Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites, Preparation of Water, Initial Characterization
2.2. Sample Collection
2.3. Initial Sample Processing
2.4. Sample Deployment and Retrieval in Natural Water Bodies and Lab Testing
2.5. Analysis and Interpretation
2.6. Laboratory Persistence Trial
3. Results
3.1. Physical and Chemical Characterization of Water Bodies
3.2. Initial Sample Analysis
3.3. Subsequent Testing of Recovered Samples
3.4. Initial Distilled Water Sample Titration and Re-Isolation Success
3.5. Survival Analysis
3.6. Laboratory Persistence Trial
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, R.G.; Yakhno, M.; Hinshaw, V.S.; Bean, W.J.; Murti, K.G. Intestinal influenza: Replication and characterization of influenza viruses in ducks. Virology 1978, 84, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Caliendo, V.; Lewis, N.S.; Pohlmann, A.; Baillie, S.R.; Banyard, A.C.; Beer, M.; Brown, I.H.; Fouchier, R.A.M.; Hansen, R.D.E.; Lameris, T.K.; et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci. Rep. 2022, 12, 11729. [Google Scholar] [CrossRef] [PubMed]
- Bevins, S.N.; Shriner, S.A.; Cumbee, J.C., Jr.; Dilione, K.E.; Douglass, K.E.; Ellis, J.W.; Killian, M.L.; Torchetti, M.K.; Lenoch, J.B. intercontinental movement of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4 virus to the United States, 2021. Emerg. Infect. Dis. 2022, 28, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Youk, S.; Torchetti, M.K.; Lantz, K.; Lenoch, J.B.; Killian, M.L.; Leyson, C.; Bevins, S.N.; Dilione, K.; Ip, H.S.; Stallknecht, D.E.; et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022. Virology 2023, 587, 109860. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Scott, L.C.; Ahlstrom, C.A.; Buck, E.J.; Williams, A.R.; Kim Torchetti, M.; Stallknecht, D.E.; Poulson, R.L. Molecular detection and characterization of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses among hunter-harvested wild birds provides evidence for three independent introductions into Alaska. Virology 2023, 589, 109938. [Google Scholar] [CrossRef] [PubMed]
- Lebarbenchon, C.; Yang, M.; Keeler, S.P.; Ramakrishnan, M.A.; Brown, J.D.; Stallknecht, D.E.; Sreevatsan, S. Viral replication, persistence in water and genetic characterization of two influenza A viruses isolated from surface lake water. PLoS ONE 2011, 6, e26566. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Goekjian, V.H.; Wilcox, B.R.; Poulson, R.L.; Brown, J.D. Avian influenza virus in aquatic habitats: What do we need to learn? Avian Dis. 2010, 54, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Poulson, R.L.; Luttrell, P.M.; Slusher, M.J.; Wilcox, B.R.; Niles, L.J.; Dey, A.D.; Berghaus, R.D.; Krauss, S.; Webster, R.G.; Stallknecht, D.E. Influenza A virus: Sampling of the unique shorebird habitat at Delaware Bay, USA. R. Soc. Open Sci. 2017, 4, 171420. [Google Scholar] [CrossRef] [PubMed]
- Sivanandan, V.; Halvorson, D.A.; Laudert, E.; Senne, D.A.; Kumar, M.C. Isolation of H13N2 influenza A virus from turkeys and surface water. Avian Dis. 1991, 35, 974–977. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, K.; Kawaoka, Y.; Takada, A.; Webster, R.G.; Kida, H. Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch. Virol. 1995, 140, 1163–1172. [Google Scholar] [CrossRef]
- Hinshaw, V.S.; Webster, R.G.; Turner, B. Water-bone transmission of influenza A viruses? Intervirology 1979, 11, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Okuya, K.; Kawabata, T.; Nagano, K.; Tsukiyama-Kohara, K.; Kusumoto, I.; Takase, K.; Ozawa, M. Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Arch. Virol. 2015, 160, 3037–3052. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Shane, S.M.; Kearney, M.T.; Zwank, P.J. Persistence of avian influenza viruses in water. Avian Dis. 1990, 34, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Goekjian, G.; Poulson, R.; Valeika, S.; Stallknecht, D.E. Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Vet. Microbiol. 2009, 136, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Swayne, D.E.; Cooper, R.J.; Burns, R.E.; Stallknecht, D.E. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 2007, 51, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Reeves, A.B.; Lagasse, B.J.; Patil, V.; Hubbard, L.E.; Kolpin, D.W.; McCleskey, R.B.; Repert, D.A.; Stallknecht, D.E.; Poulson, R.L. Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands. Sci. Total Environ. 2022, 803, 150078. [Google Scholar] [CrossRef] [PubMed]
- Ramey, A.M.; Reeves, A.B.; Drexler, J.Z.; Ackerman, J.T.; De La Cruz, S.; Lang, A.S.; Leyson, C.; Link, P.; Prosser, D.J.; Robertson, G.J.; et al. Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proc. Biol. Sci. 2020, 287, 20201680. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.B.; Ramey, A.M.; Koch, J.C.; Poulson, R.L.; Stallknecht, D.E. Field-based method for assessing duration of infectivity for influenza A viruses in the environment. J. Virol. Methods 2020, 277, 113818. [Google Scholar] [CrossRef] [PubMed]
- Hollander, L.P.; Fojtik, A.; Kienzle-Dean, C.; Davis-Fields, N.; Poulson, R.L.; Davis, B.; Mowry, C.; Stallknecht, D.E.J.A.D. Prevalence of influenza A viruses in ducks sampled in northwestern Minnesota and evidence for predominance of H3N8 and H4N6 subtypes in mallards, 2007–2016. Avian Dis. 2018, 63, 126–130. [Google Scholar] [CrossRef]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef]
- Killian, M.L. Hemagglutination assay for the avian influenza virus. Methods Mol. Biol. 2008, 436, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method for estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Therneau, T. A Package for Survival Analysis in R. 2020. R Package Version 3.2-7. 2021. Available online: https://github.com/therneau/survival (accessed on 10 November 2022).
- R Core Team. A Language and Environment for Statistical Computing R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 10 November 2022).
- Scott, L.C.; Poulson, R.L.; Ahlstrom, C.A.; Reeves, A.B.; Hubbard, L.E.; Fojtik, A.; Carter, D.L.; Stallknecht, D.E.; Ramey, A.M. Data for Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons: U.S. Geological Survey Data Release; Alaska Science Center: Anchorage, AK, USA, 2024. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. National Aquatic Resource Surveys. National Wetland Condition Assessment 2016 Water Chemistry. 2023. Available online: https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys (accessed on 21 April 2024).
- Brown, J.D.; Berghaus, R.D.; Costa, T.P.; Poulson, R.; Carter, D.L.; Lebarbenchon, C.; Stallknecht, D.E. Intestinal excretion of a wild bird-origin H3N8 low pathogenic avian influenza virus in mallards (Anas platyrhynchos). J. Wildl. Dis. 2012, 48, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Kearney, M.T.; Shane, S.M.; Zwank, P.J. Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Dis. 1990, 34, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.P.; Berghaus, R.D.; Stallknecht, D.E. Persistence of low pathogenic avian influenza viruses in filtered surface water from waterfowl habitats in Georgia, USA. J. Wildl. Dis. 2012, 48, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.P.; Lebarbenchon, C.; Stallknecht, D.E. Strain-related variation in the persistence of influenza A virus in three types of water: Distilled water, filtered surface water, and intact surface water. Virol. J. 2013, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.; Link, P.; Walther, P.; Ramey, A.; Stallknecht, D.E.; Poulson, R.L.J.A.D. Influenza A prevalence and subtype diversity in migrating teal sampled along the United States Gulf Coast. Avian Dis. 2018, 63, 165–171. [Google Scholar] [CrossRef]
- Diskin, E.R.; Friedman, K.; Krauss, S.; Nolting, J.M.; Poulson, R.L.; Slemons, R.D.; Stallknecht, D.E.; Webster, R.G.; Bowman, A.S. Subtype Diversity of influenza A virus in North American waterfowl: A multidecade study. J. Virol. 2020, 94, e02022-19. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.K.; Selinka, H.C.; Mettenleiter, T.C.; Beer, M.; Harder, T.C. Exploring surface water as a transmission medium of avian influenza viruses—Systematic infection studies in mallards. Emerg. Microbes Infect. 2022, 11, 1250–1261. [Google Scholar] [CrossRef]
- Hubbard, L.E.; Givens, C.E.; Stelzer, E.A.; Killian, M.L.; Kolpin, D.W.; Szablewski, C.M.; Poulson, R.L. Environmental surveillance and detection of infectious highly pathogenic avian influenza virus in Iowa wetlands. Environ. Sci. Technol. Lett. 2023, 10, 1181–1187. [Google Scholar] [CrossRef]
- Ahrens, A.K.; Selinka, H.C.; Wylezich, C.; Wonnemann, H.; Sindt, O.; Hellmer, H.H.; Pfaff, F.; Hoper, D.; Mettenleiter, T.C.; Beer, M.; et al. Investigating environmental matrices for use in avian influenza virus surveillance-surface water, sediments, and avian fecal samples. Microbiol. Spectr. 2023, 11, e0266422. [Google Scholar] [CrossRef] [PubMed]
- Perlas, A.; Bertran, K.; Abad, F.X.; Borrego, C.M.; Nofrarias, M.; Valle, R.; Pailler-Garcia, L.; Ramis, A.; Cortey, M.; Acuna, V.; et al. Persistence of low pathogenic avian influenza virus in artificial streams mimicking natural conditions of waterfowl habitats in the Mediterranean climate. Sci. Total Environ. 2023, 863, 160902. [Google Scholar] [CrossRef] [PubMed]
Titer (TCID50/mL) # | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days Post Inoculation Water Samples | ||||||||||||||
Water Treatment | 0 | 26 | 42 | 50 | 78 | 91 | 118 | 146 | 167 | 174 | 202 | 241 | Regression Equation [Rt ## Value (Days)] | R2 |
Farmes Pool (A) | 4.23 | 3.63 | 3.28 | 2.56 | 1.93 | 1.93 | 1.86 | 1.77 | <1.77 | <1.77 | <1.77 | <1.77 | y = −0.018x + 3.87 [56.18] | 0.834 |
Tamarac Pool (B) | 4.37 | 3.90 | 3.01 | 2.56 | 2.02 | 2.52 | 2.05 | 1.77 | 1.80 | <1.77 | <1.77 | <1.77 | y = −0.015x + 3.84 [67.57] | 0.790 |
Thief Lake WMA (C) | 4.33 | 4.17 | 3.81 | 3.32 | 3.28 | 3.52 | 2.81 | 2.52 | 2.59 | 1.90 | 2.52 | 1.86 | y = −0.010x + 4.19 [95.24] | 0.892 |
Roseau River WMA (D) | 4.37 | 3.81 | 3.57 | 3.28 | 2.76 | 2.47 | 1.87 | <1.77 | <1.77 | <1.77 | <1.77 | <1.77 | y = −0.021x + 4.38 [47.39] | 0.998 |
Distilled water | 3.62 | 3.23 | 2.68 | 2.47 | 2.63 | 2.73 | 2.47 | 2.05 | 2.00 | 1.84 | 1.79 | 1.77 | y = −0.007x + 3.24 [138.89] | 0.854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulson, R.L.; Reeves, A.B.; Ahlstrom, C.A.; Scott, L.C.; Hubbard, L.E.; Fojtik, A.; Carter, D.L.; Stallknecht, D.E.; Ramey, A.M. Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons. Pathogens 2024, 13, 406. https://doi.org/10.3390/pathogens13050406
Poulson RL, Reeves AB, Ahlstrom CA, Scott LC, Hubbard LE, Fojtik A, Carter DL, Stallknecht DE, Ramey AM. Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons. Pathogens. 2024; 13(5):406. https://doi.org/10.3390/pathogens13050406
Chicago/Turabian StylePoulson, Rebecca L., Andrew B. Reeves, Christina A. Ahlstrom, Laura C. Scott, Laura E. Hubbard, Alinde Fojtik, Deborah L. Carter, David E. Stallknecht, and Andrew M. Ramey. 2024. "Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons" Pathogens 13, no. 5: 406. https://doi.org/10.3390/pathogens13050406
APA StylePoulson, R. L., Reeves, A. B., Ahlstrom, C. A., Scott, L. C., Hubbard, L. E., Fojtik, A., Carter, D. L., Stallknecht, D. E., & Ramey, A. M. (2024). Infectivity of Wild-Bird Origin Influenza A Viruses in Minnesota Wetlands across Seasons. Pathogens, 13(5), 406. https://doi.org/10.3390/pathogens13050406