2.4. LPS Gel Electrophoresis
2.5. In Vivo CAUTI Model
2.5.1. Ethics Statement
2.5.2. Catheter Modification
2.5.3. Mouse Experiments
2.6. Statistical Analysis
3. Results
3.1. Adhesion to Polyurethane (PU) Catheter Pieces
3.2. Adhesion and Invasion In Vitro
3.3. In Vivo Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armbruster, C.E.; Mobley, H.L.T. Merging Mythology and Morphology: The Multifaceted Lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 2012, 10, 743–754. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.P.; Musher, D.M.; Itin, C. Urease. The Primary Cause of Infection-Induced Urinary Stones. Investig. Urol. 1976, 13, 346–350. [Google Scholar]
- Parker, V.; Giles, M.; Graham, L.; Suthers, B.; Watts, W.; O’Brien, T.; Searles, A. Avoiding Inappropriate Urinary Catheter Use and Catheter-Associated Urinary Tract Infection (CAUTI): A Pre-Post Control Intervention Study. BMC Health Serv. Res. 2017, 17, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobley, H.L.; Belas, R. Swarming and Pathogenicity of Proteus mirabilis in the Urinary Tract. Trends Microbiol. 1995, 3, 280–284. [Google Scholar] [CrossRef]
- Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. Pilus Biogenesis at the Inner and Outer Membranes of Gram-Negative Bacteria. Nat. Rev. Microbiol. 2017, 15, 365–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanassi, D.G.; Nuccio, S.-P.; Shu Kin So, S.; Bäumler, A.J. Fimbriae: Classification and Biochemistry. EcoSal Plus 2007, 2. [Google Scholar] [CrossRef]
- Pearson, M.M.; Sebaihia, M.; Churcher, C.; Quail, M.A.; Seshasayee, A.S.; Luscombe, N.M.; Abdellah, Z.; Arrosmith, C.; Atkin, B.; Chillingworth, T.; et al. Complete Genome Sequence of Uropathogenic Proteus mirabilis, a Master of Both Adherence and Motility. J. Bacteriol. 2008, 190, 4027–4037. [Google Scholar] [CrossRef] [Green Version]
- Rocha, S.P.D.; Pelayo, J.S.; Elias, W.P. Fimbriae of Uropathogenic Proteus mirabilis. FEMS Immunol. Med. Microbiol. 2007, 51, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, J.N.; Norsworthy, A.N.; Sun, T.-T.; Pearson, M.M. Proteus mirabilis Fimbriae- and Urease-Dependent Clusters Assemble in an Extracellular Niche to Initiate Bladder Stone Formation. Proc. Natl. Acad. Sci. USA 2016, 113, 4494–4499. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, C.E.; Forsyth-DeOrnellas, V.; Johnson, A.O.; Smith, S.N.; Zhao, L.; Wu, W.; Mobley, H.L.T. Genome-Wide Transposon Mutagenesis of Proteus mirabilis: Essential Genes, Fitness Factors for Catheter-Associated Urinary Tract Infection, and the Impact of Polymicrobial Infection on Fitness Requirements. PLoS Pathog. 2017, 13, e1006434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wray, S.K.; Hull, S.I.; Cook, R.G.; Barrish, J.; Hull, R.A. Identification and Characterization of a Uroepithelial Cell Adhesin from a Uropathogenic Isolate of Proteus mirabilis. Infect. Immun. 1986, 54, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, M.M.; Mobley, H.L.T. Repression of Motility during Fimbrial Expression: Identification of Fourteen MrpJ Gene Paralogs in Proteus mirabilis. Mol. Microbiol. 2008, 69, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018, 8, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Kuan, L.; Schaffer, J.N.; Zouzias, C.D.; Pearson, M.M. Characterization of 17 Chaperone-Usher Fimbriae Encoded by Proteus mirabilis Reveals Strong Conservation. J. Med. Microbiol. 2014, 63, 911–922. [Google Scholar] [CrossRef]
- Gygi, D.; Rahman, M.M.; Lai, H.-C.; Carlson, R.; Guard-Petter, J.; Hughes, C. A Cell-Surface Polysaccharide That Facilitates Rapid Population Migration by Differentiated Swarm Cells of Proteus mirabilis. Mol. Microbiol. 1995, 17, 1167–1175. [Google Scholar] [CrossRef]
- Breazeale, S.D.; Ribeiro, A.A.; McClerren, A.L.; Raetz, C.R.H. A Formyltransferase Required for Polymyxin Resistance in Escherichia coli and the Modification of Lipid A with 4-Amino-4-Deoxy-L-Arabinose. Identification and Function oF UDP-4-Deoxy-4-Formamido-L-Arabinose. J. Biol. Chem. 2005, 280, 14154–14167. [Google Scholar] [CrossRef] [Green Version]
- Spratt, B.G.; Cromie, K.D. Penicillin-Binding Proteins of Gram-Negative Bacteria. Rev. Infect. Dis. 1988, 10, 699–711. [Google Scholar] [CrossRef]
- Ohya, S.; Yamazaki, M.; Sugawara, S.; Tamaki, S.; Matsuhashi, M. New Cephamycin Antibiotic, CS-1170: Binding Affinity to Penicillin-Binding Proteins and Inhibition of Peptidoglycan Cross-Linking Reactions in Escherichia coli. Antimicrob. Agents Chemother. 1978, 14, 780–785. [Google Scholar] [CrossRef] [Green Version]
- McCoy, A.J.; Liu, H.; Falla, T.J.; Gunn, J.S. Identification of Proteus mirabilis Mutants with Increased Sensitivity to Antimicrobial Peptides. Antimicrob. Agents Chemother. 2001, 45, 2030–2037. [Google Scholar] [CrossRef] [Green Version]
- Belas, R.; Goldman, M.; Ashliman, K. Genetic Analysis of Proteus mirabilis Mutants Defective in Swarmer Cell Elongation. J. Bacteriol. 1995, 177, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.D.; Mobley, H.L. Proteus mirabilis Urease: Genetic Organization, Regulation, and Expression of Structural Genes. J. Bacteriol. 1988, 170, 3342–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, J.W.; Tenney, J.H.; Hoopes, J.M.; Muncie, H.L.; Anthony, W.C. A Prospective Microbiologic Study of Bacteriuria in Patients with Chronic Indwelling Urethral Catheters. J. Infect. Dis. 1982, 146, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.M.; Mobley, H.L.T.Y. 2007 The Type III Secretion System of Proteus mirabilis HI4320 Does Not Contribute to Virulence in the Mouse Model of Ascending Urinary Tract Infection. J. Med. Microbiol. 2007, 56, 1277–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.; Keevil, C.W. A Simple Artificial Urine for the Growth of Urinary Pathogens. Lett. Appl. Microbiol. 1997, 24, 203–206. [Google Scholar] [CrossRef]
- Davis, M.R.; Goldberg, J.B. Purification and Visualization of Lipopolysaccharide from Gram-Negative Bacteria by Hot Aqueous-Phenol Extraction. J. Vis. Exp. 2012, 63, e3916. [Google Scholar] [CrossRef] [Green Version]
- Janssen, C.; Lo, J.; Jäger, W.; Moskalev, I.; Law, A.; Chew, B.H.; Lange, D. A High Throughput, Minimally Invasive, Ultrasound Guided Model for the Study of Catheter Associated Urinary Tract Infections and Device Encrustation in Mice. J. Urol. 2014, 192, 1856–1863. [Google Scholar] [CrossRef]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.T.; Shirtliff, M.E. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef] [Green Version]
- Scotland, K.B.; Kung, S.H.; Chew, B.H.; Lange, D. Uropathogens Preferrentially Interact with Conditioning Film Components on the Surface of Indwelling Ureteral Stents Rather than Stent Material. Pathogens 2020, 9, 764. [Google Scholar] [CrossRef]
- Gaston, J.R.; Andersen, M.J.; Johnson, A.O.; Bair, K.L.; Sullivan, C.M.; Guterman, L.B.; White, A.N.; Brauer, A.L.; Learman, B.S.; Flores-Mireles, A.L.; et al. Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation, Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract. Pathogens 2020, 9, 835. [Google Scholar] [CrossRef]
- West, N.P.; Sansonetti, P.; Mounier, J.; Exley, R.M.; Parsot, C.; Guadagnini, S.; Prévost, M.-C.; Prochnicka-Chalufour, A.; Delepierre, M.; Tanguy, M.; et al. Optimization of Virulence Functions through Glucosylation of Shigella LPS. Science 2005, 307, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Aguiniga, L.M.; Yaggie, R.E.; Schaeffer, A.J.; Klumpp, D.J. Lipopolysaccharide Domains Modulate Urovirulence. Infect. Immun. 2016, 84, 3131–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunino, P.; Sosa, V.; Allen, A.G.; Preston, A.; Schlapp, G.; Maskell, D.J. Proteus mirabilis Fimbriae (PMF) Are Important for Both Bladder and Kidney Colonization in Mice. Microbiology 2003, 149, 3231–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, R.; Scavone, P.; Umpiérrez, A.; Maskell, D.J.; Zunino, P. Proteus mirabilis Uroepithelial Cell Adhesin (UCA) Fimbria Plays a Role in the Colonization of the Urinary Tract. Pathog. Dis. 2013, 67, 104–107. [Google Scholar] [CrossRef] [Green Version]
PMID | Gene Name | Gene/Protein Function |
---|---|---|
PMI0532 | ucaJ | Fimbria |
PMI1045 | arnA | LPS formation |
PMI2998 | fim 14C | Fimbria |
PMI3191 | PMI3191 | Glycosyl transferase |
PMI1850 | pbpC | Peptidoglycan synthesis |
PMI1464 | fim 8F | Fimbria |
PMI3166 | waaE | LPS formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herout, R.; Khoddami, S.; Moskalev, I.; Reicherz, A.; Chew, B.H.; Armbruster, C.E.; Lange, D. Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens 2023, 12, 509. https://doi.org/10.3390/pathogens12040509
Herout R, Khoddami S, Moskalev I, Reicherz A, Chew BH, Armbruster CE, Lange D. Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens. 2023; 12(4):509. https://doi.org/10.3390/pathogens12040509
Chicago/Turabian StyleHerout, Roman, Sara Khoddami, Igor Moskalev, Alina Reicherz, Ben H. Chew, Chelsie E. Armbruster, and Dirk Lange. 2023. "Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection" Pathogens 12, no. 4: 509. https://doi.org/10.3390/pathogens12040509
APA StyleHerout, R., Khoddami, S., Moskalev, I., Reicherz, A., Chew, B. H., Armbruster, C. E., & Lange, D. (2023). Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens, 12(4), 509. https://doi.org/10.3390/pathogens12040509