Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Fungal Cultures
2.2. Morphological Identification
2.3. Pathogenicity Tests
2.4. DNA Extraction, Polymerase Chain Reaction Amplification, and DNA Sequencing
2.5. Phylogenetic Analysis
3. Results
3.1. Isolation of Fungi
3.2. Morphological and Cultural Characteristics
3.3. Pathogenicity Tests
3.4. Molecular Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, A.; Lheureux, F.; Dirlewanger, E. Walnut: Past and future of genetic improvement. Tree Genet. Genomes 2018, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Vahdati, K.; Arab, M.M.; Sarikhani, S.; Sadat-Hosseini, M.; Leslie, C.A.; Brown, P.J. Advances in Persian Walnut (Juglans regia L.) Breeding Strategies. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Shen, D.; Wu, S.; Zheng, Y. Characterization of iron walnut in different regions of China based on phytochemical composition. J. Food Sci. Technol. 2020, 58, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- López-Moral, A.; Lovera, M.; del Carmen Raya, M.; Cortés-Cosano, N.; Arquero, O.; Trapero, A.; Agustí-Brisach, C. Etiology of Branch Dieback and Shoot Blight of English Walnut Caused by Botryosphaeriaceae and Diaporthe Species in Southern Spain. Plant Dis. 2020, 104, 533–550. [Google Scholar] [CrossRef]
- Varjas, V.; Lakatos, T.; Tóth, T.; Kovács, C. First Report of Colletotrichum godetiae Causing Anthracnose and Twig Blight on Persian Walnut in Hungary. Plant Dis. 2020, 105, 702. [Google Scholar] [CrossRef]
- Chen, S.F.; Morgan, D.P.; Hasey, J.K.; Anderson, K.; Michailides, T.J. Phylogeny, morphology, distribution, and pathogenicity of Botryosphaeriaceae and Diaporthaceae from English walnut in California. Plant Dis. 2014, 98, 636–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.Q.; Liu, F.F.; Li, J.Q.; Liu, Q.L.; Chen, S.F. Characterization of Botryosphaeria dothidea and Lasiodiplodia pseudotheobromae from English walnut in China. J. Phytopathol. 2015, 164, 348–353. [Google Scholar] [CrossRef]
- Michailides, T.J.; Hasey, J. Botryosphaeria and Phomopsis Cankers of Walnuts in California. Walnut Husk Fly Field Meeting; University of California Cooperative Extension: Half Moon Bay, CA, USA, 2010. [Google Scholar]
- Fan, X.L.; Hyde, K.D.; Liu, M.; Liang, Y.M.; Tian, C.M. Cytospora species associated with walnut canker disease in China, with description of a new species C. gigalocus. Fungal Biol. 2015, 119, 310–319. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Guo, K.F.; He, L.; Yiming, A. First report of Cytospora nivea causing Cytospora canker on walnut (Juglans regia L.) in the Tianshan Mountains Region of Xinjiang, China. Plant Dis. 2018, 102, 2640. [Google Scholar] [CrossRef]
- Cai, F.F.; Yang, C.D.; Ma, T.; Jin, M.J.; Cui, L.X. First Report of Boeremia exigua var. exigua Causing Branch Blight on Walnut in China. Plant Dis. 2021, 105, 3291. [Google Scholar] [CrossRef]
- Mulero-Aparicio, A.; Agustí-Brisach, C.; del Carmen Raya, M.; Lovera, M.; Arquero, O.; Trapero, A. First Report of Fusarium solani Causing Stem Canker in English Walnut in Spain. Plant Dis. 2019, 103, 3281. [Google Scholar] [CrossRef]
- Singh, B.; Kalha, C.S.; Razdan, V.K.; Verma, V.S. First Report of Walnut Canker Caused by Fusarium incarnatum from India. Plant Dis. 2011, 95, 1587. [Google Scholar] [CrossRef] [PubMed]
- Belisario Luongo, L.; Vitale, S.; Santori, A. First Report of Fusarium semitectum as the Agent of Twig Cankers on Persian (English) Walnut in Italy. Plant Dis. 2010, 94, 791. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. (Eds.) The Fusarium Laboratory Manual; Blackwell: Ames, IA, USA, 2006. [Google Scholar] [CrossRef]
- Aoki, T.; O’Donnell, K.; Geiser, D.M. Systematics of key phytopathogenic Fusarium species: Current status and future challenges. J. Gen. Plant Pathol. 2014, 80, 189–201. [Google Scholar] [CrossRef]
- Nelson, P.E.; Dignani, M.C.; Anaissie, E.J. Taxonomy, biology, and clinical aspects of Fusarium species. Clin. Microbiol. Rev. 1994, 7, 479–504. [Google Scholar] [CrossRef]
- Geiser, D.M.; Jiménez-Gasco, M.D.M.; Kang, S.; Makalowska, L.; Veeraraghava, N.; Ward, T.J. Fusarium-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- Yli-Mattila, T.; Paavanen-Huhtala, S.; Bulat, S.A.; Alekhina, I.A.; Nirenberg, H.I. Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex—A polyphasic approach. Mycol. Res. 2002, 106, 655–669. [Google Scholar] [CrossRef]
- Knutsen, A.K.; Torp, M.; Holst-Jensen, A. Phylogenetic analyses of the Fusarium poae, Fusarium sporotrichioides and Fusarium langsethiae species complex based on partial sequences of the translation elongation factor-1 alpha gene. Int. J. Food Microbiol. 2004, 95, 287–295. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- Ma, T.; Yang, C.D.; Cai, F.F.; Chen, Z.H. Morpho-cultural, physiological and molecular characterisation of Colletotrichum nymphaeae causing anthracnose disease of walnut in China. Microb. Pathog. 2022, 166, 105537. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Dubey, S.C.; Priyanka, K.; Singh, V. Phylogenetic relationship between different race representative populations of Fusarium oxysporum f. sp. ciceris in respect of translation elongation factor-1α, β-tubulin, and internal transcribed spacer region genes. Arch. Microbiol. 2014, 196, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Liu, X.M. PCR technique for rapid screening of fusarium verticillioides. Chin. J. Food Hyg. 2005, 2, 145–150. (In Chinese) [Google Scholar] [CrossRef]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Sarver, B.A.J.; Arunmozhi Balajee, S.; Schroers, H.J.; Summerbell, R.C.; Robert, V.A.R.G.; Crous, P.W.; Zhang, N.; et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J. Clin. Microbiol. 2010, 48, 3708–3718. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.; Cigelnik, E.; Casper, H.H. Molecular phylogenetic, morphological, and mycotoxin data support reidentification of the Quorn mycoprotein fungus as Fusarium venenatum. Fungal Genet. Biol. 1998, 23, 57–67. [Google Scholar] [CrossRef]
- Sohrabi, M.; Mohammadi, H.; León, M.; Armengol, J.; Banihashemi, Z. Fungal pathogens associated with branch and trunk cankers of nut crops in Iran. Eur. J. Plant Pathol. 2020, 157, 327–351. [Google Scholar] [CrossRef]
- Kara, M.; Soylu, E.M.; Soylu, S.; Uysal, A.; Kurt, Ş. First report of Neofusicoccum parvum causing branch dieback on Juglans regia in Turkey. J. Plant Pathol. 2020, 103, 335. [Google Scholar] [CrossRef]
- Díaz, G.A.; Latorre, B.A.; Ferrada, E.; Gutiérrez, M.; Bravo, F.; Lolas, M. First report of Diplodia mutila causing branch dieback of English walnut cv. Chandler in the Maule Region, Chile. Plant Dis. 2018, 102, 1451. [Google Scholar] [CrossRef]
- Eichmeier, A.; Pecenka, J.; Spetik, M.; Necas, T.; Ondrasek, I.; Armengol, J.; León, M.; Berlanas, C.; Gramaje, D. Fungal trunk pathogens associated with Juglans regia in the Czech Republic. Plant Dis. 2020, 104, 761–771. [Google Scholar] [CrossRef]
- Bhat, R.; Ravishankar, V.R.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Crous, P.W. Removing chaos from confusion: Assigning names to common human and animal pathogens in Neocosmospora. Persoonia 2018, 41, 109–129. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Gueidan, C.; Crous, P.W.; Geiser, D.M. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J. Clin. Microbiol. 2009, 47, 3851–3861. [Google Scholar] [CrossRef] [Green Version]
- Visentin, I.; Valentino, D.; Cardinale, F.; Tamietti, G. DNA-based tools for the detection of Fusarium spp. pathogenic on maize. In Molecular Identification of Fungi; Gherbawy, Y., Voigt, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 107–129. ISBN 978-3-64205-042-8. [Google Scholar]
- Divakara, S.T.; Santosh, P.; Aiyaz, M.; Ramana, M.V.; Hariprasad, P.; Nayaka, S.C.; Niranjana, S.R. Molecular identification and characterization of Fusarium spp. associated with sorghum seeds. J. Sci. Food. Agric. 2014, 94, 1132–1139. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E.; Nirenberg, H.I. Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- Yli-Mattila, T.; Gagkaeva, T. Molecular chemotyping of Fusarium graminearum, F. culmorum and F. cerealis isolates from Finland and Russia. In Molecular Identification of Fungi; Gherbawy, Y., Voigt, K., Eds.; Springer: Berlin, Germany, 2010; ISBN 978-3-642-05041-1. [Google Scholar]
- Demeke, T.; Clear, R.M.; Patrick, S.K.; Gaba, D. Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int. J. Food Microbiol. 2005, 103, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Yli-Mattila, T.; Paavanen-Huhtala, S.; Parikka, P.; Konstantinova, P.; Gagkaeva, T.Y. Molecular and morphological diversity of Fusarium species in Finland and north-western Russia. Eur. J. Plant Pathol. 2004, 110, 573–585. [Google Scholar] [CrossRef]
- Rahjoo, V.; Zad, J.; Javan-Nikkhah, M.; Mirzadi Gohari, A.; Okhovvat, S.M.; Bihamta, M.R. Morphological and molecular identification of Fusarium isolated from maize ears in Iran. J. Plant Pathol. 2008, 90, 463–468. [Google Scholar] [CrossRef]
- Waalwijk, C.; Kastelein, P.; Vries, I.D.; Kerenyi, Z.; Lee, T.V.D.; Hasselink, T. Major changes in Fusarium spp. in wheat in the Netherlands. Eur. J. Plant Pathol. 2003, 109, 743–754. [Google Scholar] [CrossRef]
- Aoki, T.; O’Donnell, K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 1999, 91, 597–609. [Google Scholar] [CrossRef]
- Williams, K.J.; Dennis, J.I.; Smyl, C.; Wallwork, H. The application of species-specific assays based on the polymerase chain reaction to analyze Fusarium crown rot of durum wheat. Australas. Plant Pathol. 2002, 31, 119–129. [Google Scholar] [CrossRef]
- Yoder, W.T.; Christianson, L.M. Species-specific primers resolve members of Fusarium section Fusarium. Fungal Genet. Biol. 1998, 23, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Fox, R.T.V.; Culham, A. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol. Lett. 2003, 218, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.W.; Nicholson, P. Development of PCR assay to detect Fusarium poae in wheat. Plant Pathol. 1996, 45, 383–391. [Google Scholar] [CrossRef]
- Aktaruzzaman, M.; Afroz, T.; Lee, Y.G. Morphological and molecular characterization of Fusarium tricinctum causing post-harvest fruit rot of pumpkin in Korea. J. Gen. Plant Pathol. 2018, 84, 407–413. [Google Scholar] [CrossRef]
- Koncz, Z.; Huszti, K.; Naár, Z.; Kiss, A.; Szécsi, Á. PCR identification of Fusarium graminearum isolated from wheat grain. Cereal Res. Commun. 2008, 36, 623–630. [Google Scholar] [CrossRef]
- Garrett, K.A.; Dendy, S.; Frank, E.; Rouse, M.; Travers, S. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Belisario, A.; Zoina, A. Occurrence of Persian (English) walnut blight and its control in the nursery. Eur. J. For. Pathol. 1995, 25, 224–231. [Google Scholar] [CrossRef]
- Jiang, S.; Han, S.; He, D. Evaluating Walnut (Juglans spp.) for resistance to walnut blight and comparisons between artificial inoculation assays and field studies. Australas. Plant Pathol. 2019, 48, 221–231. [Google Scholar] [CrossRef]
- Wang, Y.X.; Chen, J.Y.; Xu, X.W.; Li, D.W.; Wang, Q.Z. First Report of Brown Apical Necrosis of Walnut Fruit Caused by Fusarium avenaceum in Hubei, China. Plant Dis. 2019, 103, 2956. [Google Scholar] [CrossRef]
Fusarium Species | F. avenaceum | F.acuminatum | F. sporotrichioides | F. tricinctum | ||||
---|---|---|---|---|---|---|---|---|
Isolates | LN-1 | LN-19 | LN-3 | LN-6 | LN-27 | QY3-1 | QY9-1 | |
Macroconidia | Size a (mm) | 33.3 ~ 83.2 × 7.3 ~ 12.7 | 32.6 ~ 67.0 × 7.3 ~ 15.0 | 33.5 ~ 54.0 × 8.8 ~ 13.7 | 40.2 ~ 61.1 × 8.2 ~ 13.7 | 14.9 ~ 28.7 × 3.2 ~ 8.8 | 20.1 ~ 37.6 × 2.9 ~ 6.4 | 20.2 ~ 31.1 × 3.4 ~ 7.0 |
n = 50 | Mean b (mm) | 48.7 (± 14.3 c) ~ 10.6 (±1.4) | 54.2 (±8.5) ~ 10.4 (±1.7) | 42.4 (±6.5) ~ 11.4 (±1.5) | 47.5 (±5.8) ~ 11.1 (±1.3) | 22.1 (±3.7) ~ 5.2 (±1.0) | 27.1 (± 4.1) ~ 4.7 (±0.7) | 25.5 (±2.9) ~ 5.0 (±0.7) |
Microconidia | Size (mm) | 7.4 ~ 15.6 × 2.3 ~ 3.6 | 7.3 ~ 14.6 × 2.0 ~ 4.3 | 6.9 ~ 15.5 × 2.2 ~ 4.9 | 7.0 ~ 13.7 × 1.5 ~ 4.3 | 6.3 ~ 14.1 × 1.7 ~ 4.9 | 5.9 ~ 18.0 × 1.7 ~ 4.9 | 10.1 ~ 20.5 × 2.1 ~ 6.8 |
n = 50 | Mean (mm) | 9.9 (±2.1) ~ 2.8 (±0.3) | 11.3 (±1.9) ~ 3.0 (±0.6) | 10.0 (±1.8) ~ 2.9 (±0.6) | 11.0 (±1.8) ~ 3.5 (±0.5) | 9.7 (±1.8) ~ 3.0 (±0.7) | 11.9 (±3.0) ~ 3.0 (±0.5) | 13.8 (±2.5) ~ 3.5 (±0.6) |
Chlamydospores | Size (mm) | 7.3 ~ 17.6 × 6.0 ~ 14.0 | 12.1 ~ 20.4 × 7.4 ~ 15.7 | 7.0 ~ 17.3 × 5.3 ~ 15.9 | 9.0 ~ 20.3 × 5.7 ~ 14.8 | 7.0 ~ 16.2 × 5.0 ~ 14.5 | 11.9 ~ 27.6 × 8.5 ~ 19.0 | 10.6 ~ 24.4 × 7.3 ~ 18.2 |
n = 50 | Mean (mm) | 8.9 (±2.2) ~ 12.7 (±1.9) | 10.9 (±1.9) ~ 15.9 (±1.9) | 9.1 (±2.4) ~ 11.8 (±2.2) | 8.9 (±2.6) ~ 11.9 (±2.4) | 9.9 (±2.6) ~ 7.3 (±2.3) | 17.7 (±3.7) ~ 12.5 (±2.7) | 16.7 (±3.1) ~ 12.9 (±2.4) |
Fusarium Species | Isolates | GenBank Accession Number a | ||||
---|---|---|---|---|---|---|
ITS | TEF-1α | βTUB | Fu | LSU | ||
F. avenaceum | LN-1 | MT239572 | MT276173 | MT276177 | \ | \ |
LN-19 | MT239575 | MT276176 | MT276180 | \ | \ | |
F.acuminatum | LN-3 | MT239573 | MT276174 | MT276178 | \ | \ |
LN-6 | MT239574 | MT276175 | MT276179 | \ | \ | |
F. sporotrichioides | LN-27 | MT921794 | MW517798 | \ | MT921794 | \ |
F. tricinctum | QY3-1 | MZ571930 | \ | \ | \ | MZ572963 |
QY9-1 | MZ571931 | \ | \ | \ | MZ572964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Yang, C.; Cai, F.; Osei, R. Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China. Pathogens 2023, 12, 970. https://doi.org/10.3390/pathogens12070970
Ma T, Yang C, Cai F, Osei R. Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China. Pathogens. 2023; 12(7):970. https://doi.org/10.3390/pathogens12070970
Chicago/Turabian StyleMa, Ting, Chengde Yang, Fengfeng Cai, and Richard Osei. 2023. "Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China" Pathogens 12, no. 7: 970. https://doi.org/10.3390/pathogens12070970
APA StyleMa, T., Yang, C., Cai, F., & Osei, R. (2023). Molecular Identification and Characterization of Fusarium Associated with Walnut Branch Blight Disease in China. Pathogens, 12(7), 970. https://doi.org/10.3390/pathogens12070970