Analysis of Discordance between Genotypic and Phenotypic Assays for Rifampicin-Resistant Mycobacterium tuberculosis Isolated from Healthcare Facilities in Mthatha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Sample Collection, Transport, and Storage
2.4. Laboratory Diagnosis of MDR-TB and XDR-TB
2.4.1. Molecular Diagnosis
GeneXpert MTB/RIF
Line Probe Assay: GenoType MTBDRplus
- a.
- DNA Extraction
- b.
- Multiplex PCR Amplification
2.5. Phenotypic DST
2.6. Data Analysis
3. Results
4. Discussion
- 1.
- Technical laboratory errors causing false resistant RMP results with GeneXpert was considered because RMP resistance was identified only on Xpert MTB/RIF while LPA and MGIT 960 indicated RMP susceptibility.
- 2.
- Heteroresistance was considered since there was a simultaneous presence of all rpoB wild types (wts) and specific rpoB mutation signals in LPA in the presence of RMP susceptible by MGIT 960 but RMP resistant on Xpert MTB/RIF
- 3.
- Technical laboratory errors causing false susceptible RMP results with LPA since RMP resistance in Xpert was confirmed using MGIT 960 performed on positive cultures (while LPA indicated discordant results).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- STATSSA. Mortality and Causes of Death in South Africa, 2016: Findings from Death Notification; Statistics South Africa: Pretoria, South Africa, 2018.
- WHO. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2020.
- WHO. Treatment Guidelines for Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2016.
- WHO. The impact of the rollout of rapid molecular diagnostic testing for tuberculosis on empirical treatment in Cape Town, South Africa. Bull. World Health Organ. 2017, 95, 545–608. [Google Scholar]
- Piersimoni, C.; Olivieri, A.; Benacchio, L.; Scarparo, C. Current perspectives on drug susceptibility testing of Mycobacterium tuberculosis complex: The automated nonradiometric systems. J. Clin. Microbiol. 2006, 44, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakrus, M.A.; Driscoll, J.; Lentz, A.J.; Sikes, D.; Hartline, D.; Metchock, B.; Starks, A.M. Concordance between molecular and phenotypic testing of Mycobacterium tuberculosis complex isolates for resistance to rifampin and isoniazid in the United States. J. Clin. Microbiol. 2014, 52, 1932–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Deun, A.; Barrera, L.; Bastian, I.; Fattorini, L.; Hoffmann, H.; Kam, K.M.; Rigouts, L.; Rüsch-Gerdes, S.; Wright, A. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J. Clin. Microbiol. 2009, 47, 3501–3506. [Google Scholar] [CrossRef] [Green Version]
- van Rie, A.; Victor, T.C.; Richardson, M.; Johnson, R.; van der Spuy, G.D.; Murray, E.J.; Beyers, N.; Gey van Pittius, N.C.; van Helden, P.D.; Warren, R.M. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am. J. Respir. Crit. Care Med. 2005, 172, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Mokaddas, E. Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis. J. Infect. Public Health 2014, 7, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, H.S.; Botha, P.; Beyers, N.; Gie, R.P.; Vermeulen, H.A.; Groenewald, P.; Coetzee, G.J.; Donald, P.R. The 5-year outcome of multidrug resistant tuberculosis patients in the Cape Province of South Africa. Trop. Med. Int. Health 1996, 1, 718–722. [Google Scholar] [CrossRef]
- NDoH. Management of drug-resistant tuberculosis. In Policy Guideline; National Department of Health: Pretoria, South Africa, 2017. [Google Scholar]
- Siu, G.K.H.; Zhang, Y.; Lau, T.C.K.; Lau, R.W.T.; Ho, P.-L.; Yew, W.-W.; Tsui, S.K.W.; Cheng, V.C.C.; Yuen, K.-Y.; Yam, W.-C. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2011, 66, 730–733. [Google Scholar] [CrossRef] [Green Version]
- Helb, D.; Jones, M.; Story, E.; Boehme, C.; Wallace, E.; Ho, K.; Kop, J.; Owens, M.R.; Rodgers, R.; Banada, P.; et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J. Clin. Microbiol. 2010, 48, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Hofmann-Thiel, S.; van Ingen, J.; Feldmann, K.; Turaev, L.; Uzakova, G.T.; Murmusaeva, G.; van Soolingen, D.; Hoffmann, H. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. Eur. Respir. J. 2009, 33, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekonnen, D.; Admassu, A.; Mulu, W.; Amor, A.; Benito, A.; Gelaye, W.; Biadglegne, F.; Abera, B. Multidrug-resistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia. Int. J. Infect. Dis. 2015, 39, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolani, M.P.; D’Souza, D.T.B.; Mistry, N.F. Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplusassay and their implication for treatment outcomes in patients from Mumbai, India. BMC Infect. Dis. 2012, 12, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res. 2001, 2, 164–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Padilla, E.; Dlamini, T.; Ascorra, A.; Rüsch-Gerdes, S.; Tefera, Z.D.; Calain, P.; de la Tour, R.; Jochims, F.; Richter, E.; Bonnet, M. High prevalence of multidrug-resistant tuberculosis, Swaziland, 2009–2010. Emerg. Infect. Dis. 2012, 18, 29–37. [Google Scholar] [CrossRef]
- Miotto, P.; Piana, F.; Penati, V.; Canducci, F.; Migliori, G.B.; Cirillo, D.M. Use of genotype MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy. J. Clin. Microbiol. 2006, 44, 2485–2491. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, J.; Marttila, H.J.; Marjamäki, M.; Viljanen, M.K.; Soini, H. Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 350–352. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, J.Q.; Khan, E.; Alam, S.M.; Ali, A.; Hasan, Z.; Hasan, R. Line probe assay for detection of rifampicin and isoniazid resistant tuberculosis in Pakistan. J. Pak. Med. Assoc. 2012, 62, 767–772. [Google Scholar]
- Vandewoestyne, M.; Van Hoofstat, D.; Sabine De Groote, S.; Van Thuyne, N.; Haerinck, S.; Van Nieuwerburgh, F. Sources of DNA Contamination and Decontamination Procedures in the Forensic Laboratory. J. Forensic Res. 2011, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Kéki, Z.; Grébner, K.; Bohus, V.; Márialigeti, K.; Tóth, E.M. Application of special oligotrophic media for cultivation of bacterial communities originated from ultrapure water. Acta Microbiol. Immunol. Hung. 2013, 60, 345–357. [Google Scholar] [CrossRef]
- Barton, H.A.; Taylor, N.M.; Lubbers, B.R.; Pemberton, A.C. DNA extraction from low-biomass carbonate rock: An improved method with reduced contamination and the low-biomass contaminant database. J. Microbiol. Methods 2006, 66, 21–31. [Google Scholar] [CrossRef]
- Grahn, N.; Olofsson, M.; Ellnebo-Svedlund, K.; Monstein, H.J.; Jonasson, J. Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiol. Lett. 2003, 219, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer | Type | Sequence (5′→3′) | Position in Reference to Start Codon (bp) |
---|---|---|---|
TR8x | PCR sequencing primer (RRDR) | TCGCCGCGATCAAGGAGTTCTTCGGC | 1253 to 277 |
TR9x | PCR sequencing primer (RRDR) | TGCACGTCGCGGACCTCCAGCCCGGCAC | 1382 to 1409 |
rpoB-pcrF | PCR sequencing primer (complete rpoB) | CTTTGTTCGTGGTGAGCGTGAG | −565 to −543 |
rpoB-pcrR | PCR sequencing primer (complete rpoB) | GTTGATCGTCTCCGGCTTTTTG | 3647 to 3668 |
rpoB-2F | sequencing primer (complete rpoB) | TGCGGCTCAGCGGTTTAG | −147 to −130 |
rpoB-3R | sequencing primer (complete rpoB) | GCCGCGATAATTTTGTCGG | −88 to −70 |
rpoB-4F | sequencing primer (complete rpoB) | GTCGACGAGTGCAAAGACAAGG | 337 to 358 |
rpoB-5R | sequencing primer (complete rpoB) | GAAGTCACCCATGAACACCGTC | 432 to 453 |
rpoB-6F | sequencing primer (complete rpoB) | CGAGCCCCCGACCAAA | 834 to 849 |
rpoB-7R | sequencing primer (complete rpoB) | TGCAGCCCGAGCTTCTTG | 933 to 950 |
rpoB-8F | sequencing primer (complete rpoB) | CCCGATCGAAACCCCTGA | 1434 to 1451 |
rpoB-9R | sequencing primer (complete rpoB) | GCGAGCCGATCAGACCGA | 1463 to 1480 |
rpoB-10F | sequencing primer (complete rpoB) | GTGATGCACGACAACGGCA | 1960 to 1978 |
rpoB-11R | sequencing primer (complete rpoB) | CGCATCCGGTAGGTACGC | 1983 to 2000 |
rpoB-12F | sequencing primer (complete rpoB) | GGTGAGACCGAGCTGACGC | 2410 to 2428 |
rpoB-13R | sequencing primer (complete rpoB) | GCGTCAGCTCGGTCTCACC | 2410 to 2428 |
rpoB-14F | sequencing primer (complete rpoB) | ACGGCAAGGCCATGCTCTTC | 2996 to 3015 |
rpoB-15R | sequencing primer (complete rpoB) | TGTAGGCAGCACCGTAGGC | 3214 to 3232 |
Drug Susceptibility Profile | RMP Resistant by GeneXpert n (%) | RMP Resistant by LPA n (%) | p-Value |
---|---|---|---|
LPA | <0.001 | ||
INH susceptible (n = 32) | 32 (100) | 26 (81.3) | |
INH resistant (n =133) | 133 (100) | 131 (98.5) |
Patient No. | Gender | Age | Sub-District of Origin | HIV Status | TB History | Final Diagnosis | Outcomes |
---|---|---|---|---|---|---|---|
1 | F | 34 | KSD | Neg | New | MDR | Still on anti-TB |
2 | M | 66 | KSD | Pos | PT | MDR | Still on anti-TB |
3 | F | 28 | KSD | Neg | PT | INH-mono | Fav outcome |
4 | M | 35 | KSD | Neg | New | MDR | Fav outcome |
5 | F | 55 | KSD | Pos | PT | MDR | Still on anti-TB |
6 | F | 30 | KSD | Pos | PT | MDR | Poor outcome |
7 | F | 40 | KSD | Neg | PT | MDR | Fav outcome |
8 | F | 42 | KSD | Pos | New | MDR | Fav outcome |
9 | F | 22 | KSD | Pos | New | MDR | Fav outcome |
10 | M | 18 | Mhlontlo | Neg | New | Pre-XDR | Fav outcome |
11 | F | 39 | KSD | Neg | PT | MDR | Fav outcome |
12 | M | 68 | KSD | Neg | New | RMP-mono | Poor outcome |
Case No. | AFB Smear Results | Xpert MTB/RIF (On Sputum) | LPA (On Isolates) | MGIT-960 (On Isolates) | Possible Reasons for Discordant Results | Possible Errors That Were Investigated |
---|---|---|---|---|---|---|
1. | Negative | Resistant | Susceptible (All wild types are present, no rpoB mutation signal is present) | Susceptible | Most likely laboratory error causing false resistant RMP result with GeneXpert OR Erroneous Xpert RMP result |
|
2. | 3+ | Resistant | Susceptible (All wild types are present, no rpoB mutation signal is present) | Susceptible | Most likely laboratory error causing false resistant RMP result with Gene Xpert OR Erroneous Xpert RMP result |
|
3. | 2+ | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
4. | Negative | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
5. | Negative | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
6. | Negative | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
7. | 3+ | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
8. | Negative | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
9. | 3+ | Resistant | Susceptible (All wild types are present, rpoB mutation present) | Susceptible | Heteroresistance (presence of both resistant and susceptible Mtb isolates; or endogenous development of two sub-populations of Mtb isolates after inadequate treatment) OR DNA contamination for LPA | DNA contamination of LPA |
10. | 1+ | Resistant | Susceptible (All wild types are present, no rpoB mutation is present) | Resistant | Most likely laboratory error caused false susceptible RMP results with LPA |
|
11. | 3+ | Resistant | Susceptible (All wild types are present, no rpoB mutation is present) | Resistant | Most likely laboratory error caused false susceptible RMP results with LPA |
|
12. | 2+ | Resistant | Susceptible (All wild types are present, no rpoB mutation present) | Resistant | Most likely laboratory error caused false susceptible RMP results with LPA |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokop, C.; Faye, L.M.; Apalata, T. Analysis of Discordance between Genotypic and Phenotypic Assays for Rifampicin-Resistant Mycobacterium tuberculosis Isolated from Healthcare Facilities in Mthatha. Pathogens 2023, 12, 909. https://doi.org/10.3390/pathogens12070909
Bokop C, Faye LM, Apalata T. Analysis of Discordance between Genotypic and Phenotypic Assays for Rifampicin-Resistant Mycobacterium tuberculosis Isolated from Healthcare Facilities in Mthatha. Pathogens. 2023; 12(7):909. https://doi.org/10.3390/pathogens12070909
Chicago/Turabian StyleBokop, Carine, Lindiwe M. Faye, and Teke Apalata. 2023. "Analysis of Discordance between Genotypic and Phenotypic Assays for Rifampicin-Resistant Mycobacterium tuberculosis Isolated from Healthcare Facilities in Mthatha" Pathogens 12, no. 7: 909. https://doi.org/10.3390/pathogens12070909
APA StyleBokop, C., Faye, L. M., & Apalata, T. (2023). Analysis of Discordance between Genotypic and Phenotypic Assays for Rifampicin-Resistant Mycobacterium tuberculosis Isolated from Healthcare Facilities in Mthatha. Pathogens, 12(7), 909. https://doi.org/10.3390/pathogens12070909