Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation and Identification
2.2. Antibiotic Resistance Test of S. aureus Strains
2.3. β-Lactamase Production
2.4. Determination of Biofilm Production
2.5. Genotypic Determination of mecA, icaADBC, and bap
2.6. Statistical Analysis
3. Results
3.1. Strain Isolation and Identification
3.2. Antibiotic Resistance
3.3. β-Lactamase Production
3.4. Determination of Biofilm Production
3.5. Genotypic Determination of mecA and SCCmec Types
3.6. Genotypic Determination of icaADBC and bap Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef]
- Cruz-López, F.; Martínez-Meléndez, A.; Garza-González, E. How Does Hospital Microbiota Contribute to Healthcare-Associated Infections? Microorganisms 2023, 11, 192. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Arbune, M.; Gurau, G.; Niculet, E.; Iancu, A.V.; Lupasteanu, G.; Fotea, S.; Vasile, M.C.; Tatu, A.L. Prevalence of Antibiotic Resistance of ESKAPE Pathogens Over Five Years in an Infectious Diseases Hospital from South-East of Romania. Infect. Drug Resist. 2021, 14, 2369–2378. [Google Scholar] [CrossRef]
- Kamurai, B.; Mombeshora, M.; Mukanganyama, S. Repurposing of Drugs for Antibacterial Activities on Selected ESKAPE Bacteria Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Microbiol. 2020, 2020, 8885338. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Abimannan, N.; Sumathi, G.; Krishnarajasekhar, O.R.; Sinha, B.; Krishnan, P. Clonal clusters and virulence factors of methicillin-resistant Staphylococcus aureus: Evidence for community-acquired methicillin-resistant Staphylococcus aureus infiltration into hospital settings in Chennai, South India. Indian. J. Med. Microbiol. 2019, 37, 326–336. [Google Scholar] [CrossRef]
- Negrete-González, C.; Turrubiartes-Martínez, E.; Galicia-Cruz, O.G.; Noyola, D.E.; Martínez-Aguilar, G.; Pérez-González, L.F.; González-Amaro, R.; Niño-Moreno, P. High prevalence of t895 and t9364 spa types of methicillin-resistant Staphylococcus aureus in a tertiary-care hospital in Mexico: Different lineages of clonal complex 5. BMC Microbiol. 2020, 20, 213. [Google Scholar] [CrossRef]
- Westgeest, A.C.; Buis, D.T.P.; Sigaloff, K.C.E.; Ruffin, F.; Visser, L.G.; Yu, Y.; Schippers, E.F.; Lambregts, M.M.C.; Tong, S.Y.C.; de Boer, M.G.J.; et al. Global Differences in the Management of Staphylococcus aureus Bacteremia: No International Standard of Care. Clin. Infect. Dis. 2023, 77, 1092–1101. [Google Scholar] [CrossRef]
- Lam, J.C.; Stokes, W. The Golden Grapes of Wrath—Staphylococcus aureus Bacteremia: A Clinical Review. Am. J. Med. 2023, 136, 19–26. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeon, M.; Jang, S.; Mun, S.J. Factors for mortality in patients with persistent Staphylococcus aureus bacteremia: The importance of treatment response rather than bacteremia duration. J. Microbiol. Immunol. Infect. 2023, 56, 1007–1015. [Google Scholar] [CrossRef]
- Ramandinianto, S.C.; Khairullah, A.R.; Effendi, M.H. MecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas 2020, 21, 3562–3568. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Cuellar, E.; Tsuchiya, K.; Valle-Ríos, R.; Medina-Contreras, O. Differences in Biofilm Formation by Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Strains. Diseases 2023, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Lade, H.; Kim, J.S. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics 2023, 12, 1362. [Google Scholar] [CrossRef]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Ocloo, R.; Nyasinga, J.; Munshi, Z.; Hamdy, A.; Marciniak, T.; Soundararajan, M.; Newton-Foot, M.; Ziebuhr, W.; Shittu, A.; Revathi, G.; et al. Epidemiology and antimicrobial resistance of staphylococci other than Staphylococcus aureus from domestic animals and livestock in Africa: A systematic review. Front. Vet. Sci. 2022, 9, 1059054. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Shimizu, M.; Mihara, T.; Ohara, J.; Inoue, K.; Kinoshita, M.; Sawa, T. Relationship between mortality and molecular epidemiology of methicillin-resistant Staphylococcus aureus bacteremia. PLoS ONE 2022, 17, e0271115. [Google Scholar] [CrossRef]
- Shambat, S.; Nadig, S.; Prabhakara, S.; Bes, M.; Etienne, J.; Arakere, G. Clonal complexes and virulence factors of Staphylococcus aureus from several cities in India. BMC Microbiol. 2012, 12, 64. [Google Scholar] [CrossRef]
- Chongtrakool, P.; Ito, T.; Ma, X.X.; Kondo, Y.; Trakulsomboon, S.; Tiensasitorn, C.; Jamklang, M.; Chavalit, T.; Song, J.H.; Hiramatsu, K. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: A proposal for a new nomenclature for SCCmec elements. Antimicrob. Agents Chemother. 2006, 50, 1001–1012. [Google Scholar] [CrossRef]
- Tormo, M.; Úbeda, C.; Martí, M.; Maiques, E.; Cucarella, C.; Valle, J.; Foster, T.J.; Lasa, Í.; Penadés, J.R. Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology 2007, 153, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm Formation in Acinetobacter Baumannii: Genotype-Phenotype Correlation. Molecules 2019, 24, 1849. [Google Scholar] [CrossRef] [PubMed]
- Al-shimmary, S.; Ahmed, S.M.; Abdullah, N.; Almohaidi, A. The Role of Genetic Variation for icaA Gene Staphylococcus aureus in Producing Biofilm. Hospital 2021, 3, 4. [Google Scholar] [CrossRef]
- Mir, Z.; Nodeh Farahani, N.; Abbasian, S.; Alinejad, F.; Sattarzadeh, M.; Pouriran, R.; Dahmardehei, M.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The prevalence of exotoxins, adhesion, and biofilm-related genes in Staphylococcus aureus isolates from the main burn center of Tehran, Iran. Iran. J. Basic. Med. Sci. 2019, 22, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Rahman, H.; Qasim, M.; Nawab, J.; Alzahrani, K.J.; Alsharif, K.F.; Alzahrani, F.M. Staphylococcus epidermidis Pathogenesis: Interplay of icaADBC Operon and MSCRAMMs in Biofilm Formation of Isolates from Pediatric Bacteremia in Peshawar, Pakistan. Medicina 2022, 58, 1510. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, A.I.; Himsawi, N.; Abu-Raideh, J.; Salameh, M.A.; Al-Tamimi, M.; Al Haj Mahmoud, S.; Saleh, T. Status of Biofilm-Forming Genes among Jordanian Nasal Carriers of Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus. Iran. Biomed. J. 2020, 24, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Hisatsune, J.; Kutsuno, S.; Sugai, M. New Molecular Mechanism of Superbiofilm Elaboration in a Staphylococcus aureus Clinical Strain. Microbiol. Spectr. 2023, 11, e0442522. [Google Scholar] [CrossRef]
- Seethalakshmi, P.S.; Rajeev, R.; Kiran, G.S.; Selvin, J. Promising treatment strategies to combat Staphylococcus aureus biofilm infections: An updated review. Biofouling 2020, 36, 1159–1181. [Google Scholar] [CrossRef]
- Rodríguez-Acelas, A.L.; de Abreu Almeida, M.; Schmarczek Figueiredo, M.; Monteiro Mantovani, V.; Mattiello, R.; Cañon-Montañez, W. Validity and reliability of the RAC adult infection risk scale: A new instrument to measure healthcare-associated infection risk. Res. Nurs. Health 2021, 44, 672–680. [Google Scholar] [CrossRef]
- Firdausy, A.F.; Walidah, Z.; Mufidah, K.; Rahmadhany, A.N.; Ningrum, N.D.; Adila, A. Antimicrobial activity of metabolites produced by novel coagulase-negative Staphylococ CI (CNS) isolated from fermented dairy products in Malang, Indonesia. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e9200. [Google Scholar] [CrossRef]
- Córdova-Espinoza, M.G.; Giono-Cerezo, S.; Sierra-Atanacio, E.G.; Escamilla-Gutiérrez, A.; Carrillo-Tapia, E.; Carrillo-Vázquez, L.I.; Mendoza-Pérez, F.; Leyte-Lugo, M.; González-Vázquez, R.; Mayorga-Reyes, L. Isolation and Identification of Multidrug-Resistant Klebsiella pneumoniae Clones from the Hospital Environment. Pathogens 2023, 12, 634. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Martínez, C.; Juárez, R.I.; Téllez, R.; Paredes, M.A.; Herrera, M.D.R.; Giono, S. Methicillin resistance and biofilm production in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus in México. Biomedica 2019, 39, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Matono, T.; Nagashima, M.; Mezaki, K.; Motohashi, A.; Kutsuna, S.; Hayakawa, K.; Ohmagari, N.; Kaku, M. Molecular epidemiology of β-lactamase production in penicillin-susceptible Staphylococcus aureus under high-susceptibility conditions. J. Infect. Chemother. 2018, 24, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Diemond-Hernández, B.; Solórzano-Santos, F.; Leaños-Miranda, B.; Peregrino-Bejarano, L.; Miranda-Novales, G. Production of icaADBC-encoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with Staphylococcal device-related infections. BMC Infect. Dis. 2010, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Martins, K.B.; Faccioli, P.Y.; Bonesso, M.F.; Fernandes, S.; Oliveira, A.A.; Dantas, A.; Zafalon, L.F.; Cunha, M. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. J. Dairy. Sci. 2017, 100, 2184–2195. [Google Scholar] [CrossRef] [PubMed]
- García-Barreto, A.A. Biofilm de Staphylococcus spp. de Origen Intrahospitalario: Genes asociados (Tesis); Instituto Politécnico Nacional: Mexico City, México, 2010. [Google Scholar]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef]
- Shokravi, Z.; Haseli, M.; Mehrad, L.; Ramazani, A. Distribution of Staphylococcal cassette chromosome mecA (SCCmec) types among coagulase-negative Staphylococci isolates from healthcare workers in the North-West of Iran. Iran. J. Basic. Med. Sci. 2020, 23, 1489–1493. [Google Scholar] [CrossRef]
- Humphries Romney, M.; Magnano, P.; Burnham Carey-Ann, D.; Dien Bard, J.; Dingle Tanis, C.; Callan, K.; Westblade Lars, F. Evaluation of Surrogate Tests for the Presence of mecA-Mediated Methicillin Resistance in Staphylococcus capitis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus warneri. J. Clin. Microbiol. 2020, 59, e02290-20. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Park, M.D.; Otto, M. Host Response to Staphylococcus epidermidis Colonization and Infections. Front. Cell Infect. Microbiol. 2017, 7, 90. [Google Scholar] [CrossRef]
- Oliveira, F.; Rohde, H.; Vilanova, M.; Cerca, N. Fighting Staphylococcus epidermidis Biofilm-Associated Infections: Can Iron Be the Key to Success? Front. Cell Infect. Microbiol. 2021, 11, 798563. [Google Scholar] [CrossRef] [PubMed]
- Eltwisy, H.O.; Twisy, H.O.; Hafez, M.H.; Sayed, I.M.; El-Mokhtar, M.A. Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms 2022, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Uddin, O.; Hurst, J.; Alkayali, T.; Schmalzle, S.A. Staphylococcus hominis cellulitis and bacteremia associated with surgical clips. IDCases 2022, 27, e01436. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, L.; Midic, D.; Eigendorff, F.; Malouhi, A.; Theis, B.; Kißler, H.; Rödel, J.; Prims, F.; Hochhaus, A.; Scholl, S.; et al. Staphylococcus intermedius infection with splenic abscesses in a patient with acute lymphoblastic leukemia. Ann. Hematol. 2023, 102, 1609–1611. [Google Scholar] [CrossRef]
- Hur, J.; Lee, A.; Hong, J.; Jo, W.Y.; Cho, O.H.; Kim, S.; Bae, I.G. Staphylococcus saprophyticus Bacteremia originating from Urinary Tract Infections: A Case Report and Literature Review. Infect. Chemother. 2016, 48, 136–139. [Google Scholar] [CrossRef]
- Junaidi, N.; Shakrin, N.; Desa, M.N.M.; Yunus, W. Dissemination Pattern of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus and Community-Acquired MRSA Isolates from Malaysian Hospitals: A Review from a Molecular Perspective. Malays. J. Med. Sci. 2023, 30, 26–41. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Wozniak, D.J.; Stoodley, P.; Hall-Stoodley, L. Prevention and treatment of Staphylococcus aureus biofilms. Expert. Rev. Anti Infect. Ther. 2015, 13, 1499–1516. [Google Scholar] [CrossRef]
- Elhassan, M.M.; Ozbak, H.A.; Hemeg, H.A.; Elmekki, M.A.; Ahmed, L.M. Absence of the mecA Gene in Methicillin Resistant Staphylococcus aureus Isolated from Different Clinical Specimens in Shendi City, Sudan. Biomed. Res. Int. 2015, 2015, 895860. [Google Scholar] [CrossRef]
- Alghamdi, B.A.; Al-Johani, I.; Al-Shamrani, J.M.; Alshamrani, H.M.; Al-Otaibi, B.G.; Almazmomi, K.; Yusof, N.Y. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [Google Scholar] [CrossRef] [PubMed]
- Arrizubieta, M.a.J.s.; Toledo-Arana, A.; Amorena, B.; Penadés, J.R.; Lasa, I. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J. Bacteriol. 2004, 186, 7490–7498. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Fang, X.; Lasa, I. Revisiting Bap multidomain protein: More than sticking bacteria together. Front. Microbiol. 2020, 11, 613581. [Google Scholar] [CrossRef] [PubMed]
- Sáinz-Rodríguez, R.; de Toro-Peinado, I.; Valverde-Troya, M.; Bermúdez Ruíz, M.P.; Palop-Borrás, B. Evaluation of a rapid assay for detection of PBP2a Staphylococcus aureus. Rev. Esp. Quimioter. 2019, 32, 370–374. [Google Scholar] [PubMed]
- López-Jácome, L.E.; Chávez-Heres, T.; Becerra-Lobato, N.; García-Hernández, M.d.L.; Vanegas-Rodríguez, E.S.; Colin-Castro, C.A.; Hernández-Durán, M.; Cruz-Arenas, E.; Cerón-González, G.; Cervantes-Hernández, M.I.; et al. Microbiology and Infection Profile of Electric Burned Patients in a Referral Burn Hospital in Mexico City. J. Burn. Care Res. 2020, 41, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.T.; Mata, Y.C.O.; Díaz, D.I.O.; Damián, L.L.; Salgado, J.P.; Forero, A.F.; Ledezma, J.C.R. Portadores asintomáticos de Staphylococcus aureus meticilino resistentes (MRSA) en pescadores y horticultores de Guerrero, México. J. Negat. No Posit. Results 2020, 5, 1482–1489. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Colín-Castro, C.A.; Hernández-Durán, M.; López-Jácome, L.E.; Franco-Cendejas, R. Staphylococcus epidermidis small colony variants, clinically significant quiescent threats for patients with prosthetic joint infection. Microbes Infect. 2021, 23, 104854. [Google Scholar] [CrossRef]
- Cabrera-Contreras, R.; Santamaría, R.I.; Bustos, P.; Martínez-Flores, I.; Meléndez, E.; Morelos, R.; Barbosa-Amezcua, M.; González-Covarrubias, V.; Silva-Herzog, E.; Soberón, X. Genomic diversity of prevalent Staphylococcus epidermidis multidrug-resistant strains isolated from a Children’s Hospital in México City in an eight-years survey. PeerJ Preprints 2019, 20, e8068. [Google Scholar] [CrossRef]
- Martínez-Santos, V.I.; Torres-Añorve, D.A.; Echániz-Aviles, G.; Parra-Rojas, I.; Ramírez-Peralta, A.; Castro-Alarcón, N. Characterization of Staphylococcus epidermidis clinical isolates from hospitalized patients with bloodstream infection obtained in two time periods. PeerJ 2022, 10, e14030. [Google Scholar] [CrossRef]
- Moles, L.; Gómez, M.; Moroder, E.; Bustos, G.; Melgar, A.; del Campo, R.; Rodríguez, J.M. Staphylococcus epidermidis in feedings and feces of preterm neonates. PLoS ONE 2020, 15, e0227823. [Google Scholar] [CrossRef]
- Lee, J.Y.H.; Monk, I.R.; Gonçalves da Silva, A.; Seemann, T.; Chua, K.Y.L.; Kearns, A.; Hill, R.; Woodford, N.; Bartels, M.D.; Strommenger, B.; et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018, 3, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Meléndez, A.; Morfín-Otero, R.; Villarreal-Treviño, L.; Camacho-Ortíz, A.; González-González, G.; Llaca-Díaz, J.; Rodríguez-Noriega, E.; Garza-González, E. Molecular epidemiology of coagulase-negative bloodstream isolates: Detection of Staphylococcus epidermidis ST2, ST7 and linezolid-resistant ST23. Braz. J. Infect. Dis. 2016, 20, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Peña, S.; Franco-Cendejas, R.; Salazar-Sáenz, B.; Rodríguez-Martínez, S.; Cancino-Díaz, M.E.; Cancino-Díaz, J.C. Prevalence and virulence factors of coagulase negative Staphylococcus causative of prosthetic joint infections in an orthopedic hospital of Mexico. Cirugia y cirujanos 2019, 87, 428–435. [Google Scholar] [CrossRef]
- Mendoza-Olazarán, S.; Morfin-Otero, R.; Rodríguez-Noriega, E.; Llaca-Díaz, J.; Flores-Treviño, S.; González-González, G.M.; Villarreal-Treviño, L.; Garza-González, E. Microbiological and Molecular Characterization of Staphylococcus hominis Isolates from Blood. PLoS ONE 2013, 8, e61161. [Google Scholar] [CrossRef]
- Jiménez-González, M.d.C.; Mejía-Aguirre, B.; Ascencio-Montiel, I.d.J. Microorganismos aislados en pacientes con mediastinitis poscirugía cardiaca en un hospital de cardiología de la Ciudad de México. Gaceta médica de México 2023, 159, 17–23. [Google Scholar] [CrossRef]
- Valenzuela, J.M.D.S.; Galindo, L.F.P.; Mancinas, Z.O.G.; Ponce, A.B.C.C.; Degante, C.F. A rare hepatic abscess by Streptococcus intermedius complicated with hepatobronchial fistula: A case report. Eur. J. Med. Case Rep. 2021, 5, 66–70. [Google Scholar] [CrossRef]
- Chen, H.; Yin, Y.; van Dorp, L.; Shaw, L.P.; Gao, H.; Acman, M.; Yuan, J.; Chen, F.; Sun, S.; Wang, X.; et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021, 13, 171. [Google Scholar] [CrossRef]
- Stewart, E.J.; Payne, D.E.; Ma, T.M.; VanEpps, J.S.; Boles, B.R.; Younger, J.G.; Solomon, M.J. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms. Appl. Environ. Microbiol. 2017, 83, e03483-16. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef] [PubMed]
- Ghaioumy, R.; Tabatabaeifar, F.; Mozafarinia, K.; Mianroodi, A.A.; Isaei, E.; Morones-Ramírez, J.R.; Afshari, S.A.K.; Kalantar-Neyestanaki, D. Biofilm formation and molecular analysis of intercellular adhesion gene cluster (icaABCD) among Staphylococcus aureus strains isolated from children with adenoiditis. Iran. J. Microbiol. 2021, 13, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Cucarella, C.; Tormo, M.Á.; Knecht, E.; Amorena, B.; Lasa, Í.; Foster, T.J.; Penadés, J.R. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun. 2002, 70, 3180–3186. [Google Scholar] [CrossRef] [PubMed]
- Contreras, J.J.; Sepúlveda, M. Bases moleculares de la infección asociada a implantes ortopédicos. Rev. Chil. Infectología 2014, 31, 309–322. [Google Scholar] [CrossRef]
- Seidl, K.; Goerke, C.; Wolz, C.; Mack, D.; Berger-Bächi, B.; Bischoff, M. Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 2008, 76, 2044–2050. [Google Scholar] [CrossRef]
- Namvar, A.E.; Asghari, B.; Ezzatifar, F.; Azizi, G.; Lari, A.R. Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hyg. Infect. Control 2013, 8, Doc03. [Google Scholar] [CrossRef] [PubMed]
- Eftekhar, F.; Dadaei, T. Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus. Iran. J. Basic. Med. Sci. 2011, 14, 132–136. [Google Scholar] [CrossRef]
- Francois, P.; Renzi, G.; Pittet, D.; Bento, M.; Lew, D.; Harbarth, S.; Vaudaux, P.; Schrenzel, J. A novel multiplex real-time PCR assay for rapid typing of major staphylococcal cassette chromosome mec elements. J. Clin. Microbiol. 2004, 42, 3309–3312. [Google Scholar] [CrossRef]
- Speziale, P.; Pietrocola, G.; Foster, T.J.; Geoghegan, J.A. Protein-based biofilm matrices in Staphylococci. Front. Cell. Infect. Microbiol. 2014, 4, 171. [Google Scholar] [CrossRef]
- Alexander, J.A.N.; Worrall, L.J.; Hu, J.; Vuckovic, M.; Satishkumar, N.; Poon, R.; Sobhanifar, S.; Rosell, F.I.; Jenkins, J.; Chiang, D.; et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 2023, 613, 375–382. [Google Scholar] [CrossRef]
- Bilyk, B.L.; Panchal, V.V.; Tinajero-Trejo, M.; Hobbs, J.K.; Foster, S.J. An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 2022, 86, e0015921. [Google Scholar] [CrossRef]
- Bush, K.; Bradford Patricia, A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.A.; Abd El Fadeal, N.M.; Shehata, A.S. In vitro activities of vancomycin and linezolid against biofilm-producing methicillin-resistant staphylococci species isolated from catheter-related bloodstream infections from an Egyptian tertiary hospital. J. Med. Microbiol. 2017, 66, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, A.; Sachu, A.; Balakrishnan, A.; Vasudevan, A.; Balakrishnan, S.; Vasudevapanicker, J. Comparison of PCR and phenotypic methods for the detection of methicillin resistant Staphylococcus aureus. Iran. J. Microbiol. 2021, 13, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mediavilla, J.R.; Oliveira, D.C.; Willey, B.M.; de Lencastre, H.; Kreiswirth, B.N. Multiplex real-time PCR for rapid Staphylococcal cassette chromosome mec typing. J. Clin. Microbiol. 2009, 47, 3692–3706. [Google Scholar] [CrossRef]
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Maharjan, S.; Ansari, M.; Maharjan, P.; Rai, K.R.; Sabina, K.C.; Kattel, H.P.; Rai, G.; Rai, S.K. Phenotypic detection of methicillin resistance, biofilm production, and inducible clindamycin resistance in Staphylococcus aureus clinical isolates in Kathmandu, Nepal. Trop. Med. Health 2022, 50, 71. [Google Scholar] [CrossRef]
Gene | Sequence (5′-3′) | Annealing Temperature °C | PCR Product Size (bp) |
---|---|---|---|
icaA | F: CGTTGATCAAGATGCACC | 59.2 | 319 |
R: CCGCTTGCCATGTGTTG | 60.9 | ||
icaB | F: TGGATTAACTTTGATGATATGG | 54.3 | 409 |
R: AGGAAAAAGCTGTCACACC | 55.3 | ||
icaC | F: GGTCAATGGTATGGCTATTT | 54.1 | 148 |
R: CGAACAACACAGCGTTTC | 56.2 | ||
icaD | F: GGTCAAGCCCAGACAGAG | 56.7 | 150 |
R: GAAATTCATGACGAAAGTATC | 54.3 | ||
mecA | F: TGGCTATCGTGTCACAATCG | 60.3 | 310 |
R: CTGGAACTTGTTGAGCAGAG | 59.7 | ||
bap | F: GGCGATGGTAAGAATGATGG | 60.3 | 515 |
R: GCTGTTGAAGTTAATACTGTACCTGC | 59.7 |
Gene Type | Sequence (5′-3′) | Amplicon Size (bp) | Specificity |
---|---|---|---|
I | F: GCTTTAAAGAGTGTCGTTACAGG | 613 | SCCmec I |
R: GTTCTCTCATAGTATGACGTCC | |||
II | F: CGTTGAAGATGATGAAGCG | 398 | SCCmec II |
R: CGAAATCAATGGTTAATGGACC | |||
III | F: CCATATTGTGTACGATGCG | 280 | SCCmec III |
R: CCTTAGTTGTCGTAACAGATCG | |||
IVa | F: GCCTTATTCGAAGAAACCG | 776 | SCCmec IVa |
R: CTACTCTTCTGAAAAGCGTCG | |||
IVb | F: TCTGGAATTACTTCAGCTGC | 493 | SCCmec IVb |
R: AAACAATATTGCTCTCCCTC | |||
IVc | F: ACAATATTTGTATTATCGGAGAGC | 200 | SCCmec IVc |
R: TTGGTATGAGGTATTGCTGG | |||
IVd | F: CTCAAAATACGGACCCCAATACA | 881 | SCCmec IVd |
R: TGCTCCAGTAATTGCTAAAG | |||
V | F: GAACATTGTTACTTAAATGAGCG | 325 | SCCmec V |
R: TGAAAGTTGTACCCTTGACACC |
Biofilm Production | SCCmec Type | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MR % n | β-Lactamase % n | mecA % n | Low % n | Moderate % n | High % n | Total % n | I % n | II % n | III % n | IV % n | |
S. aureus | 86 | 100 | 96.8 | 24.3 | 45.9 | 29.72 | 46.20% | 3.22 | 45.16 | 22.5 | 16.1 |
32/37 | 32/32 | 31/32 | 9/37 | 17/37 | 11/37 | 37/80 | 1/31 | 14/31 | 7/31 | 5/31 | |
ica %/n | |||||||||||
A | 44.44 | 52.94 | 54.55 | ||||||||
4/9 | 9/17 | 6/11 | |||||||||
B | 44.44 | 47.06 | 54.55 | ||||||||
2/9 | 6/17 | 4/11 | |||||||||
C | 22.22 | 35.29 | 36.36 | ||||||||
1/9 | 4/17 | 3/11 | |||||||||
D | 11.11 | 23.53 | 27.27 | ||||||||
4/9 | 8/17 | 6/11 | |||||||||
SOSA | 83.7 | 75 | 94.4 | 9.3 | 39.5 | 51.11 | 53.80% | 0 | 38.23 | 38.23 | 14.7 |
36/43 | 27/36 | 34/36 | 4/43 | 17/43 | 22/43 | 43/80 | 0/34 | 13/34 | 13/34 | 5/34 | |
ica %/n | |||||||||||
A | 25 | 47.06 | 50 | ||||||||
1/4 | 8/17 | 11/22 | |||||||||
B | 25 | 35.29 | 45.44 | ||||||||
1/4 | 5/17 | 8/22 | |||||||||
C | 25 | 29.41 | 36.36 | ||||||||
1/4 | 0/17 | 5/22 | |||||||||
D | 25 | 0 | 27.73 | ||||||||
1/4 | 6/17 | 10/22 | |||||||||
Total | 85 | 86.7 | 95.5 | 16.2 | 42.5 | 41.2 | 1 | 1.54 | 41.54 | 30.7 | 15.4 |
68/80 | 59/68 | 65/68 | 13/80 | 34/80 | 33/80 | 80/80 | 1/65 | 27/65 | 20/65 | 10/65 |
Strain | MR | β-Lactamase | Biofilm | mecA | SSCmec | icaA | icaB | icaC | icaD |
---|---|---|---|---|---|---|---|---|---|
S. epidermidis (35/80) 44% | Resistance (28/35) 80% | NS (8/28) 23% | High (4/8) 50% | + | NA | − | − | − | − |
Type III | − | − | − | − | |||||
+ | + | + | + | ||||||
Moderate (3/8) 38% | + | Type II | − | − | − | − | |||
Type III | + | − | − | − | |||||
Type III | − | − | − | − | |||||
Low (1/8) 13% | + | Type III | + | + | + | + | |||
S (20/28) 57% | High (12/20) 60% | − | NA | + | + | − | + | ||
+ | Type III | − | − | − | − | ||||
Type II | − | − | − | − | |||||
+ | − | − | + | ||||||
+ | + | + | + | ||||||
Type III | − | − | − | − | |||||
+ | − | − | + | ||||||
+ | + | + | + | ||||||
Type IV | − | − | − | − | |||||
Moderate (7/20) 35% | + | Type II | − | − | − | − | |||
+ | + | − | + | ||||||
Type III | − | − | − | − | |||||
+ | + | − | + | ||||||
Type IV | − | − | − | − | |||||
+ | + | − | + | ||||||
Low (1/20) 5% | + | Type II | − | − | − | − | |||
Susceptible (7/35) 20% | NS (6/7) 17% | High (2/6) 33% | − | NA | − | − | − | − | |
+ | + | − | + | ||||||
Moderate (2/6) 33% | − | NA | − | − | − | − | |||
Low (2/6) 33% | − | NA | − | − | − | − | |||
S (1/7) 3% | Moderate (1/1) 100% | − | NA | + | − | − | − | ||
S. haemolyticus (4/80) 5% | Resistance (4/4) 100% | NS (1/4) 25% | High (1/1) 100% | + | Type III | + | + | + | + |
S (3/4) 75% | High (1/3) 33% | + | Type II | − | − | − | − | ||
Moderate (2/3) 67% | + | Type II | − | − | − | − | |||
+ | − | − | + | ||||||
S. hominis (2/80) 3% | Resistance (2/2) 100% | S (2/2) 100% | High (1/2) 50% | + | Type IV | + | + | + | + |
Moderate (1/2) 50% | + | Type IV | − | − | − | − | |||
S. intermedius (1/80) 1% | Resistance (1/1) 100% | NS (1/1) 100% | High (1/1) 100% | + | Type II | − | − | − | − |
S. saprophyticus (1/80) 1% | Resistance (1/1) 100% | S (1/1) 100% | Moderate (1/1) 100% | + | Type II | + | + | − | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Vázquez, R.; Córdova-Espinoza, M.G.; Escamilla-Gutiérrez, A.; Herrera-Cuevas, M.d.R.; González-Vázquez, R.; Esquivel-Campos, A.L.; López-Pelcastre, L.; Torres-Cubillas, W.; Mayorga-Reyes, L.; Mendoza-Pérez, F.; et al. Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation. Pathogens 2024, 13, 212. https://doi.org/10.3390/pathogens13030212
González-Vázquez R, Córdova-Espinoza MG, Escamilla-Gutiérrez A, Herrera-Cuevas MdR, González-Vázquez R, Esquivel-Campos AL, López-Pelcastre L, Torres-Cubillas W, Mayorga-Reyes L, Mendoza-Pérez F, et al. Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation. Pathogens. 2024; 13(3):212. https://doi.org/10.3390/pathogens13030212
Chicago/Turabian StyleGonzález-Vázquez, Rosa, María Guadalupe Córdova-Espinoza, Alejandro Escamilla-Gutiérrez, María del Rocío Herrera-Cuevas, Raquel González-Vázquez, Ana Laura Esquivel-Campos, Laura López-Pelcastre, Wendoline Torres-Cubillas, Lino Mayorga-Reyes, Felipe Mendoza-Pérez, and et al. 2024. "Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation" Pathogens 13, no. 3: 212. https://doi.org/10.3390/pathogens13030212
APA StyleGonzález-Vázquez, R., Córdova-Espinoza, M. G., Escamilla-Gutiérrez, A., Herrera-Cuevas, M. d. R., González-Vázquez, R., Esquivel-Campos, A. L., López-Pelcastre, L., Torres-Cubillas, W., Mayorga-Reyes, L., Mendoza-Pérez, F., Gutiérrez-Nava, M. A., & Giono-Cerezo, S. (2024). Detection of mecA Genes in Hospital-Acquired MRSA and SOSA Strains Associated with Biofilm Formation. Pathogens, 13(3), 212. https://doi.org/10.3390/pathogens13030212