Does Every Strain of Pseudomonas aeruginosa Attack the Same? Results of a Study of the Prevalence of Virulence Factors of Strains Obtained from Different Animal Species in Northeastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Strains
2.2. Isolation and Identification
2.3. Extraction of DNA
2.4. Pseudomonas Genus Identification PCR
2.5. Pseudomonas Identification—PCR Amplification
2.6. Detection of Virulence Factors by PCR Reaction
2.7. Biofilm Formation
2.8. ERIC-PCR Genotyping
3. Results
3.1. Strains—Place of Isolation and Host
3.2. Detection of Virulence Genes in General
3.3. Detection of Virulence Genes in Individual Animal Species
3.4. Biofilm Formation in General
3.5. Biofilm Formation in Individual Species
3.6. Occurrence of Biofilm-Related Genes and the Ability to Produce Biofilms Phenotypically
3.7. Genotyping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wilson, M.G.; Pandey, S. Pseudomonas aeruginosa. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557831/ (accessed on 7 May 2024).
- Markou, P.; Apidianakis, Y. Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front. Cell. Infect. Microbiol. 2014, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023, 12, 199. [Google Scholar] [CrossRef]
- Eliasi, U.L.; Sebola, D.; Oguttu, J.W.; Qekwana, D.N. Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa. J. S. Afr. Vet. Assoc. 2020, 91, 1–6. [Google Scholar] [CrossRef]
- Brock, M.T.; Fedderly, G.C.; Borlee, G.I.; Russell, M.M.; Filipowska, L.K.; Hyatt, D.R.; Ferris, R.A.; Borlee, B.R. Pseudomonas aeruginosa variants obtained from veterinary clinical samples reveal a role for cyclic di-GMP in biofilm formation and colony morphology. Microbiology 2017, 163, 1613–1625. [Google Scholar] [CrossRef]
- Hossain, M.; Saha, S.; Rahman, M.; Singha, J.; Mamun, A. Isolation, identification and antibiogram study of Pseudomonas aeruginosa from cattle in Bangladesh. J. Vet. Adv. 2013, 3, 180–185. [Google Scholar] [CrossRef]
- Marouf, S.; Li, X.; Salem, H.M.; Ahmed, Z.S.; Nader, S.M.; Shaalan, M.; Awad, F.H.; Zhou, H.; Cheang, T. Molecular detection of multidrug-resistant Pseudomonas aeruginosa of different avian sources with pathogenicity testing and in vitro evaluation of antibacterial efficacy of silver nanoparticles against multidrug-resistant P. aeruginosa. Poult. Sci. 2023, 102, 102995. [Google Scholar] [CrossRef]
- Foti, M.; Giacopello, C.; Fisichella, V.; Latella, G. Multidrug-resistant Pseudomonas aeruginosa isolates from captive reptiles. J. Exot. Pet Med. 2013, 22, 270–274. [Google Scholar] [CrossRef]
- Hattab, J.; Mosca, F.; Di Francesco, C.E.; Aste, G.; Marruchella, G.; Guardiani, P.; Tiscar, P.G. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet. World 2021, 14, 978–985. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar, C.; Herskin, M.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Antimicrobial-resistant Pseudomonas aeruginosa in dogs and cats. EFSA J. 2022, 20, e07310. [Google Scholar] [CrossRef]
- Płókarz, D.; Rypuła, K. A One Health Perspective on the Human-Pets Pseudomonas aeruginosa Transmission. Appl. Microbiol. Open Access 2022, 8, 227. [Google Scholar]
- Badawy, B.; Moustafa, S.; Shata, R.; Sayed-Ahmed, M.Z.; Alqahtani, S.S.; Ali, M.S.; Alam, N.; Ahmad, S.; Kasem, N.; Elbaz, E.; et al. Prevalence of Multidrug-Resistant Pseudomonas aeruginosa Isolated from Dairy Cattle, Milk, Environment, and Workers’ Hands. Microorganisms 2023, 11, 2775. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A. Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Vet. World 2021, 14, 2155–2159. [Google Scholar] [CrossRef]
- Bernal-Rosas, Y.; Osorio-Muñoz, K.; Torres-García, O. Pseudomonas aeruginosa: An emerging nosocomial trouble in veterinary. Rev. MVZ Cordoba 2015, 20, 123–130. [Google Scholar] [CrossRef]
- Rocha, A.J.; De Oliveira Barsottini, M.R.; Rocha, R.R.; Laurindo, M.V.; De Moraes, F.L.L.; Da Rocha, S.L. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance genes. Braz. Arch. Biol. Technol. 2019, 62, e19180503. [Google Scholar] [CrossRef]
- Weldhagen, G.F. Integrons and β-lactamases: A novel perspective on resistance. Int. J. Antimicrob. Agents 2004, 23, 556–562. [Google Scholar] [CrossRef]
- Momenah, A.M.; Bakri, R.A.; Jalal, N.A.; Ashgar, S.S.; Felemban, R.F.; Bantun, F.; Hariri, S.H.; Barhameen, A.A.; Faidah, H.; Al-Said, H.M. Antimicrobial Resistance Pattern of Pseudomonas aeruginosa: An 11-Year Experience in a Tertiary Care Hospital in Makkah, Saudi Arabia. Infect. Drug Resist. 2023, 16, 4113–4122. [Google Scholar] [CrossRef] [PubMed]
- Karballaei Mirzahosseini, H.; Hadadi-Fishani, M.; Morshedi, K.; Khaledi, A. Meta-Analysis of Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas aeruginosa Isolated from Clinical Samples. Microb. Drug Resist. 2020, 26, 7. [Google Scholar] [CrossRef] [PubMed]
- Elfadadny, A.; Uchiyama, J.; Goto, K.; Imanishi, I.; Ragab, R.F.; Nageeb, W.M.; Iyori, K.; Toyoda, Y.; Tsukui, T.; Ide, K.; et al. Antimicrobial Resistance and Genotyping of Pseudomonas aeruginosa Isolated from the Ear Canals of Dogs in Japan. Front. Vet. Sci. 2023, 10, 1074127. [Google Scholar] [CrossRef]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.Y.; Haenni, M.; Gay, E. Antimicrobial Resistance Patterns of Bacteria Isolated from Dogs with Otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef]
- Dégi, J.; Moțco, O.-A.; Dégi, D.M.; Suici, T.; Mareș, M.; Imre, K.; Cristina, R.T. Antibiotic Susceptibility Profile of Pseudomonas aeruginosa Canine Isolates from a Multicentric Study in Romania. Antibiotics 2021, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Pedersen, K.; Jensen, H.; Finster, K.; Jensen, V.F.; Heuer, O.E. Occurrence of Antimicrobial Resistance in Bacteria from Diagnostic Samples from Dogs. J. Antimicrob. Chemother. 2007, 60, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.F.; Fayez, M.; Swelum, A.A.; Alswat, A.S.; Alkafafy, M.; Alzahrani, O.M.; Alsunaini, S.J.; Almuslem, A.; Al Amer, A.S.; Yusuf, S. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis. Vet. Sci. 2022, 9, 239. [Google Scholar] [CrossRef]
- Grandy, S.; Raudonis, R.; Cheng, Z. The identification of Pseudomonas aeruginosa persisters using flow cytometry. Microbiology 2022, 168, 001252. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Strateva, T.; Mitov, I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol. 2011, 61, 717–732. [Google Scholar] [CrossRef]
- Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Int. 2015, 2015, 759348. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 2017, 364, fnx124. [Google Scholar] [CrossRef]
- Czyzewska-Dors, E.; Dors, A.; Pomorska-Mol, M. Właściwości biofilmu bakteryjnego warunkujące oporność na antybiotyki oraz metody jego zwalczania. Życie Weter. 2018, 93, 765–771. [Google Scholar]
- World Health Organization. WHO Releases Report on State of Development of Antibacterials; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news/item/14-06-2024-who-releases-report-on-state-of-development-of-antibacterials (accessed on 14 October 2024).
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and Novel Approaches to Treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef]
- Wang, M.G.; Liu, Z.Y.; Liao, X.P.; Sun, R.Y.; Li, R.B.; Liu, Y.; Fang, L.X.; Sun, J.; Liu, Y.H.; Zhang, R.M. Retrospective data insight into the global distribution of carbapenemase-producing Pseudomonas aeruginosa. Antibiotics 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016, 44, D646–D653. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2018, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 2007, 35, W43–W46. [Google Scholar] [CrossRef]
- Lu, J.; Johnston, A.; Berichon, P.; Ru, K.L.; Korbie, D.; Trau, M. PrimerSuite: A high-throughput web-based primer design program for multiplex bisulfite PCR. Sci. Rep. 2017, 7, 41328. [Google Scholar] [CrossRef]
- Wagener, B.M.; Anjum, N.; Christiaans, S.C.; Banks, M.E.; Parker, J.C.; Threet, A.T.; Walker, R.R.; Isbell, K.D.; Moser, S.A.; Stevens, T.; et al. Exoenzyme Y contributes to end-organ dysfunction caused by Pseudomonas aeruginosa pneumonia in critically ill patients: An exploratory study. Toxins 2020, 12, 369. [Google Scholar] [CrossRef]
- Ullah, W.; Qasim, M.; Rahman, H.; Jie, Y.; Muhammad, N. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. J. Chin. Med. Assoc. 2017, 80, 156–162. [Google Scholar] [CrossRef]
- Bogiel, T.; Prażyńska, M.; Kwiecińska-Piróg, J.; Gospodarek-Komkowska, E.; Mikucka, A. Carbapenem-resistant Pseudomonas aeruginosa strains: Distribution of the essential enzymatic virulence factors genes. Antibiotics 2021, 10, 8. [Google Scholar] [CrossRef]
- Boulant, T.; Boudehen, Y.M.; Filloux, A.; Plesiat, P.; Naas, T.; Dortet, L. Higher prevalence of PldA, a Pseudomonas aeruginosa trans-kingdom H2-type VI secretion system effector, in clinical isolates responsible for acute infections and in multidrug-resistant strains. Front. Microbiol. 2018, 9, 2578. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Peng, H.; Li, H.; Yang, L.; Zhang, B.; Zhu, J.; Guo, W.; Wang, N.; Jiang, S.; Xie, Z. Serotypes and virulence genes of Pseudomonas aeruginosa isolated from mink and its pathogenicity in mink. Microb. Pathog. 2020, 139, 103904. [Google Scholar] [CrossRef]
- Anupama, R.; Mukherjee, A.; Babu, S. Gene-centric metagenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in freshwater ecosystems. Genomics 2018, 110, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bogiel, T.; Depka, D.; Rzepka, M.; Kwiecińska-Piróg, J.; Gospodarek-Komkowska, E. Prevalence of the Genes Associated with Biofilm and Toxins Synthesis amongst the Pseudomonas aeruginosa Clinical Strains. Antibiotics 2021, 10, 241. [Google Scholar] [CrossRef]
- Nermine, E.; Said, A.; Gehan, E.; Asmaa, H.; Asmaa, Y. Virulence genes in Pseudomonas aeruginosa strains isolated at Suez Canal University Hospitals with respect to the site of infection and antimicrobial resistance. Int. J. Clin. Microbiol. Biochem. Technol. 2019, 2, 008–019. [Google Scholar] [CrossRef]
- Gnanadhas, D.P.; Elango, M.; Datey, A.; Chakravortty, D. Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-methionine in combination with antibiotic therapy. Sci. Rep. 2015, 5, 16043. [Google Scholar] [CrossRef]
- Farsani, H.H.; Rasooli, I.; Gargari, S.L.M.; Nazarian, S.; Astaneh, S.D.A. Recombinant outer membrane protein F-B subunit of LT protein as a prophylactic measure against Pseudomonas aeruginosa burn infection in mice. World J. Methodol. 2015, 5, 230–238. [Google Scholar] [CrossRef]
- Kaczorek-Łukowska, E.; Małaczewska, J.; Sowińska, P.; Szymańska, M.; Wójcik, E.A.; Siwicki, A.K. Staphylococcus aureus from subclinical cases of mastitis in dairy cattle in Poland, what are they hiding? Antibiotic resistance and virulence profile. Pathogens 2022, 11, 1404. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Moatamedi, A.; Lotfalian, S.; Mirshokraei, P. Biofilm Formation, Hemolysin Production and Antimicrobial Susceptibilities of Streptococcus agalactiae Isolated from the Mastitis Milk of Dairy Cows in Shahrekord District, Iran. Vet. Res. Forum 2013, 4, 123–127. [Google Scholar]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Yin, R.; Cheng, J.; Wang, J.; Li, P.; Lin, J. Treatment of Pseudomonas aeruginosa Infectious Biofilms: Challenges and Strategies. Front. Microbiol. 2022, 13, 815543. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Urbach, J.M.; Wu, G.; Liberati, N.T.; Feinbaum, R.L.; Miyata, S.; Diggins, L.T.; He, J.; Saucier, M.; Déziel, E.; et al. Genomic Analysis Reveals that Pseudomonas aeruginosa Virulence is Combinatorial. Genome Biol. 2006, 7, R90. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.F.; Fitzgerald, J.R. Mechanisms of Host Adaptation by Bacterial Pathogens. FEMS Microbiol. Rev. 2024, 48, fuae019. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Fan, F.; Broach, J.R. Microbial Adaptive Evolution. J. Ind. Microbiol. Biotechnol. 2022, 49, 363–373. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 8041. [Google Scholar] [CrossRef]
- Jyot, J.; Balloy, V.; Jouvion, G.; Verma, A.; Touqui, L.; Huerre, M.; Chignard, M.; Ramphal, R. Type II Secretion System of Pseudomonas aeruginosa: In Vivo Evidence of a Significant Role in Death Due to Lung Infection. J. Infect. Dis. 2011, 203, 228–236. [Google Scholar] [CrossRef]
- Hauser, A.R. The Type III Secretion System of Pseudomonas aeruginosa: Infection by Injection. Nat. Rev. Microbiol. 2009, 7, 654–665. [Google Scholar] [CrossRef]
- Pollack, M. The Role of Exotoxin A in Pseudomonas Disease and Immunity. Rev. Infect. Dis. 1983, 5 (Suppl. 5), S850–S856. [Google Scholar] [CrossRef]
- Alabdali, Y.A.J. Detection and Association of ToxA Gene with Antibiotics Resistance in Pseudomonas aeruginosa Strains Isolated from Different Sources in Al Muthanna City. Gene Rep. 2021, 25, 101358. [Google Scholar] [CrossRef]
- Deruelle, V.; Bouillot, S.; Job, V.; Taillebourg, E.; Fauvarque, M.O.; Attrée, I.; Huber, P. The Bacterial Toxin ExoU Requires a Host Trafficking Chaperone for Transportation and to Induce Necrosis. Nat. Commun. 2021, 12, 3980. [Google Scholar] [CrossRef]
- Song, Y.; Mu, Y.; Wong, N.-K.; Yue, Z.; Li, J.; Yuan, M.; Zhu, X.; Hu, J.; Zhang, G.; Wei, D.; et al. Emergence of Hypervirulent Pseudomonas aeruginosa Pathotypically Armed with Co-Expressed T3SS Effectors ExoS and ExoU. hLife 2023, 1, 101358. [Google Scholar] [CrossRef]
- Howell, H.A.; Logan, L.K.; Hauser, A.R. Type III Secretion of ExoU Is Critical during Early Pseudomonas aeruginosa Pneumonia. mBio 2013, 4, e00032-13. [Google Scholar] [CrossRef]
- Diaz, M.H.; Hauser, A.R. Pseudomonas aeruginosa Cytotoxin ExoU Is Injected into Phagocytic Cells during Acute Pneumonia. Infect. Immun. 2010, 78, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, J.T.; Sun, J. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 2004, 152, 25–43. [Google Scholar] [CrossRef]
- Sarges, E.D.S.N.F.; Rodrigues, Y.C.; Furlaneto, I.P.; de Melo, M.V.H.; Brabo, G.L.D.C.; Lopes, K.C.M.; Quaresma, A.J.P.G.; Lima, L.N.G.C.; Lima, K.V.B. Pseudomonas aeruginosa Type III Secretion System Virulotypes and Their Association with Clinical Features of Cystic Fibrosis Patients. Infect. Drug Resist. 2020, 13, 3561–3575. [Google Scholar] [CrossRef]
- Cathcart, G.R.A.; Quinn, D.; Greer, B.; Harriott, P.; Lynas, J.F.; Gilmore, B.F.; Walker, B. Novel Inhibitors of the Pseudomonas aeruginosa Virulence Factor LasB: A Potential Therapeutic Approach for the Attenuation of Virulence Mechanisms in Pseudomonal Infection. Antimicrob. Agents Chemother. 2011, 55, 4907–4914. [Google Scholar] [CrossRef]
- Wei, L.; Wu, Q.; Zhang, J.; Guo, W.; Gu, Q.; Wu, H.; Wang, J.; Lei, T.; Xue, L.; Zhang, Y.; et al. Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates from Drinking Water in China. Front. Microbiol. 2020, 11, 544653. [Google Scholar] [CrossRef]
- Luo, R.G.; Miao, X.Y.; Luo, L.L.; Mao, B.; Yu, F.Y.; Xu, J.F. Presence of PldA and ExoU in Mucoid Pseudomonas aeruginosa Is Associated with High Risk of Exacerbations in Non–Cystic Fibrosis Bronchiectasis Patients. Clin. Microbiol. Infect. 2019, 25, 296.e1–296.e7. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Pye, C.C.; Yu, A.A.; Weese, J.S. Evaluation of Biofilm Production by Pseudomonas aeruginosa from Canine Ears and the Impact of Biofilm on Antimicrobial Susceptibility In Vitro. Vet. Dermatol. 2013, 24, 446–449.e98. [Google Scholar] [CrossRef]
- Aziz, S.A.A.A.; Mahmoud, R.; Mohamed, M.B.E.D. Control of Biofilm-Producing Pseudomonas aeruginosa Isolated from Dairy Farm Using Virokill Silver Nano-Based Disinfectant as an Alternative Approach. Sci. Rep. 2022, 12, 9452. [Google Scholar] [CrossRef] [PubMed]
- Deiab, R.A.; Abo El-Roos, N.A.; Awad, A. Biofilm Production by Pseudomonas Species Isolated from Bulk Tank Milk and Some Milk Products. Benha Vet. Med. J. 2023, 45, 222–226. [Google Scholar] [CrossRef]
- Ocak, F.; Turkyilmaz, S. Investigation of Antimicrobial Resistance, Biofilm Production, Biofilm-Associated Virulence Genes and Integron Genes of Pseudomonas aeruginosa Isolates Obtained from Animal Clinical Samples. Israel J. Vet. Med. 2022, 77, 15–26. [Google Scholar]
- Elshafiee, E.A.; Khalefa, H.S.; Al-Atfeehy, N.M.; Amer, F.; Hamza, D.A.; Ahmed, Z.S. Biofilms and Efflux Pump Regulatory Gene (mexR) in Multidrug-Resistant Pseudomonas aeruginosa Isolated from Migratory Birds in Egypt. Vet. World 2022, 15, 2425–2431. [Google Scholar] [CrossRef]
- Płókarz, D.; Czopowicz, M.; Bierowiec, K.; Rypuła, K. Virulence Genes as Markers for Pseudomonas aeruginosa Biofilm Formation in Dogs and Cats. Animals 2022, 12, 422. [Google Scholar] [CrossRef]
- Alonso, B.; Fernández-Barat, L.; Di Domenico, E.G.; Marín, M.; Cercenado, E.; Merino, I.; de Pablos, M.; Muñoz, P.; Guembe, M. Characterization of the Virulence of Pseudomonas aeruginosa Strains Causing Ventilator-Associated Pneumonia. BMC Infect. Dis. 2020, 20, 458. [Google Scholar] [CrossRef]
- Elmanama, A.A.; Al-Sheboul, S.; Abu-Dan, R.I. Antimicrobial Resistance and Biofilm Formation of Pseudomonas aeruginosa. Int. Arab. J. Antimicrob. Agents 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Ciszek-Lenda, M.; Strus, M.; Walczewska, M.; Majka, G.; Machul-Żwirbla, A.; Mikołajczyk, D.; Górska, S.; Gamian, A.; Chain, B.; Marcinkiewicz, J. Pseudomonas aeruginosa Biofilm Is a Potent Inducer of Phagocyte Hyperinflammation. Inflamm. Res. 2019, 68, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Chakrabarty, A.M. Pseudomonas aeruginosa Biofilms: Role of the Alginate Exopolysaccharide. J. Ind. Microbiol. 1995, 15, 174–176. [Google Scholar] [CrossRef]
- Rajabi, H.; Salimizand, H.; Khodabandehloo, M.; Fayyazi, A.; Ramazanzadeh, R. Prevalence of AlgD, PslD, PelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. BioMed Res. Int. 2022, 2022, 1716087. [Google Scholar] [CrossRef]
- Colvin, K.M.; Alnabelseya, N.; Baker, P.; Whitney, J.C.; Howell, P.L.; Parsek, M.R. PelA Deacetylase Activity Is Required for Pel Polysaccharide Synthesis in Pseudomonas aeruginosa. J. Bacteriol. 2013, 195, 4931–4943. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Hill, P.J.; Snarr, B.D.; Alnabelseya, N.; Pestrak, M.J.; Lee, M.J.; Jennings, L.K.; Tam, J.; Melnyk, R.A.; Parsek, M.R.; et al. Exopolysaccharide Biosynthetic Glycoside Hydrolases Can Be Utilized to Disrupt and Prevent Pseudomonas aeruginosa Biofilms. Sci. Adv. 2016, 2, e1501632. [Google Scholar] [CrossRef] [PubMed]
- Cherny, K.E.; Sauer, K. Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease Enda to Degrade Extracellular Genomic DNA to Disperse from the Biofilm. J. Bacteriol. 2019, 201, e00329-19. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.I.; Aleanizy, F.S. Association of OprF Mutant and Disturbance of Biofilm and Pyocyanin Virulence in Pseudomonas aeruginosa. Saudi Pharm. J. 2020, 28, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Killough, M.; Rodgers, A.M.; Ingram, R.J. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines 2022, 10, 911. [Google Scholar] [CrossRef]
- Gong, Q.; Ruan, M.; Niu, M.; Qin, C. Immune Efficacy of Different Immunization Doses of Divalent Combination DNA Vaccine Poprl+poprf of Pseudomonas aeruginosa. J. Vet. Med. Sci. 2021, 83, 775–782. [Google Scholar] [CrossRef]
- Price, B.M.; Barten Legutki, J.; Galloway, D.R.; Von Specht, B.U.; Gilleland, L.B.; Gilleland, H.E.; Staczek, J. Enhancement of the Protective Efficacy of an OprF DNA Vaccine against Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2002, 33, 117–124. [Google Scholar] [CrossRef]
- Hassan, R.; El-Naggar, W.; Abd El-Aziz, A.M.; Shaaban, M.; Kenawy, H.I.; Ali, Y.M. Immunization with Outer Membrane Proteins (OprF and OprI) and Flagellin B Protects Mice from Pulmonary Infection with Mucoid and Nonmucoid Pseudomonas aeruginosa. J. Microbiol. Immunol. Infect. 2018, 51, 965–973. [Google Scholar] [CrossRef]
- Ding, B.; von Specht, B.U.; Li, Y. OprF/I-Vaccinated Sera Inhibit Binding of Human Interferon-Gamma to Pseudomonas aeruginosa. Vaccine 2010, 28, 3260–3268. [Google Scholar] [CrossRef]
- Parkins, M.D.; Ceri, H.; Storey, D.G. Pseudomonas aeruginosa GacA, a Factor in Multihost Virulence, Is Also Essential for Biofilm Formation. Mol. Microbiol. 2001, 40, 1215–1226. [Google Scholar] [CrossRef]
- Płókarz, D.; Bierowiec, K.; Rypuła, K. Screening for Antimicrobial Resistance and Genes of Exotoxins in Pseudomonas aeruginosa Isolates from Infected Dogs and Cats in Poland. Antibiotics 2023, 12, 1226. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Welinder-Olsson, C.; Gilljam, M.; Pourcel, C.; Lindblad, A. Genotyping of Pseudomonas aeruginosa Reveals High Diversity, Stability over Time and Good Outcome of Eradication. J. Cyst. Fibros. 2015, 14, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Hematzadeh, A.; Haghkhah, M. Biotyping of Isolates of Pseudomonas aeruginosa Isolated from Human Infections by RAPD and ERIC-PCR. Heliyon 2021, 7, e07967. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, M.; Krukowska, A.; Galant, K.; Jursa-Kulesza, J.; Kosik-Bogacka, D. Genotypic Characterisation and Antimicrobial Resistance of Pseudomonas aeruginosa Strains Isolated from Patients of Different Hospitals and Medical Centres in Poland. BMC Infect. Dis. 2020, 20, 143. [Google Scholar] [CrossRef]
- Casarez, E.A.; Pillai, S.D.; Di Giovanni, G.D. Genotype Diversity of Escherichia coli Isolates in Natural Waters Determined by PFGE and ERIC-PCR. Water Res. 2007, 41, 3461–3472. [Google Scholar] [CrossRef]
- Fendri, I.; Ben Hassena, A.; Grosset, N.; Barkallah, M.; Khannous, L.; Chuat, V.; Gautier, M.; Gdoura, R. Genetic Diversity of Food-Isolated Salmonella Strains through Pulsed Field Gel Electrophoresis (PFGE) and Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR). PLoS ONE 2013, 8, e81315. [Google Scholar] [CrossRef]
Characteristic | Overall (n = 98) | Dogs (n = 65) | Cats (n = 16) | Fowl (n = 10) | Ruminants (n = 7) |
---|---|---|---|---|---|
External auditory canal | 17 | 16 | 1 | - | - |
Respiratory system | |||||
Nasal cavity | 22 | 7 | 15 | - | - |
Larynx | 1 | 1 | - | - | - |
Trachea and bronchi | 2 | 2 | - | - | - |
Conjunctival sac | 10 | 10 | - | - | - |
Skin | 15 | 15 | - | - | - |
Vagina | 9 | 9 | - | - | - |
Urine | 3 | 3 | - | - | - |
Perianal sinus glands | 2 | 2 | - | - | - |
Goiter/cloaca | 10 | - | - | 10 | - |
Milk | 7 | - | - | - | 7 |
Gene/Species | Dogs (n = 65) [n/%] | Cats (n = 16) [n/%] | Ruminants (n = 7) [n/%] | Fowl (n = 10) [n/%] |
---|---|---|---|---|
toxA | 29 (45%) | 9 (56%) | 3 (43%) | 3 (30%) |
exoU | 22 (34%) | 8 (50%) | 2 (29%) | 3 (30%) |
exoT | 52 (80%) | 14 (88%) | 5 (71%) | 9 (90%) |
exoS | 31 (48%) | 8 (50%) | 3 (43%) | 6 (60%) |
lasB | 60 (92%) | 16 (100%) | 7 (100%) | 10 (100%) |
plcN | 30 (46%) | 8 (50%) | 3 (43%) | 6 (60%) |
plcH | 56 (86%) | 15 (94%) | 6 (86%) | 7 (70%) |
pldA | 17 (26%) | 2 (13%) | 3 (43%) | 2 (20%) |
aprA | 55 (85%) | 13 (81%) | 6 (86%) | 8 (80%) |
gacA | 53 (82%) | 15 (94%) | 7 (100%) | 9 (90%) |
algD | 53 (82%) | 14 (88%) | 7 (100%) | 9 (90%) |
pelA | 65 (100%) | 16 (100%) | 7 (100%) | 10 (100%) |
endA | 62 (95%) | 15 (94%) | 7 (100%) | 10 (100%) |
oprF | 48 (74%) | 15 (94%) | 6 (86%) | 8 (80%) |
Type of Biofilm Producer | Number of Isolates After | |
---|---|---|
48 h [n/%] | 72 h [n/%] | |
Strong | 75 (77%) | 74 (76%) |
Moderate | 18 (18%) | 19 (19%) |
Weak | 4 (4%) | 4 (4%) |
None | 1 (1%) | 1 (1%) |
Gene/Biofilm Growth | Strong | Medium | Weak | |||
---|---|---|---|---|---|---|
48 h (n = 75) [n/%] | 72 h (n = 74) [n/%] | 48 h (n = 18) [n/%] | 72 h (n = 19) [n/%] | 48 h (n = 4) [n/%] | 72 h (n = 4) [n/%] | |
pelA | 75 (100%) | 74 (100%) | 18 (100%) | 19 (100%) | 4 (100%) | 4 (100%) |
algD | 65 (87%) | 61 (82%) | 14 (78%) | 16 (84%) | 4 (100%) | 4 (100%) |
gacA | 66 (88%) | 65 (87%) | 14 (78%) | 15 (79%) | 3 (75%) | 3 (75%) |
endA | 71 (95%) | 71 (96%) | 17 (94%) | 18 (95%) | 3 (75%) | 3 (75%) |
oprF | 60 (80%) | 59 (80%) | 13 (72%) | 14 (74%) | 3 (75%) | 3 (75%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foksiński, P.; Blank, A.; Kaczorek-Łukowska, E.; Małaczewska, J.; Wróbel, M.; Wójcik, E.A.; Sowińska, P.; Pietrzyk, N.; Matusiak, R.; Wójcik, R. Does Every Strain of Pseudomonas aeruginosa Attack the Same? Results of a Study of the Prevalence of Virulence Factors of Strains Obtained from Different Animal Species in Northeastern Poland. Pathogens 2024, 13, 979. https://doi.org/10.3390/pathogens13110979
Foksiński P, Blank A, Kaczorek-Łukowska E, Małaczewska J, Wróbel M, Wójcik EA, Sowińska P, Pietrzyk N, Matusiak R, Wójcik R. Does Every Strain of Pseudomonas aeruginosa Attack the Same? Results of a Study of the Prevalence of Virulence Factors of Strains Obtained from Different Animal Species in Northeastern Poland. Pathogens. 2024; 13(11):979. https://doi.org/10.3390/pathogens13110979
Chicago/Turabian StyleFoksiński, Paweł, Alicja Blank, Edyta Kaczorek-Łukowska, Joanna Małaczewska, Małgorzata Wróbel, Ewelina A. Wójcik, Patrycja Sowińska, Nina Pietrzyk, Rafał Matusiak, and Roman Wójcik. 2024. "Does Every Strain of Pseudomonas aeruginosa Attack the Same? Results of a Study of the Prevalence of Virulence Factors of Strains Obtained from Different Animal Species in Northeastern Poland" Pathogens 13, no. 11: 979. https://doi.org/10.3390/pathogens13110979
APA StyleFoksiński, P., Blank, A., Kaczorek-Łukowska, E., Małaczewska, J., Wróbel, M., Wójcik, E. A., Sowińska, P., Pietrzyk, N., Matusiak, R., & Wójcik, R. (2024). Does Every Strain of Pseudomonas aeruginosa Attack the Same? Results of a Study of the Prevalence of Virulence Factors of Strains Obtained from Different Animal Species in Northeastern Poland. Pathogens, 13(11), 979. https://doi.org/10.3390/pathogens13110979