Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Collection and Preparation
2.2. Next-Generation Sequencing
2.3. Bioinformatic Analysis
2.4. Phylogenetic Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Wisconsin Fish Harbor Diverse Novel Viruses
4.2. Viromes of Wild Freshwater Fish Reveal Further Insights into Evolutionary Histories of Viral Families
4.3. A Gammacoronavirus Detected in Walleye
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geoghegan, J.L.; Di Giallonardo, F.; Cousins, K.; Shi, M.; Williamson, J.E.; Holmes, E.C. Hidden Diversity and Evolution of Viruses in Market Fish. Virus Evol. 2018, 4, vey031. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Chen, X.; Tian, J.H.; Chen, L.J.; Li, K.; Wang, W.; Eden, J.S.; Shen, J.J.; Liu, L.; et al. The Evolutionary History of Vertebrate RNA Viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef]
- Filipa-Silva, A.; Parreira, R.; Martínez-Puchol, S.; Bofill-Mas, S.; Barreto Crespo, M.T.; Nunes, M. The Unexplored Virome of Two Atlantic Coast Fish: Contribution of Next-Generation Sequencing to Fish Virology. Foods 2020, 9, 1634. [Google Scholar] [CrossRef]
- Gadoin, E.; Desnues, C.; Monteil-Bouchard, S.; Bouvier, T.; Auguet, J.-C.; d’Orbcastel, E.R.; Bettarel, Y. Fishing for the Virome of Tropical Tuna. Viruses 2021, 13, 1291. [Google Scholar] [CrossRef]
- Perry, B.J.; Darestani, M.M.; Ara, M.G.; Hoste, A.; Jandt, J.M.; Dutoit, L.; Holmes, E.C.; Ingram, T.; Geoghegan, J.L. Viromes of Freshwater Fish with Lacustrine and Diadromous Life Histories Differ in Composition. Viruses 2022, 14, 257. [Google Scholar] [CrossRef]
- Campbell, L.J.; Castillo, N.A.; Dunn, C.D.; Perez, A.; Schmitter-Soto, J.J.; Mejri, S.C.; Boucek, R.E.; Corujo, R.S.; Adams, A.J.; Rehage, J.S.; et al. Viruses of Atlantic Bonefish (Albula vulpes) in Florida and the Caribbean Show Geographic Patterns Consistent with Population Declines. Environ. Biol. Fish 2023, 106, 303–317. [Google Scholar] [CrossRef]
- Xi, Y.; Jiang, X.; Xie, X.; Zhao, M.; Zhang, H.; Qin, K.; Wang, X.; Liu, Y.; Yang, S.; Shen, Q.; et al. Viromics Reveals the High Diversity of Viruses from Fishes of the Tibet Highland. Microbiol. Spectr. 2023, 11, e00946-23. [Google Scholar] [CrossRef]
- Mordecai, G.J.; Miller, K.M.; Di Cicco, E.; Schulze, A.D.; Kaukinen, K.H.; Ming, T.J.; Li, S.; Tabata, A.; Teffer, A.; Patterson, D.A.; et al. Endangered Wild Salmon Infected by Newly Discovered Viruses. eLife 2019, 8, e47615. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.K.; Mifsud, J.C.O.; Costa, V.A.; Grimwood, R.M.; Kitson, J.; Baker, C.; Brosnahan, C.L.; Pande, A.; Holmes, E.C.; Gemmell, N.J.; et al. Slippery When Wet: Cross-Species Transmission of Divergent Coronaviruses in Bony and Jawless Fish and the Evolutionary History of the Coronaviridae. Virus Evol. 2021, 7, veab050. [Google Scholar] [CrossRef]
- Edgar, R.C.; Taylor, J.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; et al. Petabase-Scale Sequence Alignment Catalyses Viral Discovery. Nature 2022, 602, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Hierweger, M.M.; Koch, M.C.; Rupp, M.; Maes, P.; Di Paola, N.; Bruggmann, R.; Kuhn, J.H.; Schmidt-Posthaus, H.; Seuberlich, T. Novel Filoviruses, Hantavirus, and Rhabdovirus in Freshwater Fish, Switzerland, 2017. Emerg. Infect. Dis. 2021, 27, 3082–3091. [Google Scholar] [CrossRef]
- Hume, A.J.; Mühlberger, E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J. Mol. Biol. 2019, 431, 4290–4320. [Google Scholar] [CrossRef] [PubMed]
- Dill, J.A.; Camus, A.C.; Leary, J.H.; Di Giallonardo, F.; Holmes, E.C.; Ng, T.F.F. Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses. J. Virol. 2016, 90, 7920–7933. [Google Scholar] [CrossRef] [PubMed]
- Waltzek, T.B.; Subramaniam, K.; Leis, E.; Katona, R.; Fan Ng, T.F.; Delwart, E.; Barbknecht, M.; Rock, K.; Hoffman, M.A. Characterization of a Peribunyavirus Isolated from Largemouth Bass (Micropterus salmoides). Virus Res. 2019, 273, 197761. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, J.L.; Di Giallonardo, F.; Wille, M.; Ortiz-Baez, A.S.; Costa, V.A.; Ghaly, T.; Mifsud, J.C.O.; Turnbull, O.M.H.; Bellwood, D.R.; Williamson, J.E.; et al. Virome Composition in Marine Fish Revealed by Meta-Transcriptomics. Virus Evol. 2021, 7, veab005. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Seitz, S.; Mattei, S.; Suh, A.; Beck, J.; Herstein, J.; Börold, J.; Salzburger, W.; Kaderali, L.; Briggs, J.A.G.; et al. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-Enveloped Fish Viruses. Cell Host Microbe 2017, 22, 387–399.e6. [Google Scholar] [CrossRef] [PubMed]
- Barbknecht, M.; Sepsenwol, S.; Leis, E.; Tuttle-Lau, M.; Gaikowski, M.; Knowles, N.J.; Lasee, B.; Hoffman, M.A. Characterization of a New Picornavirus Isolated from the Freshwater Fish Lepomis Macrochirus. J. Gen. Virol. 2014, 95, 601–613. [Google Scholar] [CrossRef]
- Sibley, S.D.; Finley, M.A.; Baker, B.B.; Puzach, C.; Armién, A.G.; Giehtbrock, D.; Goldberg, T.L. Novel Reovirus Associated with Epidemic Mortality in Wild Largemouth Bass (Micropterus salmoides). J. Gen. Virol. 2016, 97, 2482–2487. [Google Scholar] [CrossRef]
- Costa, V.A.; Mifsud, J.C.O.; Gilligan, D.; Williamson, J.E.; Holmes, E.C.; Geoghegan, J.L. Metagenomic Sequencing Reveals a Lack of Virus Exchange between Native and Invasive Freshwater Fish across the Murray–Darling Basin, Australia. Virus Evol. 2021, 7, veab034. [Google Scholar] [CrossRef]
- Reuter, G.; Boros, Á.; Mátics, R.; Altan, E.; Delwart, E.; Pankovics, P. A Novel Parvovirus (Family Parvoviridae) in a Freshwater Fish, Zander (Sander lucioperca). Arch. Virol. 2022, 167, 1163–1167. [Google Scholar] [CrossRef]
- Grimwood, R.M.; Fortune-Kelly, G.; Holmes, E.C.; Ingram, T.; Geoghegan, J.L. Host Specificity Shapes Fish Viromes across Lakes on an Isolated Remote Island. Virology 2023, 587, 109884. [Google Scholar] [CrossRef]
- Lundberg, J.G.; Kottelat, M.; Smith, G.R.; Stiassny, M.L.J.; Gill, A.C. So Many Fishes, So Little Time: An Overview of Recent Ichthyological Discovery in Continental Waters. Ann. Mo. Bot. Gard. 2000, 87, 26–62. [Google Scholar] [CrossRef]
- Fiore, B.J.; Anderson, H.A.; Hanrahan, L.P.; Olson, L.J.; Sonzogni, W.C. Sport Fish Consumption and Body Burden Levels of Chlorinated Hydrocarbons: A Study of Wisconsin Anglers. Arch. Environ. Health 1989, 44, 82–88. [Google Scholar] [CrossRef]
- Thiel, W.A.; Toohey-Kurth, K.L.; Giehtbrock, D.; Baker, B.B.; Finley, M.; Goldberg, T.L. Widespread Seropositivity to Viral Hemorrhagic Septicemia Virus (VHSV) in Four Species of Inland Sport Fishes in Wisconsin. J. Aquat. Anim. Health 2021, 33, 53–65. [Google Scholar] [CrossRef]
- Richard, J.C.; Leis, E.M.; Dunn, C.D.; Harris, C.; Agbalog, R.E.; Campbell, L.J.; Knowles, S.; Waller, D.L.; Putnam, J.G.; Goldberg, T.L. Freshwater Mussels Show Elevated Viral Richness and Intensity during a Mortality Event. Viruses 2022, 14, 2603. [Google Scholar] [CrossRef]
- Dunay, E.; Owens, L.A.; Dunn, C.D.; Rukundo, J.; Atencia, R.; Cole, M.F.; Cantwell, A.; Emery Thompson, M.; Rosati, A.G.; Goldberg, T.L. Viruses in Sanctuary Chimpanzees across Africa. Am. J. Primatol. 2023, 85, e23452. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A New Versatile Metagenomic Assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN Analysis of Metagenomic Data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res. 2019, 47, D94–D99. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein Domain Annotations on the Fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef]
- Hulo, C.; de Castro, E.; Masson, P.; Bougueleret, L.; Bairoch, A.; Xenarios, I.; Le Mercier, P. ViralZone: A Knowledge Resource to Understand Virus Diversity. Nucleic Acids Res. 2011, 39, D576–D582. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Tisza, M.J.; Belford, A.K.; Domínguez-Huerta, G.; Bolduc, B.; Buck, C.B. Cenote-Taker 2 Democratizes Virus Discovery and Sequence Annotation. Virus Evol. 2021, 7, veaa100. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Church, D.M.; Federhen, S.; Lash, A.E.; Madden, T.L.; Pontius, J.U.; Schuler, G.D.; Schriml, L.M.; Sequeira, E.; Tatusova, T.A.; et al. Database Resources of the National Center for Biotechnology. Nucleic Acids Res. 2003, 31, 28–33. [Google Scholar] [CrossRef] [PubMed]
- ICTV Report Chapters|ICTV. Available online: https://ictv.global/report (accessed on 28 June 2023).
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: Robust Conversion of Protein Sequence Alignments into the Corresponding Codon Alignments. Nucleic Acids Res. 2006, 34, W609–W612. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny.Fr: New Generation Phylogenetic Services for Non-Specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 28 June 2023).
- Agresti, A.; Coull, B.A. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 July 2023).
- Quinteros, J.; Noormohammadi, A.; Lee, S.; Browning, G.; Diaz-Méndez, A. Genomics and Pathogenesis of the Avian Coronavirus Infectious Bronchitis Virus. Aust. Vet. J. 2022, 100, 496–512. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.Y.; de Groot, R.J.; Haagmans, B.; Lau, S.K.P.; Neuman, B.W.; Perlman, S.; Sola, I.; van der Hoek, L.; Wong, A.C.P.; Yeh, S.-H. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J. Gen. Virol. 2023, 104, 001843. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.C. Fish Viruses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 227–234. ISBN 978-0-12-374410-4. [Google Scholar]
- Bacharach, E.; Mishra, N.; Briese, T.; Zody, M.C.; Kembou Tsofack, J.E.; Zamostiano, R.; Berkowitz, A.; Ng, J.; Nitido, A.; Corvelo, A.; et al. Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia. mBio 2016, 7, 10–1128. [Google Scholar] [CrossRef]
- Zell, R. Picornaviridae—The Ever-Growing Virus Family. Arch. Virol. 2018, 163, 299–317. [Google Scholar] [CrossRef]
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef]
- McAllister, P.E. Salmonid Fish Viruses. In Fish Medicine; Stoskopf, M.K., Ed.; W. B. Saunders Company: Philadelphia, PA, USA, 1993; pp. 380–408. [Google Scholar]
- McAllister, P.E. Freshwater Temperate Fish Viruses. In Fish Medicine; Stoskopf, M.K., Ed.; W. B. Saunders Company: Philadelphia, PA, USA, 1993; pp. 284–300. [Google Scholar]
- Mor, S.K.; Phelps, N.B.D. Chapter 21—Picornaviruses of Fish. In Aquaculture Virology; Kibenge, F.S.B., Godoy, M.G., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 337–348. ISBN 978-0-12-801573-5. [Google Scholar]
- Olsen, A.B.; Hjortaas, M.; Tengs, T.; Hellberg, H.; Johansen, R. First Description of a New Disease in Rainbow Trout (Oncorhynchus mykiss (Walbaum)) Similar to Heart and Skeletal Muscle Inflammation (HSMI) and Detection of a Gene Sequence Related to Piscine Orthoreovirus (PRV). PLoS ONE 2015, 10, e0131638. [Google Scholar] [CrossRef]
- Kuehn, R.; Stoeckle, B.C.; Young, M.; Popp, L.; Taeubert, J.-E.; Pfaffl, M.W.; Geist, J. Identification of a Piscine Reovirus-Related Pathogen in Proliferative Darkening Syndrome (PDS) Infected Brown Trout (Salmo trutta fario) Using a next-Generation Technology Detection Pipeline. PLoS ONE 2018, 13, e0206164. [Google Scholar] [CrossRef]
- Fux, R.; Arndt, D.; Langenmayer, M.C.; Schwaiger, J.; Ferling, H.; Fischer, N.; Indenbirken, D.; Grundhoff, A.; Dölken, L.; Adamek, M.; et al. Piscine Orthoreovirus 3 Is Not the Causative Pathogen of Proliferative Darkening Syndrome (PDS) of Brown Trout (Salmo trutta fario). Viruses 2019, 11, 112. [Google Scholar] [CrossRef]
- Vendramin, N.; Kannimuthu, D.; Olsen, A.B.; Cuenca, A.; Teige, L.H.; Wessel, Ø.; Iburg, T.M.; Dahle, M.K.; Rimstad, E.; Olesen, N.J. Piscine Orthoreovirus Subtype 3 (PRV-3) Causes Heart Inflammation in Rainbow Trout (Oncorhynchus mykiss). Vet. Res. 2019, 50, 14. [Google Scholar] [CrossRef]
- Sørensen, J.; Vendramin, N.; Priess, C.; Kannimuthu, D.; Henriksen, N.H.; Iburg, T.M.; Olesen, N.J.; Cuenca, A. Emergence and Spread of Piscine Orthoreovirus Genotype 3. Pathogens 2020, 9, 823. [Google Scholar] [CrossRef]
- Dhamotharan, K.; Vendramin, N.; Markussen, T.; Wessel, Ø.; Cuenca, A.; Nyman, I.B.; Olsen, A.B.; Tengs, T.; Krudtaa Dahle, M.; Rimstad, E. Molecular and Antigenic Characterization of Piscine Orthoreovirus (PRV) from Rainbow Trout (Oncorhynchus mykiss). Viruses 2018, 10, 170. [Google Scholar] [CrossRef]
- Teige, L.H.; Kumar, S.; Johansen, G.M.; Wessel, Ø.; Vendramin, N.; Lund, M.; Rimstad, E.; Boysen, P.; Dahle, M.K. Detection of Salmonid IgM Specific to the Piscine Orthoreovirus Outer Capsid Spike Protein Sigma 1 Using Lipid-Modified Antigens in a Bead-Based Antibody Detection Assay. Front. Immunol. 2019, 10, 2119. [Google Scholar] [CrossRef]
- Brenes, R.; Gray, M.J.; Waltzek, T.B.; Wilkes, R.P.; Miller, D.L. Transmission of Ranavirus between Ectothermic Vertebrate Hosts. PLoS ONE 2014, 9, e92476. [Google Scholar] [CrossRef]
- Shaikh, N.; Swali, P.; Houben, R.M.G.J. Asymptomatic but Infectious—The Silent Driver of Pathogen Transmission. A Pragmatic Review. Epidemics 2023, 44, 100704. [Google Scholar] [CrossRef] [PubMed]
- Gagné, N.; LeBlanc, F. Overview of Infectious Salmon Anaemia Virus (ISAV) in Atlantic Canada and First Report of an ISAV North American-HPR0 Subtype. J. Fish Dis. 2018, 41, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, C.; Carmona, M.; Gallardo, A.; Labra, A.; Marshall, S.H. Coexistence in Field Samples of Two Variants of the Infectious Salmon Anemia Virus: A Putative Shift to Pathogenicity. PLoS ONE 2014, 9, e87832. [Google Scholar] [CrossRef] [PubMed]
- Dopazo, C.P. The Infectious Pancreatic Necrosis Virus (IPNV) and Its Virulence Determinants: What Is Known and What Should Be Known. Pathogens 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Eyngor, M.; Zamostiano, R.; Kembou Tsofack, J.E.; Berkowitz, A.; Bercovier, H.; Tinman, S.; Lev, M.; Hurvitz, A.; Galeotti, M.; Bacharach, E.; et al. Identification of a Novel RNA Virus Lethal to Tilapia. J. Clin. Microbiol. 2020, 52, 4137–4146. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, O.M.H.; Ortiz-Baez, A.S.; Eden, J.-S.; Shi, M.; Williamson, J.E.; Gaston, T.F.; Zhang, Y.-Z.; Holmes, E.C.; Geoghegan, J.L. Meta-Transcriptomic Identification of Divergent Amnoonviridae in Fish. Viruses 2020, 12, 1254. [Google Scholar] [CrossRef] [PubMed]
- Wang, D. The Enigma of Picobirnaviruses: Viruses of Animals, Fungi, or Bacteria? Curr. Opin. Virol. 2022, 54, 101232. [Google Scholar] [CrossRef] [PubMed]
- Hillman, B.I.; Cai, G. Chapter Six—The Family Narnaviridae: Simplest of RNA Viruses. In Advances in Virus Research; Ghabrial, S.A., Ed.; Mycoviruses; Academic Press: Cambridge, MA, USA, 2013; Volume 86, pp. 149–176. [Google Scholar]
- Fay, E.J.; Balla, K.M.; Roach, S.N.; Shepherd, F.K.; Putri, D.S.; Wiggen, T.D.; Goldstein, S.A.; Pierson, M.J.; Ferris, M.T.; Thefaine, C.E.; et al. Natural Rodent Model of Viral Transmission Reveals Biological Features of Virus Population Dynamics. J. Exp. Med. 2021, 219, e20211220. [Google Scholar] [CrossRef] [PubMed]
- Lőrincz, M.; Cságola, A.; Farkas, S.L.; Székely, C.; Tuboly, T. First Detection and Analysis of a Fish Circovirus. J. Gen. Virol. 2011, 92, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Tarján, Z.; Pénzes, J.; Tóth, R.; Benkő, M. First Detection of Circovirus-like Sequences in Amphibians and Novel Putative Circoviruses in Fishes. Acta Vet. Hung. 2013, 62, 134–144. [Google Scholar] [CrossRef]
- Tuboly, T. Chapter 12—Circoviruses of Fish. In Aquaculture Virology; Kibenge, F.S.B., Godoy, M.G., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 183–190. ISBN 978-0-12-801573-5. [Google Scholar]
- Muscat, M.; Shefer, A.; Ben Mamou, M.; Spataru, R.; Jankovic, D.; Deshevoy, S.; Butler, R.; Pfeifer, D. The State of Measles and Rubella in the WHO European Region, 2013. Clin. Microbiol. Infect. 2014, 20, 12–18. [Google Scholar] [CrossRef]
- Winter, A.K.; Moss, W.J. Rubella. Lancet 2022, 399, 1336–1346. [Google Scholar] [CrossRef]
- Bennett, A.J.; Paskey, A.C.; Ebinger, A.; Pfaff, F.; Priemer, G.; Höper, D.; Breithaupt, A.; Heuser, E.; Ulrich, R.G.; Kuhn, J.H.; et al. Relatives of Rubella Virus in Diverse Mammals. Nature 2020, 586, 424–428. [Google Scholar] [CrossRef]
- Pfaff, F.; Breithaupt, A.; Rubbenstroth, D.; Nippert, S.; Baumbach, C.; Gerst, S.; Langner, C.; Wylezich, C.; Ebinger, A.; Höper, D.; et al. Revisiting Rustrela Virus: New Cases of Encephalitis and a Solution to the Capsid Enigma. Microbiol. Spectr. 2022, 10, e00103-22. [Google Scholar] [CrossRef]
- Matiasek, K.; Pfaff, F.; Weissenböck, H.; Wylezich, C.; Kolodziejek, J.; Tengstrand, S.; Ecke, F.; Nippert, S.; Starcky, P.; Litz, B.; et al. Mystery of Fatal ‘Staggering Disease’ Unravelled: Novel Rustrela Virus Causes Severe Meningoencephalomyelitis in Domestic Cats. Nat. Commun. 2023, 14, 624. [Google Scholar] [CrossRef]
- Grimwood, R.M.; Holmes, E.C.; Geoghegan, J.L. A Novel Rubi-Like Virus in the Pacific Electric Ray (Tetronarce Californica) Reveals the Complex Evolutionary History of the Matonaviridae. Viruses 2021, 13, 585. [Google Scholar] [CrossRef]
- Nelson, N.P.; Easterbrook, P.J.; McMahon, B.J. Epidemiology of Hepatitis B Virus Infection and Impact of Vaccination on Disease. Clin. Liver Dis. 2016, 20, 607–628. [Google Scholar] [CrossRef]
- Bukhari, K.; Mulley, G.; Gulyaeva, A.A.; Zhao, L.; Shu, G.; Jiang, J.; Neuman, B.W. Description and Initial Characterization of Metatranscriptomic Nidovirus-like Genomes from the Proposed New Family Abyssoviridae, and from a Sister Group to the Coronavirinae, the Proposed Genus Alphaletovirus. Virology 2018, 524, 160–171. [Google Scholar] [CrossRef]
- Schütze, H. Coronaviruses in Aquatic Organisms. Aquac. Virol. 2016, 327–335. [Google Scholar] [CrossRef]
- Wille, M.; Holmes, E.C. Wild Birds as Reservoirs for Diverse and Abundant Gamma- and Deltacoronaviruses. FEMS Microbiol. Rev. 2020, 44, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.; Danilenko, A.; Kolosova, N.; Bragina, M.; Molchanova, M.; Bulanovich, Y.; Gorodov, V.; Leonov, S.; Gudymo, A.; Onkhonova, G.; et al. Diversity of Gammacoronaviruses and Deltacoronaviruses in Wild Birds and Poultry in Russia. Sci. Rep. 2022, 12, 19412. [Google Scholar] [CrossRef] [PubMed]
Host | ID | Virus a | Family | Natural Host(s) b | Genome | Length | Cov. | Closest Match (Source, Location, Year, Accession) c | E-Value c | %ID (NR) b | % Query Cov. c |
---|---|---|---|---|---|---|---|---|---|---|---|
Lepomis macrochirus (bluegill) | 1 | Eaulepmac virus 1 (EAULV-1) | Matonaviridae | Vertebrates | ssRNA (+) [IV] | 4317 | 327.1 | Non-structural protein Rubella virus genotype 1E (human, Japan, 2018, BCT02655) | 0 | 59.34 | 74 |
2 | Mislepmac virus 1 (MISLV-1) | 8587 | 12.5 | Non-structural protein Neolamprologus multifasciatus matonavirus (Fish, Zambia, 2016, WLN26226.1) | 0 | 66.15 | 56 | ||||
3 | Litlepmac virus 1 (LITLV-1) | Nudnaviridae | Fish | dsDNA-RT [VII] | 2992 | 43.6 | RDRP Paracyprichromis brieni nackednavirus (Fish, Burundi, 2015, WLN26319.1) | 0 | 80.10 | 62 | |
Salmo trutta (brown trout) | 4 | Piscine orthoreovirus 3 (PRV-3) | Spinareoviridae | Vertebrate/ Invertebrate/ Plant/ Fungi | dsRNA [III] | 702 | 2 | mu 2 protein Piscine orthoreovirus 3 (fish, Denmark, 2018, QOJ54106.1) | 2 × 10143 | 99.51 | 99 |
798 | 3.2 | mu 1 protein Piscine orthoreovirus 3 (fish, Denmark, 2018, QOJ54098.1) | 0 | 98.87 | 100 | ||||||
Acipenser fulvescens (lake sturgeon) | 5 | Shdaciful virus 1 (SHDAV-1) | Circoviridae | Birds/Mammals/ Fish | ssDNA [II] | 537 | 2.6 | Replication-associated protein Toona sinensis CRESS virus (Plant, QKI28974.1) | 6 × 1048 | 45.35 | 96 |
6 | Shdaciful virus 2 (SHDAV-2) | 1187 | 4.1 | Replication-associated protein Palaemonetes sp. common grass shrimp associated circular virus (Shrimp, YP_009163936.1) | 5 × 1049 | 38.03 | 59 | ||||
Host | ID | Virus a | Family | Natural host(s) b | Genome c | Length | Cov. | Closest match (source, location, year, accession) d | E-value c | %ID (NR) d | % Query cov. d |
Acipenser fulvescens (lake sturgeon) | 7 | Shdaciful virus 3 (SHDAV-3) | Circoviridae | Birds/Mammals/ Fish | ssDNA [II] | 563 | 4.7 | Replication-associated protein Littorina sp. associated circular virus (Snail, YP_009163904.1) | 2 × 1026 | 64.2 | 88 |
8 | Shdaciful virus 4 (SHDAV-4) | 933 | 8.3 | Replication-associated protein Cyanoramphus nest associated circular X DNA virus (Parakeet, New Zealand, 2012, YP_009021888.1) | 2 × 1070 | 40.82 | 92 | ||||
9 | Shwaciful virus 1 (SHWAV-1) | Hepadnaviridae | Humans/Apes/ Birds | dsDNA-RT [VII] | 1831 | 47.5 | DNA polymerase Hepatitis B virus (Amphibian, China, QWY26513.1) | 7 × 10111 | 40.36 | 87 | |
10 | Swdaciful virus 8 | Picornaviridae | Vertebrates | ssRNA (+) [IV] | 354 | 3.2 | RNA Dependant RNA polymerase Picornaviridae sp. (environment, China, URG14974.1) | 5 × 1091 | 64.1 | 99 | |
Esox lucius (northern pike) | 11 | Lipesoluc virus 1 (LIPEV-1) | Amnoonviridae | Not available | ssRNA (−) [V] | 1225 | 9.9 | RNA Dependant RNA polymerase Flavolineata virus (fish, Australia, 2018, QPC41259.1) | 6 × 1068 | 36.09 | 96 |
12 | Petesoluc virus 1 | Narnaviridae | Fungi | ssRNA (+) [IV] | 551 | 7.7 | RNA Dependant RNA polymerase Alvulp narnavirus 1 (fish, USA, 2020, UVD33185.1) | 2 × 10110 | 99.45 | 99 | |
13 | Whiesoluc virus 5 | Picobirnaviridae | Mammals/ Bacteria | dsRNA [III] | 915 | 8.1 | RNA Dependant RNA polymerase Lysoka partiti-like virus (bat, Cameroon, 2013, AWV67007.1) | 0.00 | 81.91 | 99 | |
14 | Whiesoluc virus 6 | 1646 | 8.2 | Capsid protein Picobirnaviridae sp. (human, USA, 2015, DAH37469.1) | 0.00 | 95.63 | 70 | ||||
15 | Whiesoluc virus 7 | 839 | 20.1 | Structural protein Picobirnaviridae sp. (environment, China, ULF99732.1) | 0.00 | 72.13 | 60 | ||||
16 | Petesoluc virus 2 | Unclassified | Not available | ssDNA [II] | 527 | 3.7 | Putative viral replication protein Clictolig virus 1 (mussel, USA, 2018, UZT54550.1) | 3 × 1043 | 41.95 | 99 | |
Host | ID | Virus a | Family | Natural host(s) b | Genome | Length | Cov. | Closest match (source, location, year, accession) c | E-value c | %ID (NR) c | % Query cov. c |
Sander vitreus (walleye) | 17 | Pelsanvit virus 1 (PELSV-1) | Peribunyaviridae | Reservoir: Rodents/ insects Vector: Ticks/mosquitoes Occasional: Human | ssRNA (−) [V] | 5996 | 8.3 | RNA Dependant RNA polymerase Largemouth bass bunyavirus (fish, USA, 2009, YP_010840272.1) | 0 | 39.08 | 98 |
1874 | 11.4 | Glycoprotein Largemouth bass bunyavirus (fish, USA, 2009, YP_010840273.1) | 3 × 1032 | 24.55 | 84 | ||||||
18 | Plasanvit virus 1 (PLASV-1) | Picornaviridae | Vertebrates | ssRNA (+) [IV] | 1770 | 5.6 | Polyprotein (RNA Dependant RNA polymerase) Wenling crossorhombus picornavirus (fish, China, YP_010796391) | 0 | 63.61 | 99 | |
1016 | 7 | Polyprotein (Capsid) Wenling crossorhombus picornavirus (fish, China, YP_010796391) | 2 × 10163 | 69.94 | 99 | ||||||
313 | 3.6 | Polyprotein (Helicase) Wenling crossorhombus picornavirus (fish, China, YP_010796391) | 1 × 1028 | 63.04 | 88 | ||||||
19 | Tursanvit virus 1 (TURSV-1) | Coronaviridae | Vertebrates | ssRNA (+) [IV] | 1429 | 7.7 | Nucleocapsid Infectious bronchitis virus (chicken, NP_040838.1) | 0 | 93.9 | 85 |
Family | Bluegill | Brown Trout | Lake Sturgeon | Northern Pike | Walleye |
---|---|---|---|---|---|
Amnoonviridae | 0.00 | 0.00 | 0.00 | 4.35 (0.01–22.66) | 0.00 |
Circoviridae | 0.00 | 0.00 | 90.32 (74.31–97.44) | 0.00 | 0.00 |
Coronaviridae | 0.00 | 0.00 | 0.00 | 0.00 | 64.71 (41.16–82.83) |
Hepadnaviridae | 0.00 | 0.00 | 16.13 (0.00–22.66) | 0.00 | 0.00 |
Matonaviridae | 35.71 (16.18–61.40) | 0.00 | 0.00 | 0.00 | 0.00 |
Narnaviridae | 0.00 | 0.00 | 0.00 | 21.74 (9.23–42.33) | 0.00 |
Nudnaviridae | 7.14 (0.01–33.54) | 0.00 | 0.00 | 0.00 | 0.00 |
Peribunyaviridae | 0.00 | 0.00 | 0.00 | 0.00 | 11.76 (2.03–35.59) |
Picobirnaviridae | 0.00 | 0.00 | 0.00 | 8.7 (1.25–27.97) | 0.00 |
Picornaviridae | 0.00 | 0.00 | 25.81 (13.49–43.46) | 0.00 | 5.88 (0.01–29.82) |
Spinareoviridae | 0.00 | 5.56 (0.01–27.65) | 0.00 | 0.00 | 0.00 |
Unclassified | 0.00 | 0.00 | 0.00 | 8.7 (1.25–27.97) | 0.00 |
Total prevalence | 42.86 (21.34–67.45) | 5.56 (0.01–27.65) | 96.77 (82.42–99.99) | 39.13 (22.1–59.27) | 70.59 (46.57–87.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ford, C.E.; Dunn, C.D.; Leis, E.M.; Thiel, W.A.; Goldberg, T.L. Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens 2024, 13, 150. https://doi.org/10.3390/pathogens13020150
Ford CE, Dunn CD, Leis EM, Thiel WA, Goldberg TL. Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens. 2024; 13(2):150. https://doi.org/10.3390/pathogens13020150
Chicago/Turabian StyleFord, Charlotte E., Christopher D. Dunn, Eric M. Leis, Whitney A. Thiel, and Tony L. Goldberg. 2024. "Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes" Pathogens 13, no. 2: 150. https://doi.org/10.3390/pathogens13020150
APA StyleFord, C. E., Dunn, C. D., Leis, E. M., Thiel, W. A., & Goldberg, T. L. (2024). Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens, 13(2), 150. https://doi.org/10.3390/pathogens13020150