Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Collection
2.3. Cryopreservation of Whole Blood Cells
2.4. Flow Cytometry Staining of MDSCs, ILCs and M2 Macrophages
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Higher Frequencies of IL-10+ Polymorphonuclear MDSCs in Patent W. Bancrofti-Infected Individuals
3.3. Comparable Frequencies of M2 Macrophage Populations between the Study Cohorts
3.4. Reduced ILC2 Frequencies in W. bancrofti-Infected Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Local Burden of Disease 2019 Neglected Tropical Diseases Collaborators. The global distribution of lymphatic filariasis, 2000–2018: A geospatial analysis. Lancet Glob. Health 2020, 8, e1186–e1194. [Google Scholar]
- Cano, J.; Rebollo, M.P.; Golding, N.; Pullan, R.L.; Crellen, T.; Soler, A.; Kelly-Hope, L.A.; Lindsay, S.W.; Hay, S.I.; Bockarie, M.J.; et al. The global distribution and transmission limits of lymphatic filariasis: Past and present. Parasit. Vectors 2014, 7, 466. [Google Scholar] [CrossRef] [PubMed]
- Chandy, A.; Thakur, A.S.; Singh, M.P.; Manigauha, A. A review of neglected tropical diseases: Filariasis. Asian Pac. J. Trop. Med. 2011, 4, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Ivoke, N.; Ezeabikwa, B.O.; Ivoke, O.N.; Ekeh, F.N.; Ezenwaji, N.E.; Odo, G.E.; Onoja, U.S.; Eyo, J.E. Wuchereria bancrofti infection in rural tropical guinea-savannah communities: Rapid epidemiological assessment using immunochromatographic card test and prevalence of hydrocoele. Trop. Biomed. 2015, 32, 365–375. [Google Scholar]
- Ritter, M.; Osei-Mensah, J.; Debrah, L.B.; Kwarteng, A.; Mubarik, Y.; Debrah, A.Y.; Pfarr, K.; Hoerauf, A.; Layland, L.E. Wuchereria bancrofti-infected individuals harbor distinct IL-10-producing regulatory B and T cell subsets which are affected by anti-filarial treatment. PLoS Negl. Trop. Dis. 2019, 13, e30007436. [Google Scholar] [CrossRef]
- Nutman, T.B.; Kumaraswami, V. Regulation of the immune response in lymphatic filariasis: Perspectives on acute and chronic infection with Wuchereria bancrofti in South India. Parasite Immunol. 2001, 23, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.; Ndongmo, W.P.C.; Njouendou, A.J.; Nghochuzie, N.N.; Nchang, L.C.; Tayong, D.B.; Arndts, K.; Nausch, N.; Jacobsen, M.; Wanji, S.; et al. Mansonella perstans microfilaremic individuals are characterized by enhanced type 2 helper T and regulatory T and B cell subsets and dampened systemic innate and adaptive immune responses. PLoS Negl. Trop. Dis. 2018, 12, e0006184. [Google Scholar] [CrossRef]
- Adjobimey, T.; Hoerauf, A. Induction of immunoglobulin G4 in human filariasis: An indicator of immunoregulation. Ann. Trop. Med. Parasitol. 2010, 104, 455–464. [Google Scholar] [CrossRef]
- Arndts, K.; Deininger, S.; Specht, S.; Klarmann, U.; Mand, S.; Adjobimey, T.; Debrah, A.Y.; Batsa, L.; Kwarteng, A.; Epp, C.; et al. Elevated adaptive immune responses are associated with latent infections of Wuchereria bancrofti. PLoS. Negl. Trop. Dis. 2012, 6, e1611. [Google Scholar] [CrossRef]
- Babu, S.; Nutman, T.B. Immunology of lymphatic filariasis. Parasite Immunol. 2014, 36, 338–346. [Google Scholar] [CrossRef]
- Semnani, R.T.; Nutman, T.B. Toward an understanding of the interaction between filarial parasites and host antigen-presenting cells. Immunol. Rev. 2004, 201, 127–138. [Google Scholar] [CrossRef]
- Pfarr, K.M.; Debrah, A.Y.; Specht, S.; Hoerauf, A. Filariasis and lymphoedema. Parasite Immunol. 2009, 31, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Bhat, S.Q.; Pavan Kumar, N.; Lipira, A.B.; Kumar, S.; Karthik, C.; Kumaraswami, V.; Nutman, T.B. Filarial Lymphedema Is Characterized by Antigen-Specific Th1 and Th17 Proinflammatory Responses and a Lack of Regulatory T Cells. PLoS Negl. Trop. Dis. 2009, 3, e420. [Google Scholar] [CrossRef]
- Babu, S.; Nutman, T.B. Immunopathogenesis of lymphatic filarial disease. Semin. Immunopathol. 2012, 34, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.W. Advances in immunology and immunopathology of lymphatic filariasis. Southeast Asian J. Trop. Med. Public Health 1993, 24 (Suppl. 2), 76–81. [Google Scholar]
- Weinkopff, T.; Mackenzie, C.; Eversole, R.; Lammie, P.J. Filarial excretory-secretory products induce human monocytes to produce lymphangiogenic mediators. PLoS Negl. Trop. Dis. 2014, 8, e2893. [Google Scholar] [CrossRef]
- Horn, S.; Borrero-Wolff, D.; Ritter, M.; Arndts, K.; Wiszniewsky, A.; Debrah, L.B.; Debrah, A.Y.; Osei-Mensah, J.; Chachage, M.; Hoerauf, A.; et al. Distinct Immune Profiles of Exhausted Effector and Memory CD8(+) T Cells in Individuals with Filarial Lymphedema. Front. Cell. Infect. Microbiol. 2021, 11, 680832. [Google Scholar] [CrossRef]
- Horn, S.; Ritter, M.; Arndts, K.; Borrero-Wolff, D.; Wiszniewsky, A.; Debrah, L.B.; Debrah, A.Y.; Osei-Mensah, J.; Chachage, M.; Hoerauf, A.; et al. Filarial Lymphedema Patients Are Characterized by Exhausted CD4(+) T Cells. Front. Cell. Infect. Microbiol. 2022, 11, 767306. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.E.; Loke, P. Divergent roles for macrophages in lymphatic filariasis. Parasite Immunol. 2001, 23, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef]
- Stevenson, M.M.; Valanparambil, R.M.; Tam, M. Myeloid-Derived Suppressor Cells: The Expanding World of Helminth Modulation of the Immune System. Front. Immunol. 2022, 13, 874308. [Google Scholar] [CrossRef] [PubMed]
- Tamadaho, R.S.E.; Hoerauf, A.; Layland, L.E. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology 2018, 223, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Tamadaho, R.S.E.; Ritter, M.; Wiszniewsky, A.; Arndts, K.; Mack, M.; Hoerauf, A.; Layland, L.E. Infection-Derived Monocytic MDSCs Require TGF-beta to Suppress Filarial-Specific IFN-gamma But Not IL-13 Release by Filarial-Specific CD4+ T Cells In Vitro. Front. Trop. Dis. 2022, 2, 707100. [Google Scholar] [CrossRef]
- Vivier, E.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.J.; Mebius, R.E.; et al. Innate Lymphoid Cells: 10 Years On. Cell 2018, 174, 1054–1066. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez-Pomares, L. Physiological roles of macrophages. Pflug. Arch. 2017, 469, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Sharma, R.; Hoti, S.L. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop. 2015, 142, 71–78. [Google Scholar] [CrossRef]
- Karabowicz, J.; Długosz, E.; Bąska, P.; Wiśniewski, M. Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022, 11, 258. [Google Scholar] [CrossRef]
- Martinez, F.O.; Helming, L.; Gordon, S. Alternative Activation of Macrophages: An Immunologic Functional Perspective. Annu. Rev. Immunol. 2009, 27, 451–483. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Prieto-Lafuente, L.; Gregory, W.F.; Allen, J.E.; Maizels, R.M. MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages. J. Leukoc. Biol. 2009, 85, 844–854. [Google Scholar] [CrossRef]
- Nausch, N.; Appleby, L.J.; Sparks, A.M.; Midzi, N.; Mduluza, T.; Mutapi, F. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl. Trop. Dis. 2015, 9, e0003627. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Ribeiro, J.M.C.; Nutman, T.B. Human CD117 (cKit)+ Innate Lymphoid Cells Have a Discrete Transcriptional Profile at Homeostasis and Are Expanded during Filarial Infection. PLoS ONE 2014, 9, e108649. [Google Scholar] [CrossRef]
- Reichwald, J.J.; Risch, F.; Neumann, A.L.; Frohberger, S.J.; Scheunemann, J.F.; Lenz, B.; Ehrens, A.; Strutz, W.; Schumak, B.; Hoerauf, A.; et al. ILC2s Control Microfilaremia During Litomosoides sigmodontis Infection in Rag2(-/-) Mice. Front. Immunol. 2022, 13, 863663. [Google Scholar] [CrossRef] [PubMed]
- Debrah, A.Y.; Batsa, L.; Albers, A.; Mand, S.; Toliat, M.R.; Nürnberg, P.; Adjei, O.; Hoerauf, A.; Pfarr, K. Transforming Growth Factor-β 1 variant Leu10Pro is associated with both lack of microfilariae and differential microfilarial loads in the blood of people infected with lymphatic filariasis. Hum. Immunol. 2011, 72, 1143–1148. [Google Scholar] [CrossRef]
- Debrah, L.B.; Albers, A.; Debrah, A.Y.; Brockschmidt, F.F.; Becker, T.; Herold, C.; Hofmann, A.; Osei-Mensah, J.; Mubarik, Y.; Fröhlich, H.; et al. Single nucleotide polymorphisms in the angiogenic and lymphangiogenic pathways are associated with lymphedema caused by Wuchereria bancrofti. Hum. Genomics 2017, 11, 26. [Google Scholar] [CrossRef]
- Hawking, F. Advances in filariasis especially concerning periodicity of microfilariae. Trans. R. Soc. Trop. Med. Hyg. 1965, 59, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, G.; Addiss, D.; Roberts, J.; Norões, J. Progression of lymphatic vessel dilatation in the presence of living adult Wuchereria bancrofti. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 157–161. [Google Scholar] [CrossRef]
- Apodaca, M.C.; Wright, A.E.; Riggins, A.M.; Harris, W.P.; Yeung, R.S.; Yu, L.; Morishima, C. Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. J. Immunother. Cancer 2019, 7, 230. [Google Scholar] [CrossRef]
- Flörcken, A.; Takvorian, A.; Singh, A.; Gerhardt, A.; Ostendorf, B.N.; Dörken, B.; Pezzutto, A.; Westermann, J. Myeloid-derived suppressor cells in human peripheral blood: Optimized quantification in healthy donors and patients with metastatic renal cell carcinoma. Immunol. Lett. 2015, 168, 260–267. [Google Scholar] [CrossRef]
- Kurkó, J.; Vida, A.; Glant, T.T.; Scanzello, C.R.; Katz, R.S.; Nair, A.; Szekanecz, Z.; Mikecz, K. Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: A pilot study. BMC Musculoskelet. Disord. 2014, 15, 281. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Aggarwal, A. M2 macrophages and their role in rheumatic diseases. Rheumatol. Int. 2019, 39, 769–780. [Google Scholar] [CrossRef]
- Krabbendam, L.; Nagasawa, M.; Spits, H.; Bal, S.M. Isolation of Human Innate Lymphoid Cells. Curr. Protoc. Immunol. 2018, 122, e55. [Google Scholar] [CrossRef] [PubMed]
- Ohne, Y. OMIP-066: Identification of Novel Subpopulations of Human Group 2 Innate Lymphoid Cells in Peripheral Blood. Cytom. A 2020, 97, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Kumaraswami, V.; Nutman, T.B. Alternatively Activated and Immunoregulatory Monocytes in Human Filarial Infections. J. Infect. Dis. 2009, 199, 1827–1837. [Google Scholar] [CrossRef]
- O’Regan, N.L.; Steinfelder, S.; Venugopal, G.; Rao, G.B.; Lucius, R.; Srikantam, A.; Hartmann, S. Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses. PLoS Negl. Trop. Dis. 2014, 8, e3206. [Google Scholar] [CrossRef] [PubMed]
- Bonne-Annee, S.; Nutman, T.B. Human innate lymphoid cells (ILCs) in filarial infections. Parasite Immunol. 2018, 40, e12442. [Google Scholar] [CrossRef]
- Boyd, A.; Killoran, K.; Mitre, E.; Nutman, T.B. Pleural cavity type 2 innate lymphoid cells precede Th2 expansion in murine Litomosoides sigmodontis infection. Exp. Parasitol. 2015, 159, 118–126. [Google Scholar] [CrossRef]
- Mazzurana, L.; Bonfiglio, F.; Forkel, M.; D’Amato, M.; Halfvarson, J.; Mjösberg, J. Crohn’s disease is associated with activation of circulating innate lymphoid cells. Inflamm. Bowel Dis. 2021, 27, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Hashimoto-Hill, S.; Kim, M. Migration and Tissue Tropism of Innate Lymphoid Cells. Trends Immunol. 2016, 37, 68–79. [Google Scholar] [CrossRef]
- Bonne-Annee, S.; Bush, M.C.; Nutman, T.B. Differential Modulation of Human Innate Lymphoid Cell (ILC) Subsets by IL-10 and TGF-beta. Sci. Rep. 2019, 9, 14305. [Google Scholar] [CrossRef]
- Rigas, D.; Lewis, G.; Aron, J.L.; Wang, B.; Banie, H.; Sankaranarayanan, I.; Galle-Treger, L.; Maazi, H.; Lo, R.; Freeman, G.J.; et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J. Allergy Clin. Immunol. 2017, 139, 1468–1477. [Google Scholar] [CrossRef]
- Lim, A.I.; Di Santo, J.P. ILC-poiesis: Ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 2019, 49, 11–18. [Google Scholar] [CrossRef]
- Lim, A.I.; Li, Y.; Lopez-Lastra, S.; Stadhouders, R.; Paul, F.; Casrouge, A.; Serafini, N.; Puel, A.; Bustamante, J.; Surace, L.; et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell 2017, 168, 1086–1100.e10. [Google Scholar] [CrossRef]
- Mazzurana, L.; Czarnewski, P.; Jonsson, V.; Wigge, L.; Ringnér, M.; Williams, T.C.; Ravindran, A.; Björklund, Å.K.; Säfholm, J.; Nilsson, G.; et al. Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res. 2021, 31, 554–568. [Google Scholar] [CrossRef]
- Sripada, A.; Sirohi, K.; Alam, R. Isolation and Characterization of Conventional and Non-conventional Type 2 Innate Lymphoid Cells (ILC2s) from Human Peripheral Blood Mononuclear Cells (PBMCs). Methods Mol. Biol. 2022, 2506, 187–198. [Google Scholar]
- Jang, J.C.; Nair, M.G. Alternatively Activated Macrophages Revisited: New Insights into the Regulation of Immunity, Inflammation and Metabolic Function following Parasite Infection. Curr. Immunol. Rev. 2013, 9, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Kreider, T.; Anthony, R.M.; Urban, J.F., Jr.; Gause, W.C. Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 2007, 19, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Semnani, R.T.; Mahapatra, L.; Moore, V.; Sanprasert, V.; Nutman, T.B. Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi. Infect. Immun. 2011, 79, 3957–3965. [Google Scholar] [CrossRef] [PubMed]
- Bal, M.; Ranjit, M.; Khuntia, H.K.; Satapathy, A.K.; Achary, K.G.; Dwibedi, B.; Pati, S. High Tregs and systemic IL-10 expressions linked to the absence of sheath antibodies in lymphatic filariasis: Implications on the persistence of residual infection. Immunol. Res. 2021, 69, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Lee, S.H.; Kim, E.K.; Lee, E.J.; Baek, J.A.; Park, S.H.; Kwok, S.K.; Cho, M.L. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci. Rep. 2018, 8, 3753. [Google Scholar] [CrossRef]
EN (n = 89) | CFA+MF− (n = 54) | CFA+MF+ (n = 14) | PI (n = 117) | LE (n = 85) | |
---|---|---|---|---|---|
Gender [Female/Male] | 75/14 | 20/34 | 1/13 | 56/61 | 64/21 |
Percentage gender [Female/Male] | 84.27/15.73 | 37.04/62.96 | 7.14/92.86 | 47.86/52.14 | 75.29/24.71 |
Median age years (Range) | 46 (27–80) | 45 (25–64) | 37 (22–58) | 40 (23–93) | 52 (17–70) |
Median MDA rounds (Range) | 5 (0–10) | 3 (0–10) | 1 (0–6) | 3 (1–10) | 5 (0–10) |
Median LE stage (Range) | - | - | - | - | 3 (1–7) |
Median microfilaria count [MF/mL] (Range) | - | - | 163 (2–1127) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamadaho, R.S.E.; Osei-Mensah, J.; Arndts, K.; Debrah, L.B.; Debrah, A.Y.; Layland, L.E.; Hoerauf, A.; Pfarr, K.; Ritter, M. Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals. Pathogens 2023, 12, 665. https://doi.org/10.3390/pathogens12050665
Tamadaho RSE, Osei-Mensah J, Arndts K, Debrah LB, Debrah AY, Layland LE, Hoerauf A, Pfarr K, Ritter M. Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals. Pathogens. 2023; 12(5):665. https://doi.org/10.3390/pathogens12050665
Chicago/Turabian StyleTamadaho, Ruth S. E., Jubin Osei-Mensah, Kathrin Arndts, Linda Batsa Debrah, Alexander Y. Debrah, Laura E. Layland, Achim Hoerauf, Kenneth Pfarr, and Manuel Ritter. 2023. "Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals" Pathogens 12, no. 5: 665. https://doi.org/10.3390/pathogens12050665
APA StyleTamadaho, R. S. E., Osei-Mensah, J., Arndts, K., Debrah, L. B., Debrah, A. Y., Layland, L. E., Hoerauf, A., Pfarr, K., & Ritter, M. (2023). Reduced Type 2 Innate Lymphocyte Cell Frequencies in Patent Wuchereria bancrofti-Infected Individuals. Pathogens, 12(5), 665. https://doi.org/10.3390/pathogens12050665