Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience
Abstract
:1. Introduction
2. Materials and Methods
2.1. CoV-MAC-TED-Related Gene Set to Study Early Cellular Reprogramming in Olea Europaea
2.2. In Silico Gene Expression Analyses from Olive RNA-seq Data
2.3. Endophytes Identification in Olive RNA-seq Data
2.4. Data Treatment
3. Results and Discussion
3.1. Transcript Levels of RBOH, NR, and ADH2/GSNOR Indicated High Oxidative Stress in Healthy Adult Olive Trees and ROS/RNS Rebalancing under Xf-Infection. However, Higher Transcript Levels of SOD in cv. Ogliarola Signaled Higher Oxidative Stress in the Susceptible Cultivar in Xf-Infected Trees
3.2. Healthy and Xf-Infected Trees of cv. Leccino Were Distinguished from cv. Ogliarola by Transcript Levels of Regulatory Glycolysis-Related Enzymes and Enzymes Involved in Ethanol Fermentation
3.3. Transcript Accumulation of β-cas and the Relation of Transcript Levels from COX and AOX Marked Xf-Infection in Trees of cv. Leccino, but Not in cv. Ogliarola
3.4. Transcript Levels of AOX and QDH Indicated a Link between Alternative Respiration and Quinic Acid Synthesis
3.5. Xf-Infected Trees Indicated Gleichschaltung of AOX Genes’ Transcript Levels in Tolerant Cultivar, but Disturbed Transcript Profiles in Susceptible Cultivar
3.6. Transcript Levels of α-, β-, and γ-Tubulin, E2F, SNF and TOR Indicated Down-Regulated Cell Cycle Activity as a Common Response to Xf-Infection and Signifcant Positive Correlation between AOX and Energy Consumption
3.7. Under Xf-Infection, cv. Ogliarola Revealed Higher Transcript Levels for Fungal ITS2, RPB1 and Beta-Tub; Overall Bacterial 16S rRNA Transcript Levels Linked to Higher Xf-16S rRNA Transcription and Distinguished Individual Trees from Both Cultivars at Similar Xf-16S rRNA Transcript Levels
4. Conclusions and Perspectives
5. Dedication
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quetglas, B.; Olmo, D.; Nieto, A.; Borràs, D.; Adrover, F.; Pedrosa, A.; Montesinos, M.; de Dios García, J.; López, M.; Juan, A.; et al. Evaluation of Control Strategies for Xylella fastidiosa in the Balearic Islands. Microorganisms 2022, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Vergine, M.; Nicolì, F.; Sabella, E.; Aprile, A.; Negro, C.; Fanelli, V.; Savoia, M.A.; Montilon, V.; Susca, L.; et al. Screening of Olive Biodiversity Defines Genotypes Potentially Resistant to Xylella fastidiosa. Front. Plant Sci. 2021, 12, 723879. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.; Aprile, A.; De Bellis, L.; Luvisi, A. Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen. Front. Plant Sci. 2021, 12, 712452. [Google Scholar] [CrossRef] [PubMed]
- Cappetta, E.; Andolfo, G.; Di Matteo, A.; Ercolano, M.R. Empowering crop resilience to environmental multiple stress through the modulation of key response components. J Plant Physiol. 2020, 246–247, 153134. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cruz, A.; Aguirre-Liguori, J.; Massonnet, M.; Minio, A.; Zaccheo, M.; Cochetel, N.; Walker, A.; Riaz, S.; Zhou, Y.; Cantu, D.; et al. Multigenic resistance to Xylella fastidiosa in wild grapes (Vitis sps.) and its implications within a changing climate. Commun. Biol. 2023, 6, 580. [Google Scholar] [CrossRef] [PubMed]
- Roper, C.; Castro, C.; Ingel, B. Xylella fastidiosa: Bacterial parasitism with hallmarks of commensalism. Curr. Opin. Plant Biol. 2019, 50, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Giampetruzzi, A.; Baptista, P.; Morelli, M.; Cameirão, C.; Lino Neto, T.; Costa, D.; D’Attoma, G.; Abou Kubaa, R.; Altamura, G.; Saponari, M.; et al. Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens 2020, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.; Aziz, S.; Noceda, C.; Arnholdt-Schmitt, B. Major Complex Trait for Early De Novo Programming ‘CoV-MAC-TED’ Detected in Human Nasal Epithelial Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies. Vaccines 2021, 9, 1399. [Google Scholar] [CrossRef]
- Costa, J.H.; Aziz, S.; Noceda, C.; Arnholdt-Schmitt, B. Transcriptome data from human nasal epithelial cells infected by H3N2 influenza virus indicate early unbalanced ROS/RNA levels, temporarily increased aerobic fermentation linked to enhanced α-tubulin and rapid energy-dependent IRF9-marked immunization. bioRxiv 2021. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B.; Mohanapriya, G.; Bharadwaj, R.; Noceda, C.; Macedo, E.S.; Sathishkumar, R.; Gupta, K.J.; Sircar, D.; Kumar, S.R.; Srivastava, S.; et al. From Plant Survival Under Severe Stress to Anti-Viral Human Defense-A Perspective That Calls for Common Efforts. Front. Immunol. 2021, 12, 673723. [Google Scholar] [CrossRef]
- Costa, J.H.; Mohanapriya, G.; Bharadwaj, R.; Noceda, C.; Thiers, K.L.L.; Aziz, S.; Srivastava, S.; Oliveira, M.; Gupta, K.J.; Kumari, A.; et al. ROS/RNS Balancing, Aerobic Fermentation Regulation and Cell Cycle Control-a Complex Early Trait (‘CoV-MAC-TED’) for Combating SARS-CoV-2-Induced Cell Reprogramming. Front. Immunol. 2021, 12, 673692. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Germano, T.A.; Thiers, K.L.L.; Batista, M.C.; de Souza Miranda, R.; Arnholdt-Schmitt, B.; Costa, J.H. Transcriptome Analyses in a Selected Gene Set Indicate Alternative Oxidase (AOX) and Early Enhanced Fermentation as Critical for Salinity Tolerance in Rice. Plants 2022, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Arnholdt-Schmitt, B.; Aziz, S.; Costa, J.H. Diversity Control in Early Transcribed ROS/RNS-balancing Genes: A Common Mechanism for Healthy Resilience? Innov. Digit. Health Diagn. Biomark. 2022, 2, 56–59. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B.; Aziz, S.; Costa, J.H. Efficient Rebalancing of ROS Levels in Plants Links to Temporarily Enhanced Aerobic Fermentation, Distinct Cell Restructuration, and Resilience in Field. Innov. Digit. Health Diagn. Biomark. 2022, 2, 60–63. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B.; Aziz, S.; Costa, J.H. Allelic Gene Polymorphisms Suspected to Diversify the Individual Early Metabolic Response Upon Influenza H3N2 and SARS-CoV-2 Infections. Innov. Digit. Health Diagn. Biomark. 2022, 2, 53–55. [Google Scholar] [CrossRef]
- Rapicavoli, J.N.; Blanco-Ulate, B.; Muszyński, A.; Figueroa-Balderas, R.; Morales-Cruz, A.; Azadi, P.; Dobruchowska, J.M.; Castro, C.; Cantu, D.; Roper, M.C. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa. Nat. Commun. 2018, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Ingel, B.; Reyes, C.; Massonnet, M.; Boudreau, B.; Sun, Y.; Sun, Q.; McElrone, A.J.; Cantu, D.; Roper, M.C. Xylella fastidiosa causes transcriptional shifts that precede tylose formation and starch depletion in xylem. Mol. Plant Pathol. 2021, 22, 175–188. [Google Scholar] [CrossRef] [PubMed]
- De Pascali, M.; Vergine, M.; Negro, C.; Greco, D.; Vita, F.; Sabella, E.; De Bellis, L.; Luvisi, A. Xylella fastidiosa and Drought Stress in Olive Trees: A Complex Relationship Mediated by Soluble Sugars. Biology 2022, 11, 112. [Google Scholar] [CrossRef]
- Andersen, P.A.; French, W.J. Biophysical characteristics of peach trees infected with phony peach disease. Physiol. Mol. Plant Pathol. 1987, 31, 25–40. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Fei, J.; Rost, T.L.; Matthews, M.A. Leaf scorch symptoms are not correlated with bacterial populations during Pierce’s disease. J. Exp. Bot. 2007, 58, 4037–4046. [Google Scholar] [CrossRef]
- Shriner, A.D.; Andersen, P.C. Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media. Curr. Microbiol. 2014, 69, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Yadeta, K.A.; JThomma, B.P. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [PubMed]
- Bossinger, G.; Spokevicius, A.V. Sector analysis reveals patterns of cambium differentiation in poplar stems. J. Exp. Bot. 2018, 69, 4339–4348. [Google Scholar] [CrossRef] [PubMed]
- Mäkilä, R.; Wybouw, B.; Smetana, O.; Vainio, L.; Solé-Gil, A.; Lyu, M.; Ye, L.; Wang, X.; Siligato, R.; Jenness, M.K.; et al. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. Nat. Plants 2023, 9, 631–644. [Google Scholar] [CrossRef]
- Tung, C.C.; Kuo, S.C.; Yang, C.L.; Yu, J.H.; Huang, C.E.; Liou, P.C.; Sun, Y.H.; Shuai, P.; Su, J.C.; Ku, C.; et al. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biol. 2023, 24, 3. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Lu, X.; Zhang, M.; Wang, J.; Liao, S.; Guo, X.; Zhao, C. A deep learning-integrated phenotyping pipeline for vascular bundle phenotypes and its application in evaluating sap flow in the maize stem. Crop J. 2022, 10, 1424–1434. [Google Scholar] [CrossRef]
- Reusche, M.; Thole, K.; Janz, D.; Truskina, J.; Rindfleisch, S.; Drübert, C.; Polle, A.; Lipka, V.; Teichmann, T. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 2012, 24, 3823–3837. [Google Scholar] [CrossRef]
- Lebovka, I.; Hay Mele, B.; Liu, X.; Zakieva, A.; Schlamp, T.; Gursanscky, N.R.; Merks, R.M.H.; Großeholz, R.; Greb, T. Computational modeling of cambium activity provides a regulatory framework for simulating radial plant growth. Elife 2023, 12, e66627. [Google Scholar] [CrossRef]
- Kimmerer, T.W.; Stringer, M.A. Alcohol dehydrogenase and ethanol in the stems of trees: Evidence for anaerobic metabolism in the vascular cambium. Plant Physiol. 1988, 87, 693–697. [Google Scholar] [CrossRef]
- Haas, A.S.; Shi, D.; Greb, T. Cell Fate Decisions within the Vascular Cambium-Initiating Wood and Bast Formation. Front. Plant Sci. 2022, 13, 864422. [Google Scholar] [CrossRef]
- Sabella, E.; Aprile, A.; Genga, A.; Siciliano, T.; Nutricati, E.; Nicolì, F.; Vergine, M.; Negro, C.; De Bellis, L.; Luvisi, A. Xylem cavitation susceptibility and refilling mechanisms in olive trees infected by Xylella fastidiosa. Sci. Rep. 2019, 9, 9602. [Google Scholar] [CrossRef]
- Jlilat, A.; Ragone, R.; Gualano, S.; Santoro, F.; Gallo, V.; Varvaro, L.; Mastrorilli, P.; Saponari, M.; Nigro, F.; D’Onghia, A.M. A non-targeted metabolomics study on Xylella fastidiosa infected olive plants grown under controlled conditions. Sci. Rep. 2021, 11, 1070. [Google Scholar] [CrossRef]
- Wallis, C.M.; Chen, J. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa. Phytopathology 2012, 102, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Luvisi, A.; Aprile, A.; Sabella, E.; Vergine, M.; Nicolì, F.; Nutricati, E.; Miceli, A.; Negro, C.; De Bellis, L. Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: Profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopathol. Mediterr. 2017, 56, 259–273. [Google Scholar]
- Sabella, E.; Luvisi, A.; Aprile, A.; Negro, C.; Vergine, M.; Nicolì, F.; Miceli, A.; De Bellis, L. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. J. Plant Physiol. 2018, 220, 60–68. [Google Scholar] [CrossRef]
- Vergine, M.; Pavan, S.; Negro, C.; Nicolì, F.; Greco, D.; Sabella, E.; Aprile, A.; Ricciardi, L.; De Bellis, L.; Luvisi, A. Phenolic characterization of olive genotypes potentially resistant to Xylella. J. Plant Interact. 2022, 17, 462–474. [Google Scholar] [CrossRef]
- Hilal, M.; Castagnaro, A.; Moreno, H.; Massa, E.M. Specific localization of the respiratory alternative oxidase in meristematic and xylematic tissues from developing soybean roots and hypocotyls. Plant Physiol. 1997, 115, 1499–1503. [Google Scholar] [CrossRef]
- Hilal, M.; Zenoff, A.M.; Ponessa, G.; Moreno, H.; Massa, E.M. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots. Plant Physiol. 1998, 117, 695–701. [Google Scholar] [CrossRef]
- Clifton, R.; Lister, R.; Parker, K.L.; Sappl, P.G.; Elhafez, D.; Millar, A.H.; Day, D.A.; Whelan, J. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol. 2005, 58, 193–212. [Google Scholar] [CrossRef]
- Bharadwaj, R.; Noceda, C.; Mohanapriya, G.; Kumar, S.R.; Thiers, K.L.L.; Costa, J.H.; Macedo, E.S.; Kumari, A.; Gupta, K.J.; Srivastava, S.; et al. Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness. Front. Plant Sci. 2021, 12, 686274. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B. Efficient cell reprogramming as a target for functional-marker strategies? Towards new perspectives in applied plant-nutrition research. J. Plant Nutr. Soil Sci. 2005, 168, 617–624. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B. Functional markers and a ‘systemic strategy’: Convergency between plant breeding, plant nutrition and molecular biology. Plant Physiol. Biochem. 2005, 43, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Arnholdt-Schmitt, B.; Costa, J.H.; de Melo, D.F. AOX—A functional marker for efficient cell reprogramming under stress? Trends Plant Sci. 2006, 11, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Arnholdt-Schmitt, B.; Valadas, V.; Döring, M. Functional marker development is challenged by the ubiquity of endophytes-a practical perspective. Brief. Funct. Genom. 2016, 15, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Arnholdt-Schmitt, B.; Hansen, L.D.; Nogales, A. Calorespirometry, oxygen isotope analysis and functional-marker-assisted selection (‘CalOxy-FMAS’) for genotype screening: A novel concept and tool kit for predicting stable plant growth performance and functional marker identification. Brief. Funct. Genom. 2016, 15, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Santos Macedo, E.; Sircar, D.; Cardoso, H.G.; Peixe, A.; Arnholdt-Schmitt, B. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism. Plant Cell Rep. 2012, 31, 1581–1590. [Google Scholar] [CrossRef]
- Sircar, D.; Cardoso, H.G.; Mukherjee, C.; Mitra, A.; Arnholdt-Schmitt, B. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. J. Plant Physiol. 2012, 169, 657–663. [Google Scholar] [CrossRef]
- Giampetruzzi, A.; Morelli, M.; Saponari, M.; Loconsole, G.; Chiumenti, M.; Boscia, D.; Savino, V.N.; Martelli, G.P.; Saldarelli, P. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom. 2016, 17, 475. [Google Scholar] [CrossRef]
- Boratyn, G.M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinform. 2019, 20, 405. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Ankenbrand, M.J.; Keller, A.; Wolf, M.; Schultz, J.; Förster, F. ITS2 Database V: Twice as Much. Mol. Biol. Evol. 2015, 32, 3030–3032. [Google Scholar] [CrossRef]
- Hirschauer, N.; Becker, C. Paradigmenwechsel Warum Statistische Signifikanztests Abgeschafft Werden Sollten. Signifikanztests Forsch. Lehre 2020, 6, 20. [Google Scholar]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on P-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a World Beyond “P < 0.05”. Am. Stat. 2019, 73, 1–19. [Google Scholar] [CrossRef]
- Haaf, J.M.; Ly, A.; Wagenmakers, E.J. Retire Significance, But Still Test Hypotheses. Nature 2019, 567, 461. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Pazos-Rojas, L.A.; Muñoz-Arenas, L.C.; Rodríguez-Andrade, O.; López-Cruz, L.E.; López-Ortega, O.; Lopes-Olivares, F.; Luna-Suarez, S.; Baez, A.; Morales-García, Y.E.; Quintero-Hernández, V.; et al. Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS ONE 2019, 14, e0219554. [Google Scholar] [CrossRef] [PubMed]
- Pazos-Rojas, L.A.; Cuellar-Sánchez, A.; Romero-Cerón, A.L.; Rivera-Urbalejo, A.; Van Dillewijn, P.; Luna-Vital, D.A.; Muñoz-Rojas, J.; Morales-García, Y.E.; Bustillos-Cristales, M.d.R. The Viable but Non-Culturable (VBNC) State, a Poorly Explored Aspect of Beneficial Bacteria. Microorganisms 2024, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Fujishige, N.; Nishimura, N.; Iuchi, S.; Kunii, T.; Shinozaki, K.; Hirayama, T. A novel Arabidopsis gene required for ethanol tolerance is conserved among plants and archaea. Plant Cell Physiol. 2004, 45, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Fujishige, N.; Kunii, T.; Nishimura, N.; Iuchi, S.; Shinozaki, K. A novel ethanol-hypersensitive mutant of Arabidopsis. Plant Cell Physiol. 2004, 45, 703–711. [Google Scholar] [CrossRef]
- Wydau, S.; Ferri-Fioni, M.L.; Blanquet, S.; Plateau, P. GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase. Nucleic Acids Res. 2007, 35, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.L.; Liu, Y.; Liu, C.J.; Zhu, F.; He, Z.Q.; Xu, F. Overexpressed β-cyanoalanine synthase functions with alternative oxidase to improve tobacco resistance to salt stress by alleviating oxidative damage. FEBS Lett. 2020, 594, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Ansari, M.W.; Kaula, B.C.; Rao, Y.R.; Meselmani, M.A.; Siddiqui, Z.H.; Brajendra Kumar, S.B.; Rani, V.; Sarkar, A.; Rakwal, R.; et al. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. Plant Sci. 2023, 334, 111736. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.H.; McDonald, A.E.; Arnholdt-Schmitt, B.; Fernandes de Melo, D. A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion 2014, 19 Pt B, 172–183. [Google Scholar] [CrossRef]
- Velada, I.; Grzebelus, D.; Lousa, D.; MSoares, C.; Santos Macedo, E.; Peixe, A.; Arnholdt-Schmitt, B.; Cardoso, H.G. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. Int. J. Mol. Sci. 2018, 19, 597. [Google Scholar] [CrossRef]
- Santos Macedo, E.; Cardoso, H.G.; Hernández, A.; Peixe, A.A.; Polidoros, A.; Ferreira, A.; Cordeiro, A.; Arnholdt-Schmitt, B. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiol. Plant. 2009, 137, 532–552. [Google Scholar] [CrossRef]
- Corvaisier, M.; Zhou, J.; Malycheva, D.; Cornella, N.; Chioureas, D.; Gustafsson, N.M.S.; Rosselló, C.A.; Ayora, S.; Li, T.; Ekström-Holka, K.; et al. The γ-tubulin meshwork assists in the recruitment of PCNA to chromatin in mammalian cells. Commun. Biol. 2021, 4, 767. [Google Scholar] [CrossRef]
- Wethekam, L.C.; Moore, J.K. Tubulin isotype regulation maintains asymmetric requirement for α-tubulin over β-tubulin. J. Cell Biol. 2023, 222, e202202102. [Google Scholar] [CrossRef]
- Anguita-Maeso, M.; Ares-Yebra, A.; Haro, C.; Román-Écija, M.; Olivares-García, C.; Costa, J.; Marco-Noales, E.; Ferrer, A.; Navas-Cortés, J.A.; Landa, B.B. Xylella fastidiosa Infection Reshapes Microbial Composition and Network Associations in the Xylem of Almond Trees. Front. Microbiol. 2022, 13, 866085. [Google Scholar] [CrossRef]
- Duke, S.O. Why are there no widely successful microbial bioherbicides for weed management in crops? Pest Manag. Sci. 2024, 80, 56–64. [Google Scholar] [CrossRef]
- Duke, S.O.; Marrone, P.G.; Vurro, M. The future of microbial bioherbicides. Pest Manag. Sci. 2024, 80, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Cernava, T.; Berg, G. The emergence of disease-preventing bacteria within the plant microbiota. Environ. Microbiol. 2022, 24, 3259–3263. [Google Scholar] [CrossRef]
- Poudel, M.; Mendes, R.; Costa, L.A.S.; Bueno, C.G.; Meng, Y.; Folimonova, S.Y.; Garrett, K.A.; Martins, S.J. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front. Microbiol. 2021, 12, 743512. [Google Scholar] [CrossRef]
- Nogales, A.; Nobre, T.; Valadas, V.; Ragonezi, C.; Döring, M.; Polidoros, A.; Arnholdt-Schmitt, B. Can functional hologenomics aid tackling current challenges in plant breeding? Brief. Funct. Genom. 2016, 15, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Kreuzwieser, J.; Harren, F.J.M.; Laarhoven, L.J.J.; Boamfa, I.; Te Lintel-Hekkert, S.; Scheerer, U.; Hüglin, C.; Rennenberg, H. Acetaldehyde emission by the leaves of trees–correlation with physiological and environmental parameters. Physiol. Plant. 2001, 113, 41–49. [Google Scholar] [CrossRef]
- Werner, C.; Fasbender, L.; Romek, K.M.; Yáñez-Serrano, A.M.; Kreuzwieser, J. Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO2 Assimilation, Respiration, and VOC Emissions. Front. Plant Sci. 2020, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Mohanapriya, G.; Bharadwaj, R.; Noceda, C.; Costa, J.H.; Kumar, S.R.; Sathishkumar, R.; Thiers, K.L.L.; Santos Macedo, E.; Silva, S.; Annicchiarico, P.; et al. Alternative Oxidase (AOX) Senses Stress Levels to Coordinate Auxin-Induced Reprogramming From Seed Germination to Somatic Embryogenesis-A Role Relevant for Seed Vigor Prediction and Plant Robustness. Front. Plant Sci. 2019, 10, 1134. [Google Scholar] [CrossRef]
- Vicente, C.S.L.; Costa, J.H.; Arnhold-Schmitt, B. Bacterial AOX: A provocative lack of interest! In Alternative Respiratory Pathways in Higher Plants; Gupta, K.G., Mur, L.A.J., Neelwarne, B., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; ISBN 978-1-118-79046-5. [Google Scholar]
- Szibor, M.; Schenkl, C.; Barsottini, M.R.O.; Young, L.; Moore, A.L. Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem. J. 2022, 479, 1337–1359. [Google Scholar] [CrossRef]
- Dunn, A.K. Alternative oxidase in bacteria. Biochim. Biophys. Acta Bioenerg. 2023, 1864, 148929. [Google Scholar] [CrossRef]
- Mercy, L.; Lucic-Mercy, E.; Nogales, A.; Poghosyan, A.; Schneider, C.; Arnholdt-Schmitt, B. A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis. Front. Plant Sci. 2017, 8, 417. [Google Scholar] [CrossRef]
- Li, Z.; Wen, W.; Qin, M.; He, Y.; Xu, D.; Li, L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front. Microbiol. 2022, 13, 928967. [Google Scholar] [CrossRef]
- Valadas, V.; Espada, M.; Nobre, T.; Mota, M.; Arnholdt-Schmitt, B. AOX in parasitic nematodes–A matter of lifestyle? Section B: From AOX diversity to functional marker development. In Alternative Respiratory Pathways in Higher Plants; Gupta, K.J., Mur, L.A.J., Neelwarne, B., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2015; Chapter 14.4; pp. 315–318. [Google Scholar]
- Simões, R.; Fortes, Q.; Patricio, H.; Branco, J.; Mota, M.; Pimentel, C.; Miranda, I.; Pereira, H. Phytochemical profile of secondary metabolites in the phloem of mature Pinus pinaster trees attacked by the pine wood nematode. Phytoparasitica 2024, 52, 20. [Google Scholar] [CrossRef]
- Atkin, O.K.; Sherlock, D.; Fitter, A.H.; Jarvis, S.; Hughes, J.K.; Campbell, C.; Hurry, V.; Hodge, A. Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. New Phytol. 2009, 182, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Nogales, A.; Hansen, L.D.; Santos, F.; Rato, A.E.; Cardoso, H. Exploring the Applicability of Calorespirometry to Assess Seed Metabolic Stability Upon Temperature Stress Conditions-Pisum sativum L. Used as a Case Study. Front. Plant Sci. 2022, 13, 827117. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Nogales, A.; Nunes, J.; Rodrigues, L.; Hansen, L.D.; Cardoso, H. Germination of Pisum sativum L. Seeds Is Associated with the Alternative Respiratory Pathway. Biology 2023, 12, 1318. [Google Scholar] [CrossRef] [PubMed]
- Ragonezi, C.; Arnholdt-Schmitt, B. Laser Capture Microdissection for Amplification of Alternative Oxidase (AOX) Genes in Target Tissues in Daucus carota L. Methods Mol. Biol. 2017, 1670, 245–252. [Google Scholar] [CrossRef]
- Albury, M.S.; Dudley, P.; Watts, F.Z.; Moore, A.L. Targeting the plant alternative oxidase protein to Schizosaccharomyces pombe mitochondria confers cyanide-insensitive respiration. J. Biol. Chem. 1996, 271, 17062–17066. [Google Scholar] [CrossRef]
- Arnholdt-Schmitt, B.; Patil, V.K. Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach. Methods Mol. Biol. 2017, 1670, 235–244. [Google Scholar] [CrossRef]
- Martins, M.; Gomes, A.F.G.; da Silva, M.; da Silva, D.F.; Peche, P.M.; Magalhães, T.A.; Pio, R. Effects of anatomical structures and phenolic compound deposition on the rooting of olive cuttings. Rhizosphere 2022, 23, 100557. [Google Scholar] [CrossRef]
- Koskimäki, J.J.; Pohjanen, J.; Kvist, J.; Fester, T.; Härtig, C.; Podolich, O.; Fluch, S.; Edesi, J.; Häggman, H.; Pirttilä, A.M. The meristem-associated endosymbiont Methylorubrum extorquens DSM13060 reprograms development and stress responses of pine seedlings. Tree Physiol. 2022, 42, 391–410. [Google Scholar] [CrossRef] [PubMed]
- Thiers, K.L.L.; da Silva, J.H.M.; Vasconcelos, D.C.A.; Aziz, S.; Noceda, C.; Arnholdt-Schmitt, B.; Costa, J.H. Polymorphisms in alternative oxidase genes from ecotypes of Arabidopsis and rice revealed an environment-induced linkage to altitude and rainfall. Physiol. Plant. 2023, 175, e13847. [Google Scholar] [CrossRef]
- Trkulja, V.; Tomić, A.; Iličić, R.; Nožinić, M.; Milovanović, T.P. Xylella fastidiosa in Europe: From the Introduction to the Current Status. Plant Pathol. J. 2022, 38, 551–571. [Google Scholar] [CrossRef] [PubMed]
- Machwitz, M.; Pieruschka, R.; Berger, K.; Schlerf, M.; Aasen, H.; Fahrner, S.; Jiménez-Berni, J.; Baret, F.; Rascher, U. Bridging the Gap Between Remote Sensing and Plant Phenotyping-Challenges and Opportunities for the Next Generation of Sustainable Agriculture. Front. Plant Sci. 2021, 12, 749374. [Google Scholar] [CrossRef] [PubMed]
- Scortichini, M.; Loreti, S.; Pucci, N.; Scala, V.; Tatulli, G.; Verweire, D.; Oehl, M.; Widmer, U.; Codina, J.M.; Hertl, P.; et al. Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021, 10, 668. [Google Scholar] [CrossRef]
- Cascone, P.; Quarto, R.; Iodice, L.; Cencetti, G.; Formisano, G.; Spiezia, G.; Giorgini, M.; Michelozzi, M.; Guerrieri, E. Behavioural response of the main vector of Xylella fastidiosa towards olive VOCs. Entomol. Gen. V 2022, 42, 35–44. [Google Scholar] [CrossRef]
- Bruno, G.L.; Cariddi, C.; Botrugno, L. Exploring a sustainablesolution to control Xylella fastidiosasubsp.paucaon olive in the SalentoPeninsula, Southern Italy. Crop Prot. 2021, 139, 105288. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Forecasting future range shifts of Xylella fastidiosa under climate change. Plant Pathol. 2022, 71, 1839–1848. [Google Scholar] [CrossRef]
- Castro, C.; Massonnet, M.; Her, N.; DiSalvo, B.; Jablonska, B.; Jeske, D.R.; Cantu, D.; Roper, M.C. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce’s disease and identifies a peroxidase linked to defense priming. New Phytol. 2023, 239, 687–704. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnholdt-Schmitt, B.; Sircar, D.; Aziz, S.; Germano, T.A.; Thiers, K.L.L.; Noceda, C.; Bharadwaj, R.; Mohanapriya, G.; Costa, J.H. Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience. Pathogens 2024, 13, 227. https://doi.org/10.3390/pathogens13030227
Arnholdt-Schmitt B, Sircar D, Aziz S, Germano TA, Thiers KLL, Noceda C, Bharadwaj R, Mohanapriya G, Costa JH. Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience. Pathogens. 2024; 13(3):227. https://doi.org/10.3390/pathogens13030227
Chicago/Turabian StyleArnholdt-Schmitt, Birgit, Debabrata Sircar, Shahid Aziz, Thais Andrade Germano, Karine Leitão Lima Thiers, Carlos Noceda, Revuru Bharadwaj, Gunasekaran Mohanapriya, and José Hélio Costa. 2024. "Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience" Pathogens 13, no. 3: 227. https://doi.org/10.3390/pathogens13030227
APA StyleArnholdt-Schmitt, B., Sircar, D., Aziz, S., Germano, T. A., Thiers, K. L. L., Noceda, C., Bharadwaj, R., Mohanapriya, G., & Costa, J. H. (2024). Transcriptome Analyses in Adult Olive Trees Indicate Acetaldehyde Release and Cyanide-Mediated Respiration Traits as Critical for Tolerance against Xylella fastidiosa and Suggest AOX Gene Family as Marker for Multiple-Resilience. Pathogens, 13(3), 227. https://doi.org/10.3390/pathogens13030227