Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians
Abstract
:1. Introduction
2. Methods
2.1. Setting and Population
2.2. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Statistical Comparison of the Symptoms of Patients with DENV-Confirmed Infections Who Were SARS-CoV-2 Negative with Those Encountering Ongoing DENV-SARS-CoV-2 Virus-Confirmed Co-Infections
3.3. Clinical Symptoms of IgM-Captured ELISA-Confirmed DENV-Infected Patients with or without Prior Confirmed SARS-CoV-2 Infections
3.4. Factors Associated with DENV-SARS-CoV-2 Co-Infections
3.5. Important Features of DHF/DSS/SD Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Dengue and Severe Dengue: World Health Organization. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue#:~:text=Key%20facts,million%20infections%20occurring%20each%20year (accessed on 23 April 2024).
- World Health Organization (WHO). Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 1997; Available online: https://www.who.int/publications/i/item/9789241547871 (accessed on 15 November 2023).
- World Health Organization (WHO). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Swirtzerland, 2009; Available online: https://iris.who.int/handle/10665/44188 (accessed on 5 November 2023).
- Hadinegoro, S.R.S. The revised WHO dengue case classification: Does the system need to be modified? Paediatr. Int. Child Health 2012, 32 (Suppl. S1), 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gan, V.C.; Lye, D.C.; Thein, T.L.; Dimatatac, F.; Tan, A.S.; Leo, Y.-S. Implications of discordance in world health organization 1997 and 2009 dengue classifications in adult dengue. PLoS ONE 2013, 8, e60946. [Google Scholar] [CrossRef] [PubMed]
- Horstick, O.; Jaenisch, T.; Martinez, E.; Kroeger, A.; See, L.L.C.; Farrar, J.; Ranzinger, S.R. Comparing the usefulness of the 1997 and 2009 WHO dengue case classification: A systematic literature review. Am. J. Trop. Med. Hyg. 2014, 91, 621. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.S.; Undurraga, E.A.; Verro, A.T.; Nogueira, M.L. Comparison between the traditional (1997) and revised (2009) WHO classifications of dengue disease: A retrospective study of 30 670 patients. Trop. Med. Int. Health 2018, 23, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Ajlan, B.A.; Alafif, M.M.; Alawi, M.M.; Akbar, N.A.; Aldigs, E.K.; Madani, T.A. Assessment of the new World Health Organization’s dengue classification for predicting severity of illness and level of healthcare required. PLoS Neglected Trop. Dis. 2019, 13, e0007144. [Google Scholar] [CrossRef] [PubMed]
- Wills, C.P.; Perez, B.; Moore, J. Coronavirus Disease 2019: Past, Present, and Future. Emerg. Med. Clin. 2024, 42, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Sweis, J.J.G.; Alnaimat, F.; Esparza, V.; Prasad, S.; Azam, A.; Modi, Z.; Al-Awqati, M.; Jetanalin, P.; Sweis, N.J.; Ascoli, C.; et al. From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide. Int. J. Environ. Res. Public Health 2024, 21, 325. [Google Scholar] [CrossRef]
- Harapan, H.; Ryan, M.; Yohan, B.; Abidin, R.S.; Nainu, F.; Rakib, A.; Jahan, I.; Emran, T.B.; Ullah, I.; Panta, K.; et al. COVID-19 and dengue: Double punches for dengue-endemic countries in Asia. Rev. Med. Virol. 2021, 31, e2161. [Google Scholar] [CrossRef] [PubMed]
- León-Figueroa, D.A.; Abanto-Urbano, S.; Olarte-Durand, M.; Nuñez-Lupaca, J.N.; Barboza, J.J.; Bonilla-Aldana, D.K.; Yrene-Cubas, R.A.; Rodriguez-Morales, A.J. COVID-19 and dengue coinfection in Latin America: A systematic review. New Microbes New Infect. 2022, 49, 101041. [Google Scholar] [CrossRef]
- Romero-Vivas, C.; Arango-Padilla, P.; Falconar, A. Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann. Trop. Med. Parasitol. 2006, 100 (Suppl. S1), 87–95. [Google Scholar] [CrossRef] [PubMed]
- Falconar, A.K.; Romero-Vivas, C.M. Simple prognostic criteria can definitively identify patients who develop severe versus non-severe dengue disease, or have other febrile illnesses. J. Clin. Med. Res. 2012, 4, 33. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org/ (accessed on 10 May 2024).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team. Package ‘caret’. R J. 2020, 223, 48. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive partitioning and regression trees. R Package Version 2015, 4, 1–9. [Google Scholar]
- McHale, T.C.; Romero-Vivas, C.M.; Fronterre, C.; Arango-Padilla, P.; Waterlow, N.R.; Nix, C.D.; Falconar, A.K.; Cano, J. Spatiotemporal heterogeneity in the distribution of chikungunya and Zika virus case incidences during their 2014 to 2016 epidemics in Barranquilla, Colombia. Int. J. Environ. Res. Public Health 2019, 16, 1759. [Google Scholar] [CrossRef]
- Annan, E.; Bukhari, M.H.; Treviño, J.; Abad, Z.S.H.; Lubinda, J.; da Silva, E.A.; Haque, U. The ecological determinants of severe dengue: A Bayesian inferential model. Ecol. Inform. 2023, 74, 101986. [Google Scholar] [CrossRef]
- Bukhari, M.H.; Shad, M.Y.; Nguyen, U.S.D.; Treviño, C.J.A.; Jung, W.; Bajwa, W.U.; Gallego-Hernández, A.L.; Robinson, R.; Corral-Frías, N.S.; Hamer, G.L.; et al. A Bayesian spatiotemporal approach to modelling arboviral diseases in Mexico. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Tarantine, C.; Falconar, A.K.; Romero-Vivas, C.M. Evaluation of the National Case Report Form for dengue and timely case notification before the co-circulation of multiple arboviruses in Barranquilla, Colombia. Rev. Salud Pública 2020, 20, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Romero-Vivas, C.; Llinás, H.; Falconar, A. Three calibration factors, applied to a rapid sweeping method, can accurately estimate Aedes aegypti (Diptera: Culicidae) pupal numbers in large water-storage containers at all temperatures at which dengue virus transmission occurs. J. Med. Entomol. 2007, 44, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Romero-Vivas, C.; Llinas, H.; Falconar, A. The single water-surface sweep estimation method accurately estimates very low (n= 4) to low–moderate (n = 25–100) and high (n > 100) Aedes aegypti (Diptera: Culicidae) pupae numbers in large water containers up to 13 times faster than the exhaustive sweep and total count method and without any sediment contamination. Trop. Med. Int. Health 2015, 20, 326–333. [Google Scholar]
- Romero-Vivas, C.M.; Falconar, A.K. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors. J. Am. Mosq. Control Assoc. 2005, 21, 15–21. [Google Scholar] [CrossRef] [PubMed]
SARS-CoV-2-Co-Infected (n = 517) | Non-SARS-CoV-2-Coinfected (n = 1089) | p-Value | ||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Gender | Male | 253 | 48.94 | 558 | 51.24 | <0.001 |
Female | 264 | 51.06 | 531 | 48.76 | <0.001 | |
Age Group | 18–40 years old | 370 | 71.57 | 827 | 75.94 | <0.001 |
41–60 years old | 102 | 19.73 | 179 | 16.44 | 0.000 | |
>60 years old | 45 | 8.70 | 82 | 7.53 | <0.001 | |
Stratum | 1 | 127 | 24.56 | 314 | 28.83 | <0.001 |
2 | 185 | 35.78 | 378 | 34.71 | <0.001 | |
3 | 97 | 18.76 | 191 | 17.54 | 0.001 | |
4 | 57 | 11.03 | 117 | 10.74 | <0.0001 | |
5 | 22 | 4.26 | 31 | 2.85 | 0.1655 | |
6 | 6 | 1.16 | 12 | 1.10 | 0.1573 | |
Patient Hospitalized | Yes | 260 | 50.29 | 599 | 55.00 | <0.0001 |
No | 257 | 49.71 | 490 | 45.00 | <0.0001 | |
Symptoms | Fever | 517 | 100.00 | 1089 | 100.0 | <0.0001 |
Headache | 450 | 87.04 | 941 | 86.41 | <0.0001 | |
Retro-orbital Pain | 235 | 45.45 | 514 | 47.20 | <0.0001 | |
Myalgia | 427 | 82.59 | 910 | 83.56 | <0.0001 | |
Arthralgia | 389 | 75.24 | 802 | 73.65 | <0.0001 | |
Rash | 162 | 31.33 | 321 | 29.48 | 0.005 | |
Abdominal Pain | 174 | 33.66 | 377 | 34.62 | <0.0001 | |
Vomiting | 90 | 17.41 | 232 | 21.30 | <0.0001 | |
Diarrhoea | 68 | 13.15 | 143 | 13.13 | <0.0001 | |
Drowsiness | 12 | 2.32 | 52 | 4.78 | <0.0001 | |
Hypotension | 28 | 5.41 | 37 | 3.39 | 0.0005 | |
Hepatomegaly | 5 | 0.97 | 11 | 1.01 | 0.1336 | |
Bloody Mucus | 7 | 1.35 | 26 | 2.39 | 0.0009 | |
Haemoconcentration | 22 | 4.26 | 43 | 3.95 | 0.0091 | |
Dyspnoea | 178 | 34.4 | 61 | 5.6 | <0.0001 | |
Reduced Platelet Numbers | 201 | 38.88 | 417 | 38.29 | <0.0001 | |
Liquid Accumulation | 10 | 1.93 | 20 | 1.84 | 0.0678 |
SARS-CoV-2-Co-Infected (n = 517) | Non-SARS-CoV-2-Coinfected (n = 1089) | p-Value | ||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Gender | Male | 253 | 48.94 | 558 | 51.24 | <0.001 |
Female | 264 | 51.06 | 531 | 48.76 | <0.001 | |
Age Group | 18–40 years old | 370 | 71.57 | 827 | 75.94 | <0.001 |
41–60 years old | 102 | 19.73 | 179 | 16.44 | 0.000 | |
>60 years old | 45 | 8.70 | 82 | 7.53 | <0.001 | |
Stratum | 1 | 127 | 24.56 | 314 | 28.83 | <0.001 |
2 | 185 | 35.78 | 378 | 34.71 | <0.001 | |
3 | 97 | 18.76 | 191 | 17.54 | 0.001 | |
4 | 57 | 11.03 | 117 | 10.74 | <0.0001 | |
5 | 22 | 4.26 | 31 | 2.85 | 0.1655 | |
6 | 6 | 1.16 | 12 | 1.10 | 0.1573 | |
Patient Hospitalized | Yes | 260 | 50.29 | 599 | 55.00 | <0.0001 |
No | 257 | 49.71 | 490 | 45.00 | <0.0001 | |
Symptoms | Fever | 517 | 100.00 | 1089 | 100.0 | <0.0001 |
Headache | 450 | 87.04 | 941 | 86.41 | <0.0001 | |
Retro-orbital Pain | 235 | 45.45 | 514 | 47.20 | <0.0001 | |
Myalgia | 427 | 82.59 | 910 | 83.56 | <0.0001 | |
Arthralgia | 389 | 75.24 | 802 | 73.65 | <0.0001 | |
Rash | 162 | 31.33 | 321 | 29.48 | 0.005 | |
Abdominal Pain | 174 | 33.66 | 377 | 34.62 | <0.0001 | |
Vomiting | 90 | 17.41 | 232 | 21.30 | <0.0001 | |
Diarrhoea | 68 | 13.15 | 143 | 13.13 | <0.0001 | |
Drowsiness | 12 | 2.32 | 52 | 4.78 | <0.0001 | |
Hypotension | 28 | 5.41 | 37 | 3.39 | 0.0005 | |
Hepatomegaly | 5 | 0.97 | 11 | 1.01 | 0.1336 | |
Bloody Mucus | 7 | 1.35 | 26 | 2.39 | 0.0009 | |
Haemoconcentration | 22 | 4.26 | 43 | 3.95 | 0.0091 | |
Dyspnoea | 178 | 34.4 | 61 | 5.6 | <0.0001 | |
Reduced Platelet Numbers | 201 | 38.88 | 417 | 38.29 | <0.0001 | |
Liquid Accumulation | 10 | 1.93 | 20 | 1.84 | 0.0678 |
Variables | Bivariate Analysis | Multivariate Analysis | Multivariate Analysis (Age-Adjusted Model) | |||
---|---|---|---|---|---|---|
Crude OR | (95% CI) | Adj. OR | (95% CI) | Adj. OR | (95% CI) | |
Fever | 1.55 | (1.15, 2.08) | 1.47 | (1.07, 2.02) | 1.67 | (1.19, 2.06) |
Headache | 1.62 | (1.07, 2.45) | 1.58 | (1.01, 2.48) | 1.72 | (1.0, 2.99) |
Myalgia | 1.65 | (1.13, 2.4) | 2.09 | (1.73–2.53) | - | - |
Abdominal Pain | 1.85 | (1.37, 2.5) | 3.41 | (2.73–4.28) | - | - |
Arthralgia | 1.7 | (1.22, 2.35) | 1.5 | (1.04, 2.18) | ||
Fatigue | 1.78 | (1.48, 2.15) | - | - | 2.01 | (1.54, 2.61) |
Dyspnoea | 1.27 | (1.06, 1.53) | 1.31 | (1.11, 1.68) | 1.47 | (1.14, 1.89) |
Hypotension | 1.34 | (1.11, 1.61) | 1.4 | (1.15, 1.71) | 1.52 | (1.18, 1.96) |
Haemoconcentration | 1.22 | (1.02, 1.46) | 1.31 | (1.08, 1.6) | 1.42 | (1.1, 1.82) |
Laboratory findings | ||||||
Platelets 109/L | 1.79 | (1.32, 2.43) | 1.45 | (1.08, 1.94) | 1.76 | (1.15, 2.71) |
WBC | 1.1 | (0.91, 1.31) | - | - | - | - |
ALT | 1.72 | (1.31, 2.24) | 0.66 | (0.48, 0.91) | 0.98 | (0.65, 1.47) |
AST | 1.23 | (1.04, 1.44) | 0.55 | (0.44, 0.67) | 0.91 | (0.71, 1.17) |
B | S.E. | p-Value | OR | 95% CI for OR | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Fever | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.467 | 0.1815 | 0.010 | 1.6 | 1.12 | 2.29 |
Headache | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.6763 | 0.1325 | <0.001 | 1.97 | 1.52 | 2.55 |
Retro-orbital Pain | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | −1.7601 | 0.1086 | <0.001 | 0.17 | 0.14 | 0.21 |
Myalgia | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 1.5204 | 0.1303 | <0.001 | 4.57 | 3.55 | 5.93 |
Arthralgia | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.3627 | 0.1081 | 0.0007 | 1.44 | 1.16 | 1.78 |
Platelets | ||||||
Normal | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Reduced | 0.549 | 0.1018 | <0.001 | 1.73 | 1.42 | 2.12 |
Abdominal Pain | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | −1.8237 | 0.1224 | <0.001 | 0.16 | 0.13 | 0.2 |
Dyspnoea | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.419 | 0.1069 | 0.005 | 1.8 | 1.1 | 2.35 |
Haemoconcentration | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.1182 | 0.2607 | 0.0250 | 1.32 | 1.18 | 1.57 |
SARS-CoV-2 infection | ||||||
No | 0.00 (Ref.) | 0 | 1.00 | 1.00 (Ref.) | 1 | 1 |
Yes | 0.8064 | 0.1590 | <0.001 | 1.45 | 1.30 | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukhari, M.H.; Annan, E.; Haque, U.; Arango, P.; Falconar, A.K.I.; Romero-Vivas, C.M. Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians. Pathogens 2024, 13, 573. https://doi.org/10.3390/pathogens13070573
Bukhari MH, Annan E, Haque U, Arango P, Falconar AKI, Romero-Vivas CM. Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians. Pathogens. 2024; 13(7):573. https://doi.org/10.3390/pathogens13070573
Chicago/Turabian StyleBukhari, Moeen Hamid, Esther Annan, Ubydul Haque, Pedro Arango, Andrew K. I. Falconar, and Claudia M. Romero-Vivas. 2024. "Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians" Pathogens 13, no. 7: 573. https://doi.org/10.3390/pathogens13070573
APA StyleBukhari, M. H., Annan, E., Haque, U., Arango, P., Falconar, A. K. I., & Romero-Vivas, C. M. (2024). Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians. Pathogens, 13(7), 573. https://doi.org/10.3390/pathogens13070573