Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells?
Abstract
:1. Introduction
2. The Core Event of Egress: Ca2+ Signaling in T. gondii
3. Intraparasitic Egress Signaling
3.1. Microneme Proteins
3.2. Dense Granule Proteins
3.3. Calcium-Dependent Protein Kinases (CDPKs)
4. Extra-Parasitic Egress Signaling
4.1. Inflammatory Factors
4.2. Gamma Interferon (IFN-γ)
4.3. Nitric Oxide (NO)
4.4. Death Receptor and Perforin
4.5. Tumor Necrosis Factor-α (TNF-α)
5. Exogenous Compounds
6. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- San Miguel, J.M.; Gutiérrez-Expósito, D.; Aguado-Martínez, A.; González-Zotes, E.; Pereira-Bueno, J.; Gómez-Bautista, M.; Rubio, P.; Ortega-Mora, L.M.; Collantes-Fernández, E.; Álvarez-García, G. Effect of Different Ecosystems and Management Practices on Toxoplasma gondii and Neospora caninum Infections in Wild Ruminants in Spain. J. Wildl. Dis. 2016, 52, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.A.M.; Khalifa, H.; Ramadan, G.K.; Hassaan, S.H.; Shaaban, I.; Farrag, H.M.M. Seroprevalence of Toxoplasma gondii among patients with schizophrenia and bipolar disorder in Upper Egypt: A comparative study with a control group. Ann. Parasitol. 2020, 66, 183–192. [Google Scholar] [PubMed]
- Lin, H.-A.; Chien, W.-C.; Huang, K.-Y.; Chung, C.-H.; Chen, L.-C.; Guo, J.-L. Infection with Toxoplasma gondii increases the risk of psychiatric disorders in Taiwan: A nationwide population-based cohort study. Parasitology 2020, 147, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Ayoade, F.; Todd, J.; Al-Delfi, F.; King, J. Extensive brain masses and cavitary lung lesions associated with toxoplasmosis and acquired immunodeficiency syndrome. Int. J. Std Aids 2017, 28, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Remington, J.S. Toxoplasmic Chorioretinitis in the Setting of Acute Acquired Toxoplasmosis. Clin. Infect. Dis. 1996, 23, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Carellos, E.V.M.; Caiaffa, W.T.; Andrade, G.M.Q.; Abreu, M.N.S.; Januário, J.N. Congenital toxoplasmosis in the state of Minas Gerais, Brazil: A neglected infectious disease? Epidemiol. Infect. 2013, 142, 644–655. [Google Scholar] [CrossRef]
- Carruthers, V.B.; Sibley, L.D. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 1997, 73, 114–123. [Google Scholar]
- Suss-Toby, E.; Zimmerberg, J.; Ward, G.E. Toxoplasma invasion: The parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc. Natl. Acad. Sci. USA 1996, 93, 8413–8418. [Google Scholar] [CrossRef]
- Mercier, C.; Dubremetz, J.-F.; Rauscher, B.; Lecordier, L.; Sibley, L.D.; Cesbron-Delauw, M.-F. Biogenesis of Nanotubular Network in Toxoplasma parasitophorous Vacuole Induced by Parasite Proteins. Mol. Biol. Cell 2002, 13, 2397–2409. [Google Scholar] [CrossRef]
- Lavine, M.; Arrizabalaga, M.D.L.A.G. Invasion and Egress by the Obligate Intracellular Parasite Toxoplasma gondii: Potential Targets for the Development of New Antiparasitic Drugs. Curr. Pharm. Des. 2007, 13, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Bisio, H.; Soldati-Favre, D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu. Rev. Microbiol. 2019, 73, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.N.J.; Zhong, L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem. J. 1996, 313, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Nagamune, K.; Moreno, S.N.; Chini, E.N.; Sibley, L.D. Calcium Regulation and Signaling in Apicomplexan parasites. Mol. Mech. Parasite Invasion: Subcell. Biochem. 2008, 47, 70–81. [Google Scholar] [CrossRef]
- Lourido, S.; Moreno, S.N. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 2015, 57, 186–193. [Google Scholar] [CrossRef]
- Chini, E.N.; Nagamune, K.; Wetzel, D.M.; Sibley, L.D. Evidence that the cADPR signalling pathway controls calcium-mediated microneme secretion in Toxoplasma gondii. Biochem. J. 2005, 389, 269–277. [Google Scholar] [CrossRef]
- Lovett, J.L.; Marchesini, N.; Moreno, S.N.; Sibley, L.D. Toxoplasma gondii Microneme Secretion Involves Intracellular Ca2+ Release from Inositol 1,4,5-Triphosphate (IP3)/Ryanodine-sensitive Stores. J. Biol. Chem. 2002, 277, 25870–25876. [Google Scholar] [CrossRef]
- Thastrup, O.; Cullen, P.J.; Drobak, B.K.; Hanley, M.R.; Dawson, A.P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. USA 1990, 87, 2466–2470. [Google Scholar] [CrossRef]
- Nagamune, K.; Moreno, S.N.J.; Sibley, L.D. Artemisinin-Resistant Mutants of Toxoplasma gondii Have Altered Calcium Homeostasis. Antimicrob. Agents Chemother. 2007, 51, 3816–3823. [Google Scholar] [CrossRef]
- Putney, J.W. Calcium Signaling; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Islam, M.S. Calcium Signaling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Yamaguchi, M.Y.M. Calcium Signaling; Nova Science Publishers, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Docampo, R.; Moreno, S.N. Acidocalcisomes. Cell Calcium 2011, 50, 113–119. [Google Scholar] [CrossRef]
- Drozdowicz, Y.M.; Shaw, M.; Nishi, M.; Striepen, B.; Liwinski, H.A.; Roos, D.; Rea, P.A. Isolation and Characterization of TgVP1, a Type I Vacuolar H+-translocating Pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J. Biol. Chem. 2003, 278, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Ruiz, F.A.; Moreno, S.N.J. The acidocalcisome Ca2+-ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol. Microbiol. 2004, 55, 1034–1045. [Google Scholar] [CrossRef]
- Luo, S.; Vieira, M.; Graves, J.; Zhong, L.; Moreno, S.N. A plasma membrane-type Ca2+-ATPase co-localizes with a vacuolar H+-pyrophosphatase to acidocalcisomes of Toxoplasma gondii. EMBO J. 2001, 20, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, P.; Miranda, K.; Rodrigues, J.C.F.; Fang, J.; Galizzi, M.; Plattner, H.; Hentschel, J.; Moreno, S.N.J. Calcium Uptake and Proton Transport by Acidocalcisomes of Toxoplasma gondii. PLoS ONE 2011, 6, e18390. [Google Scholar] [CrossRef]
- Miranda, K.; Pace, D.A.; Cintron, R.; Rodrigues, J.C.F.; Fang, J.; Smith, A.; Rohloff, P.; Coelho, E.; De Haas, F.; De Souza, W.; et al. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol. Microbiol. 2010, 76, 1358–1375. [Google Scholar] [CrossRef]
- Moreno, S.N.; Ayong, L.; Pace, U.A. Calcium storage and function in apicomplexan parasites. Essays Biochem. 2011, 51, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Bick, A.G.; Calvo, S.E.; Mootha, V.K. Evolutionary Diversity of the Mitochondrial Calcium Uniporter. Science 2012, 336, 886. [Google Scholar] [CrossRef] [PubMed]
- Prakriya, M.; Lewis, R.S. Store-operated calcium channels. Physiol. Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef] [PubMed]
- Pace, D.A.; McKnight, C.A.; Liu, J.; Jimenez, V.; Moreno, S.N. Calcium Entry in Toxoplasma gondii and Its Enhancing Effect of Invasion-linked Traits. J. Biol. Chem. 2014, 289, 19637–19647. [Google Scholar] [CrossRef]
- Prole, D.L.; Taylor, C.W. Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites. PLoS ONE 2011, 6, e26218. [Google Scholar] [CrossRef]
- Nagamune, K.; Sibley, L.D. Comparative Genomic and Phylogenetic Analyses of Calcium ATPases and Calcium-Regulated Proteins in the Apicomplexa. Mol. Biol. Evol. 2006, 23, 1613–1627. [Google Scholar] [CrossRef] [PubMed]
- Seeber, F.; Beuerle, B.; Schmidt, H. Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Mol. Biochem. Parasitol. 1999, 99, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Pezzella–D′Alessandro, N.; Le Moal, H.; Bonhomme, A.; Valere, A.; Klein, C.; Gomez–Marin, J.; Pinon, J.-M. Calmodulin Distribution and the Actomyosin Cytoskeleton in Toxoplasma gondii. J. Histochem. Cytochem. 2001, 49, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Borges-Pereira, L.; Budu, A.; McKnight, C.A.; Moore, C.A.; Vella, S.A.; Triana, M.A.H.; Liu, J.; Garcia, C.R.; Pace, D.A.; Moreno, S.N. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A study using genetically encoded calcium indicators. J. Biol. Chem. 2015, 290, 26914–26926. [Google Scholar] [CrossRef] [PubMed]
- Kafsack, B.F.C.; Pena, J.D.O.; Coppens, I.; Ravindran, S.; Boothroyd, J.C.; Carruthers, V.B. Rapid Membrane Disruption by a Perforin-Like Protein Facilitates Parasite Exit from Host Cells. Science 2009, 323, 530–533. [Google Scholar] [CrossRef]
- Roiko, M.S.; Carruthers, V. Functional Dissection of Toxoplasma gondii Perforin-like Protein 1 Reveals a Dual Domain Mode of Membrane Binding for Cytolysis and Parasite Egress. J. Biol. Chem. 2013, 288, 8712–8725. [Google Scholar] [CrossRef]
- Guerra, A.J.; Zhang, O.; Bahr, C.M.E.; Huynh, M.-H.; DelProposto, J.; Brown, W.C.; Wawrzak, Z.; Koropatkin, N.M.; Carruthers, V.B. Structural basis of Toxoplasma gondii perforin-like protein 1 membrane interaction and activity during egress. PLoS Pathog. 2018, 14, e1007476. [Google Scholar] [CrossRef]
- Ni, T.; Williams, S.I.; Rezelj, S.; Anderluh, G.; Harlos, K.; Stansfeld, P.J.; Gilbert, R.J.C. Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1. Sci. Adv. 2018, 4, eaaq0762. [Google Scholar] [CrossRef]
- Roiko, M.S.; Svezhova, N.; Carruthers, V.B. Acidification Activates Toxoplasma gondii Motility and Egress by Enhancing Protein Secretion and Cytolytic Activity. PLoS Pathog. 2014, 10, e1004488. [Google Scholar] [CrossRef]
- Meirelles, M.D.N.L.D.; Jorge, T.C.D.A.; de Souza, W.; Moreira, A.L.; Barbosa, H. Trypanosoma cruzi: Phagolysosomal fusion after invasion into non professional phagocytic cells. Cell Struct. Funct. 1987, 12, 387–393. [Google Scholar] [CrossRef]
- Jones, T.C.; Hirsch, J.G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J. Exp. Med. 1972, 136, 1173–1194. [Google Scholar] [CrossRef]
- Sibley, L.D.; Weidner, E.; Krahenbuhl, J.L. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 1985, 315, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Coppens, I.; Dunn, J.D.; Romano, J.D.; Pypaert, M.; Zhang, H.; Boothroyd, J.C.; Joiner, K.A. Toxoplasma gondii Sequesters Lysosomes from Mammalian Hosts in the Vacuolar Space. Cell 2006, 125, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Huynh, M.-H.; Roiko, M.S.; Gomes, A.O.; Schinke, E.N.; Schultz, A.J.; Agrawal, S.; Oellig, C.A.; Sexton, T.R.; Beauchamp, J.M.; Laliberté, J.; et al. Toxoplasma gondii Toxolysin 4 Contributes to Efficient Parasite Egress from Host Cells. Msphere 2021, 6, e0044421. [Google Scholar] [CrossRef] [PubMed]
- Nagamune, K.; Beatty, W.L.; Sibley, L.D. Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite Toxoplasma gondii. Eukaryot. Cell 2007, 6, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, A.; Pingret, L.; Michel, J.; Balossier, G.; Lhotel, M.; Pluot, M.; Pinon, J.M. Subcellular calcium localization in Toxoplasma gondii by electron microscopy and by X-ray and electron energy loss spectroscopies. Microsc. Res. Tech. 1993, 25, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, V.B.; Sibley, L.D. Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol. Microbiol. 1999, 31, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.A.; Kaplan, A.D.; Lis, A.; Bett, G.C.; Rosowski, E.E.; Cirelli, K.M.; Bougdour, A.; Sidik, S.M.; Beck, J.R.; Lourido, S.; et al. The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell Host Microbe 2015, 17, 642–652. [Google Scholar] [CrossRef]
- Bougdour, A.; Tardieux, I.; Hakimi, M.-A. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell. Microbiol. 2014, 16, 334–343. [Google Scholar] [CrossRef]
- Pingret, L.; Millot, J.M.; Sharonov, S.; Bonhomme, A.; Manfait, M.; Pinon, J.M. Relationship between intracellular free calcium concentrations and the intracellular development of Toxoplasma gondii. J. Histochem. Cytochem. 1996, 44, 1123–1129. [Google Scholar] [CrossRef]
- LaFavers, K.A.; Márquez-Nogueras, K.M.; Coppens, I.; Moreno, S.N.J.; Arrizabalaga, G. A novel dense granule protein, GRA41, regulates timing of egress and calcium sensitivity in Toxoplasma gondii. Cell. Microbiol. 2017, 19, e12749. [Google Scholar] [CrossRef]
- Cesbron-Delauw, M.F.; Guy, B.; Torpier, G.; Pierce, R.J.; Lenzen, G.; Cesbron, J.Y.; Charif, H.; Lepage, P.; Darcy, F.; Lecocq, J.P. Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 1989, 86, 7537–7541. [Google Scholar] [CrossRef]
- Okada, T.; Marmansari, D.; Li, Z.-M.; Adilbish, A.; Canko, S.; Ueno, A.; Shono, H.; Furuoka, H.; Igarashi, M. A novel dense granule protein, GRA22, is involved in regulating parasite egress in Toxoplasma gondii. Mol. Biochem. Parasitol. 2013, 189, 5–13. [Google Scholar] [CrossRef]
- Pszenny, V.; Ehrenman, K.; Romano, J.D.; Kennard, A.; Schultz, A.; Roos, D.S.; Grigg, M.E.; Carruthers, V.B.; Coppens, I. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J. Biol. Chem. 2016, 291, 3725–3746. [Google Scholar] [CrossRef]
- Mercier, C.; Cesbron-Delauw, M.-F. Toxoplasma secretory granules: One population or more? Trends Parasitol. 2015, 31, 60–71. [Google Scholar] [CrossRef]
- Díaz-Martín, R.D.; Mercier, C.; de León, C.T.G.; González, R.M.; Pozos, S.G.; Ríos-Castro, E.; García, R.A.; Fox, B.A.; Bzik, D.J.; Flores, R.M. The dense granule protein 8 (GRA8) is a component of the sub-pellicular cytoskeleton in Toxoplasma gondii. Parasitol. Res. 2019, 118, 1899–1918. [Google Scholar] [CrossRef]
- Harper, J.F.; Harmon, A. Plants, symbiosis and parasites: A calcium signalling connection. Nat. Rev. Mol. Cell Biol. 2005, 6, 555–566. [Google Scholar] [CrossRef]
- Sharma, M.; Choudhury, H.; Roy, R.; Michaels, S.A.; Ojo, K.K.; Bansal, A. CDPKs: The critical decoders of calcium signal at various stages of malaria parasite development. Comput. Struct. Biotechnol. J. 2021, 19, 5092–5107. [Google Scholar] [CrossRef]
- Foroutan, M.; Ghaffarifar, F. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine. Clin. Exp. Vaccine Res. 2018, 7, 24–36. [Google Scholar] [CrossRef]
- Lourido, S.; Shuman, J.; Zhang, C.; Shokat, K.M.; Hui, R.; Sibley, L.D. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010, 465, 359–362. [Google Scholar] [CrossRef]
- Gaji, R.Y.; Johnson, D.E.; Treeck, M.; Wang, M.; Hudmon, A.; Arrizabalaga, G. Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during Toxoplasma gondii egress. PLoS Pathog. 2015, 11, e1005268. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.M.; Tengganu, I.F.; Liu, J.; Murray, J.M.; Padilla, L.F.A.; Zhang, Y.; Brown, P.T.; Florens, L.; Hu, K. An apical protein, Pcr2, is required for persistent movement by the human parasite Toxoplasma gondii. PLoS Pathog. 2022, 18, e1010776. [Google Scholar] [CrossRef]
- Dave, N.; LaFavers, K.; Arrizabalaga, G. The Dually Localized EF-Hand Domain-Containing Protein TgEFP1 Regulates the Lytic Cycle of Toxoplasma gondii. Cells 2022, 11, 1709. [Google Scholar] [CrossRef] [PubMed]
- Tomita, T.; Yamada, T.; Weiss, L.M.; Orlofsky, A. Externally Triggered Egress Is the Major Fate of Toxoplasma gondii during Acute Infection. J. Immunol. 2009, 183, 6667–6680. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.; Duffy, A.; Weiss, L.M.; Halonen, S.K. The Gamma Interferon (IFN-γ)-Inducible GTP-Binding Protein IGTP Is Necessary for Toxoplasma Vacuolar Disruption and Induces Parasite Egression in IFN-γ-Stimulated Astrocytes. Infect. Immun. 2008, 76, 4883–4894. [Google Scholar] [CrossRef]
- Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.-M.; Saeij, J.P.J. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication. Infect. Immun. 2013, 81, 4341–4349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.O.; Khaminets, A.; Hunn, J.P.; Howard, J.C. Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFNγ-Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death. PLoS Pathog. 2009, 5, e1000288. [Google Scholar] [CrossRef]
- Lyons, R.E.; McLeod, R.; Roberts, C.W. Toxoplasma gondii tachyzoite–bradyzoite interconversion. Trends Parasitol. 2002, 18, 198–201. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Chen, H.; Chen, Y.; Wang, L.; Cai, Y.-H.; Li, M.; Wen, H.-Q.; Du, J.; An, R.; Luo, Q.-L.; et al. Activated microglia contribute to neuronal apoptosis in Toxoplasmic encephalitis. Parasites Vectors 2014, 7, 372. [Google Scholar] [CrossRef]
- Yan, X.; Ji, Y.; Liu, X.; Suo, X. Nitric oxide stimulates early egress of Toxoplasma gondii tachyzoites from human foreskin fibroblast cells. Parasites Vectors 2015, 8, 420. [Google Scholar] [CrossRef]
- Ji, Y.-S.; Sun, X.-M.; Liu, X.-Y.; Suo, X. Toxoplasma gondii: Effects of exogenous nitric oxide on egress of tachyzoites from infected macrophages. Exp. Parasitol. 2013, 133, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Persson, E.K.; Agnarson, A.M.; Lambert, H.; Hitziger, N.; Yagita, H.; Chambers, B.J.; Barragan, A.; Grandien, A. Death Receptor Ligation or Exposure to Perforin Trigger Rapid Egress of the Intracellular Parasite Toxoplasma gondii. J. Immunol. 2007, 179, 8357–8365. [Google Scholar] [CrossRef] [PubMed]
- Gazzinelli, R.T.; Wysocka, M.; Hieny, S.; Scharton-Kersten, T.; Cheever, A.; Kühn, R.; Müller, W.; Trinchieri, G.; Sher, A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J. Immunol. 1996, 157, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, M.; Ren, C.; Shen, J.; Ji, Y. Exogenous tumor necrosis factor-alpha could induce egress of Toxoplasma gondii from human foreskin fibroblast cells. Parasite 2017, 24, 45. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Sethi, K.; Piekarski, G. Toxoplasma gondii: Calcium lonophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp. Parasitol. 1982, 53, 179–188. [Google Scholar] [CrossRef]
- Black, M.W.; Arrizabalaga, G.; Boothroyd, J.C. Ionophore-Resistant Mutants of Toxoplasma gondii Reveal Host Cell Permeabilization as an Early Event in Egress. Mol. Cell. Biol. 2000, 20, 9399–9408. [Google Scholar] [CrossRef]
- Arrizabalaga, G.; Boothroyd, J.C. Role of calcium during Toxoplasma gondii invasion and egress. Int. J. Parasitol. 2004, 34, 361–368. [Google Scholar] [CrossRef]
- Mordue, D.G.; Håkansson, S.; Niesman, I.; Sibley, L.D. Toxoplasma gondii Resides in a Vacuole That Avoids Fusion with Host Cell Endocytic and Exocytic Vesicular Trafficking Pathways. Exp. Parasitol. 1999, 92, 87–99. [Google Scholar] [CrossRef]
- Moudy, R.; Manning, T.J.; Beckers, C.J. The Loss of Cytoplasmic Potassium upon Host Cell Breakdown Triggers Egress of Toxoplasma gondii. J. Biol. Chem. 2001, 276, 41492–41501. [Google Scholar] [CrossRef]
- Fruth, I.A.; Arrizabalaga, G. Toxoplasma gondii: Induction of egress by the potassium ionophore nigericin. Int. J. Parasitol. 2007, 37, 1559–1567. [Google Scholar] [CrossRef]
- Stommel, E.W.; Ely, K.H.; Schwartzman, J.D.; Kasper, L.H. Toxoplasma gondii:Dithiol-Induced Ca2+Flux Causes Egress of Parasites from the Parasitophorous Vacuole. Exp. Parasitol. 1997, 87, 88–97. [Google Scholar] [CrossRef]
- Silverman, J.A.; Qi, H.; Riehl, A.; Beckers, C.; Nakaar, V.; Joiner, K. Induced Activation of the Toxoplasma gondii Nucleoside Triphosphate Hydrolase Leads to Depletion of Host Cell ATP Levels and Rapid Exit of Intracellular Parasites from Infected Cells. J. Biol. Chem. 1998, 273, 12352–12359. [Google Scholar] [CrossRef]
- Nagamune, K.; Hicks, L.M.; Fux, B.; Brossier, F.; Chini, E.N.; Sibley, L.D. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 2008, 451, 207–210. [Google Scholar] [CrossRef]
- Puce, S.; Basile, G.; Bavestrello, G.; Bruzzone, S.; Cerrano, C.; Giovine, M.; Arillo, A.; Zocchi, E. Abscisic Acid Signaling through Cyclic ADP-ribose in Hydroid Regeneration. J. Biol. Chem. 2004, 279, 39783–39788. [Google Scholar] [CrossRef]
Protein | Cellular Location | Function | Ref. |
---|---|---|---|
TgPLP1 | Microneme | Permeabilize the PVM and HCM | [38] |
TLN4 | Putative metalloproteinase | [47] | |
GRA8 | Dense granule/PV lumen | Component of the sub-pellicular cytoskeleton | [59] |
GRA22 | N/A | [56] | |
GRA41 | Regulation of calcium homeostasis | [54] | |
TgLCAT | Potential to disrupt membranes | [57] | |
TgCDPK3 | Parasite periphery | Phosphorylation of TgMyoA | [64] |
TgCDPK1 | N/A | Regulation of microneme secretion | [63] |
Pcr 2 | Preconoidal region | ---- | [65] |
TgEFP1 | PLV/ELC and the PV | ---- | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diao, Y.; Yao, Y.; El-Ashram, S.; Bian, M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023, 12, 679. https://doi.org/10.3390/pathogens12050679
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens. 2023; 12(5):679. https://doi.org/10.3390/pathogens12050679
Chicago/Turabian StyleDiao, Yujie, Yong Yao, Saeed El-Ashram, and Maohong Bian. 2023. "Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells?" Pathogens 12, no. 5: 679. https://doi.org/10.3390/pathogens12050679
APA StyleDiao, Y., Yao, Y., El-Ashram, S., & Bian, M. (2023). Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens, 12(5), 679. https://doi.org/10.3390/pathogens12050679