Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Côrtes, M.F.; Costa, M.O.; Lima, N.C.; Souza, R.C.; Almeida, L.G.; Guedes, L.P.C.; Vasconcelos, A.T.; Nicolás, M.F.; Figueiredo, A.M. Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051), a prototype of the USA400 clone. Mem. Inst. Oswaldo Cruz. 2017, 112, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, A.-M.; Sollid, J.U.E. SCCmec in staphylococci: Genes on the move. FEMS Immunol. Med. Microbiol. 2006, 46, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.M.; Ferreira, F.A. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem. Inst. Oswaldo Cruz. 2014, 109, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-associated MRSA: The impact on humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef]
- Baraldi, E.; Lindahl, O.; Savic, M.; Findlay, D.; Årdal, C. Antibiotic pipeline coordinators. J. Law. Med. Ethics. 2018, 46 (Suppl. S1), 25–31. [Google Scholar] [CrossRef]
- Shrestha, A.; Bhattarai, R.K.; Luitel, H.; Karki, S.; Basnet, H.B. Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan, Nepal. BMC Vet. Res. 2021, 17, 239. [Google Scholar] [CrossRef]
- Khanal, S.; Boonyayatra, S.; Awaiwanont, N. Prevalence of methicillin-resistant Staphylococcus aureus in dairy farms: A systematic review and meta-analysis. Front. Vet. Sci. 2022, 9, 947154. [Google Scholar] [CrossRef]
- Singh, A.K. A comprehensive review on subclinical mastitis in dairy animals: Pathogenesis, factors associated, prevalence, economic losses and management strategies. CABI Rev. 2022, 17, 57. [Google Scholar] [CrossRef]
- Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef]
- Neyaz, L.; Rajagopal, N.; Wells, H.; Fakhr, M.K. Molecular characterization of Staphylococcus aureus plasmids associated with strains isolated from various retail meats. Front. Microbiol. 2020, 11, 223. [Google Scholar] [CrossRef]
- Baines, S.L.; Jensen, S.O.; Firth, N.; da Silva, A.G.; Seemann, T.; Carter, G.P.; Williamson, D.A.; Howden, B.P.; Stinear, T.P. Remodeling of pSK1 family plasmids and enhanced chlorhexidine tolerance in a dominant hospital lineage of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2019, 63, e02356-18. [Google Scholar] [CrossRef] [PubMed]
- Mores, C.R.; Montelongo, C.; Putonti, C.; Wolfe, A.J.; Abouelfetouh, A. Investigation of plasmids among clinical Staphylococcus aureus and Staphylococcus haemolyticus isolates from egypt. Front. Microbiol. 2021, 12, 659116. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.R.; Saeman, A.; Fox, L.K.; Lombard, J.; Hogan, J.S.; Smith, K.L. The National Mastitis Council: A global organization for mastitis control and milk quality, 50 Years and Beyond. J. Mammary Gland. Biol. Neoplasia. 2014, 19, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Saraiva, M.; Filho, A.M.; Silva, N.; De Leon, C.; Pascoal, L.; Givisiez, P.; Gebreyes, W.; Oliveira, C. Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 101697. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontéen, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.; Hasman, H.; Larsen, J.; Stegger, M.; Johannesen, T.B.; Allesøe, R.L.; Lemvigh, C.K.; Aarestrup, F.M.; Lund, O.; Larsen, A.R. SCCmecFinder, a web-based tool for typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018, 3, e00612-17. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Voldby Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; da Silva, A.G.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.X.; Ito, T.; Tiensasitorn, C.; Jamklang, M.; Chongtrakool, P.; Boyle-Vavra, S.; Daum, R.S.; Hiramatsu, K. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 2002, 46, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, M.F.; Botelho, A.M.N.; Almeida, L.G.P.; Souza, R.C.; Cunha, O.d.L.; Nicolás, M.F.; Vasconcelos, A.T.R.; Figueiredo, A.M.S. Community-acquired methicillin-resistant Staphylococcus aureus from ST1 lineage harboring a new SCCmec IV subtype (SCCmec IVm) containing the tetK gene. Infect. Drug Resist. 2018, 11, 2583–2592. [Google Scholar] [CrossRef]
- Andrade, M.M.; Luiz, W.B.; da Silva Oliveira Souza, R.; Amorim, J.H. The history of methicillin-resistant Staphylococcus aureus in Brazil. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 1721936. [Google Scholar] [CrossRef]
- Schuenck, R.P.; Nouér, S.A.; Winter, C.d.O.; Cavalcante, F.S.; Scotti, T.D.; Ferreira, A.L.P.; Marval, M.G.-D.; dos Santos, K.R.N. Polyclonal presence of non-multiresistant methicillin-resistant Staphylococcus aureus isolates carrying SCCmec IV in health care-associated infections in a hospital in Rio de Janeiro, Brazil. Diagn. Microbiol. Infect. Dis. 2009, 64, 434–441. [Google Scholar] [CrossRef]
- Alba, P.; Feltrin, F.; Cordaro, G.; Porrero, M.C.; Kraushaar, B.; Argudín, M.A.; Nykäsenoja, S.; Monaco, M.; Stegger, M.; Aarestrup, F.M.; et al. Livestock-associated methicillin resistant and methicillin susceptible Staphylococcus aureus sequence Type (CC)1 in European farmed animals: High genetic relatedness of isolates from Italian cattle herds and humans. PLoS ONE 2015, 10, e0137143. [Google Scholar] [CrossRef]
- Cortimiglia, C.; Bianchini, V.; Franco, A.; Caprioli, A.; Battisti, A.; Colombo, L.; Stradiotto, K.; Vezzoli, F.; Luini, M. Short communication: Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus in bulk tank milk from dairy goat farms in Northern Italy. J. Dairy. Sci. 2015, 98, 2307–2311. [Google Scholar] [CrossRef]
- Carfora, V.; Giacinti, G.; Sagrafoli, D.; Marri, N.; Giangolini, G.; Alba, P.; Feltrin, F.; Sorbara, L.; Amoruso, R.; Caprioli, A.; et al. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in dairy sheep and in-contact humans: An intra-farm study. J. Dairy. Sci. 2016, 99, 4251–4258. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, S.P.; de Almeida, J.B.; Andrade, Y.M.; da Silva, L.S.; Chamon, R.C.; dos Santos, K.R.; Marques, L.M. Molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from hospital and community environments in northeastern Brazil. Braz. J. Infect. Dis. 2019, 23, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Floyd, J.L.; Smith, K.P.; Kumar, S.H.; Floyd, J.T.; Varela, M.F. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5406–5412. [Google Scholar] [CrossRef]
- Tristan, A.; Ferry, T.; Durand, G.; Dauwalder, O.; Bes, M.; Lina, G.; Vandenesch, F.; Etienne, J. Virulence determinants in community and hospital meticillin-resistant Staphylococcus aureus. J. Hosp. Infect. 2007, 65 (Suppl. S2), 105–109. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.S.; Mamizuka, E.M.; Filho, P.P.G. Methicillin/Oxacillin-resistant Staphylococcus aureus as a hospital and public health threat in Brazil. Braz. J. Infect. Dis. 2010, 14, 71–76. [Google Scholar] [CrossRef]
- Macedo-Viñas, M.; Conly, J.; Francois, P.; Aschbacher, R.; Blanc, D.S.; Coombs, G.; Daikos, G.; Dhawan, B.; Empel, J.; Etienne, J.; et al. Antibiotic susceptibility and molecular epidemiology of Panton-Valentine leukocidin-positive meticillin-resistant Staphylococcus aureus: An international survey. J. Glob. Antimicrob. Resist. 2014, 2, 43–47. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Wang, Y.; Chen, C.; Hooper, D.C. Transcriptional regulator TetR21 controls the expression of the Staphylococcus aureus LmrS efflux pump. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Stephen, J.; Salam, F.; Lekshmi, M.; Kumar, S.H.; Varela, M.F. The major facilitator superfamily and antimicrobial resistance efflux pumps of the ESKAPEE pathogen Staphylococcus aureus. Antibiotics 2023, 12, 343. [Google Scholar] [CrossRef]
- Costa, S.S.; Viveiros, M.; Amaral, L.; Couto, I. Multidrug efflux pumps in Staphylococcus aureus: An update. Open Microbiol. J. 2013, 7, 59–71. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef]
- Jensen, L.B.; Garcia-Migura, L.; Valenzuela, A.J.; Løhr, M.; Hasman, H.; Aarestrup, F.M. A classification system for plasmids from enterococci and other Gram-positive bacteria. J. Microbiol. Methods. 2010, 80, 25–43. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Lindsay, J.A. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol. 2012, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Deasy, E.C.; Slickers, P.; Brennan, G.; O’Connell, B.; Monecke, S.; Ehricht, R.; Coleman, D.C. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 3765–3773. [Google Scholar] [CrossRef] [PubMed]
- Shahkarami, F.; Rashki, A.; Rashki Ghalehnoo, Z. Microbial susceptibility and plasmid profiles of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. Jundishapur. J. Microbiol. 2014, 7, e16984. [Google Scholar] [CrossRef] [PubMed]
- Kwong, S.M.; Ramsay, J.P.; Jensen, S.O.; Firth, N. Replication of staphylococcal resistance plasmids. Front. Microbiol. 2017, 8, 2279. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Silva-Carvalho, M.C.; Bonelli, R.R.; Souza, R.R.; Moreira, S.; dos Santos, L.C.G.; Conceição, M.d.S.; Junior, S.J.d.M.; Carballido, J.M.; Rito, P.N.; Vieira, V.V.; et al. Emergence of multiresistant variants of the community-acquired methicillin-resistant Staphylococcus aureus lineage ST1-SCCmecIV in 2 hospitals in Rio de Janeiro, Brazil. Diagn. Microbiol. Infect. Dis. 2009, 65, 300–305. [Google Scholar] [CrossRef]
- Caboclo, R.M.F.; Cavalcante, F.S.; Iorio, N.L.P.; Schuenck, R.P.; Olendzki, A.N.; Felix, M.J.; Chamon, R.C.; dos Santos, K.R.N. Methicillin-resistant Staphylococcus aureus in Rio de Janeiro hospitals: Dissemination of the USA400/ST1 and USA800/ST5 SCCmec type IV and USA100/ST5 SCCmec type II lineages in a public institution and polyclonal presence in a private one. Am. J. Infect. Control. 2013, 41, e21–e26. [Google Scholar] [CrossRef]
- Romero, L.C.; de Souza da Cunha, M.L.R. Insights into the epidemiology of community-associated methicillin-resistant Staphylococcus aureus in special populations and at the community-healthcare interface. Braz. J. Infect. Dis. 2021, 25, 101636. [Google Scholar] [CrossRef]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.-I.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef]
Features | S. aureus Strain 31 |
---|---|
Phenotypic antibiotic resistance profile | FOX, OXA, PEN, TET |
Structural Genomic data | |
Genome size (bp) | 2,792,445 |
Contigs number | 9 |
CDSs | 2614 |
rRNA | 4 |
tRNA | 57 |
% GC | 32.69 |
Epidemiological Genomic Data | |
MLST (ST) 1 | ST1 |
SPATyper 2 | t128 |
Plasmid 3 | pSA31PB |
ARG 4,* | blaI, blaR1, blaZ, lmrS, mecA, tet(38) |
Virulence factors (VFDB) 5 | |
Adherence | atl, ebh, clfA, clfB, cna, ebp, efb, fnbA, fnbB, icaA, icaB, icaC, icaR, sdrC, sdrD, sdrE, spa |
Enzyme | sspA, sspB, sspC, hysA, geh, lip, splA, splB, splC, splF, coa, sak, nuc |
Immune evasion | adsA, scn, sbi |
Secretion system | esaA, esaB, esaD, esaE, esaG, essA, essB, essC, esxA, esxB, esxC, esxD |
Toxin | hla, hld, sea, sec, seh, selk, sell, selq, set16, set17, set18, set19, set21, set22, set23, set24, set25, set26, set34, hlgA, hlgB, hlgC, lukD, lukF-PV, lukS-PV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, P.C.; Leite, E.L.; Saraiva, M.M.S.; Ferrari, R.G.; Cibulski, S.P.; Silva, N.M.V.; Freitas Neto, O.C.; Givisiez, P.E.N.; Vieira, R.F.C.; Oliveira, C.J.B. Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis. Pathogens 2024, 13, 23. https://doi.org/10.3390/pathogens13010023
Vasconcelos PC, Leite EL, Saraiva MMS, Ferrari RG, Cibulski SP, Silva NMV, Freitas Neto OC, Givisiez PEN, Vieira RFC, Oliveira CJB. Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis. Pathogens. 2024; 13(1):23. https://doi.org/10.3390/pathogens13010023
Chicago/Turabian StyleVasconcelos, Priscylla C., Elma L. Leite, Mauro M. S. Saraiva, Rafaela G. Ferrari, Samuel P. Cibulski, Nubia M. V. Silva, Oliveiro C. Freitas Neto, Patrícia E. N. Givisiez, Rafael F. C. Vieira, and Celso J. B. Oliveira. 2024. "Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis" Pathogens 13, no. 1: 23. https://doi.org/10.3390/pathogens13010023
APA StyleVasconcelos, P. C., Leite, E. L., Saraiva, M. M. S., Ferrari, R. G., Cibulski, S. P., Silva, N. M. V., Freitas Neto, O. C., Givisiez, P. E. N., Vieira, R. F. C., & Oliveira, C. J. B. (2024). Genomic Analysis of a Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 1 Associated with Caprine Mastitis. Pathogens, 13(1), 23. https://doi.org/10.3390/pathogens13010023