Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design, Bacterial Isolation and Identification
2.3. Antibiotic Susceptibility Testing
2.4. Molecular Typing of the Isolates
2.5. Short-Read Whole-Genome Sequencing and Genomic Analyses
2.6. Phylogenetic Analysis
2.7. Long-Read Sequencing
2.8. Data Availability
3. Results
3.1. Characterization of Healthy Volunteers and Carriage Rate of ESC-Resistant Enterobacterales
3.2. Resistance Phenotypes and Genotypes
3.3. Characterization of ESC-Resistant Enterobacterales
3.4. Characterization of the Genetic Determinants Carrying ESBL/AmpC Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Luchen, C.C.; Chibuye, M.; Spijker, R.; Simuyandi, M.; Chisenga, C.; Bosomprah, S.; Chilengi, R.; Schultsz, C.; Mende, D.R.; Harris, V.C. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med. 2023, 20, e1004235. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Raguideau, S.; Sirén, K.; Asnicar, F.; Cumbo, F.; Hildebrand, F.; Segata, N.; Cha, C.-J.; Quince, C. Population-level impacts of antibiotic usage on the human gut microbiome. Nat. Commun. 2023, 14, 1191. [Google Scholar] [CrossRef] [PubMed]
- Birgand, G.; Armand-Lefevre, L.; Lolom, I.; Ruppe, E.; Andremont, A.; Lucet, J.C. Duration of colonization by extended-spectrum beta-lactamase-producing Enterobacteriaceae after hospital discharge. Am. J. Infect. Control 2013, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Alsterlund, R.; Axelsson, C.; Olsson-Liljequist, B. Long-term carriage of extended-spectrum beta-lactamase-producing Escherichia coli. Scand. J. Infect. Dis. 2012, 44, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Al-Mir, H.; Osman, M.; Drapeau, A.; Hamze, M.; Madec, J.Y.; Haenni, M. Spread of ESC-, carbapenem- and colistin-resistant Escherichia coli clones and plasmids within and between food workers in Lebanon. J. Antimicrob. Chemother. 2021, 76, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, Y.M.; Sabiiti, W.; Alamneh, E.; Bezabih, A.; Peterson, G.M.; Bezabhe, W.M.; Roujeinikova, A. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J. Antimicrob. Chemother. 2021, 76, 22–29. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Ben Slama, K.; Estepa, V.; Jouini, A.; Gharsa, H.; Klibi, N.; Saenz, Y.; Ruiz-Larrea, F.; Boudabous, A.; Torres, C. Prevalence and characterisation of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in healthy volunteers in Tunisia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1511–1516. [Google Scholar] [CrossRef]
- Ferjani, S.; Saidani, M.; Hamzaoui, Z.; Alonso, C.A.; Torres, C.; Maamar, E.; Slim, A.F.; Boutiba, B.B.I. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children. Diagn. Microbiol. Infect. Dis. 2017, 87, 188–192. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Laribi, B.; Arfaoui, A.; Ben Khelifa Melki, S.; Ouzari, H.I.; Ben Slama, K.; Naas, T.; Klibi, N. Co-occurrence of genes encoding carbapenemase, ESBL, pAmpC and non-β-Lactam resistance among Klebsiella pneumoniae and E. coli clinical isolates in Tunisia. Lett. Appl. Microbiol. 2022, 74, 729–740. [Google Scholar] [CrossRef]
- Harbaoui, S.; Ferjani, S.; Abbassi, M.S.; Saidani, M.; Gargueh, T.; Ferjani, M.; Hammi, Y.; Boutiba-Ben Boubaker, I. Genetic heterogeneity and predominance of blaCTX-M-15 in cefotaxime-resistant Enterobacteriaceae isolates colonizing hospitalized children in Tunisia. Lett. Appl. Microbiol. 2022, 75, 1460–1474. [Google Scholar] [CrossRef] [PubMed]
- Mnif, B.; Ktari, S.; Rhimi, F.M.; Hammami, A. Extensive dissemination of CTX-M-1- and CMY-2-producing Escherichia coli in poultry farms in Tunisia. Lett. Appl. Microbiol. 2012, 55, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Ben Slama, K.; Jouini, A.; Sallem, R.B.; Somalo, S.; Saenz, Y.; Estepa, V.; Boudabous, A.; Torres, C. Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. Int. J. Food Microbiol. 2010, 137, 281–286. [Google Scholar] [CrossRef]
- Saidani, M.; Messadi, L.; Chaouechi, A.; Tabib, I.; Saras, E.; Soudani, A.; Daaloul-Jedidi, M.; Mamlouk, A.; Ben Chehida, F.; Chakroun, C.; et al. High genetic diversity of Enterobacteriaceae clones and plasmids disseminating resistance to extended-spectrum cephalosporins and colistin in healthy chicken in Tunisia. Microb. Drug Resist. 2019, 25, 1507–1513. [Google Scholar] [CrossRef]
- Sola, M.; Mani, Y.; Saras, E.; Drapeau, A.; Grami, R.; Aouni, M.; Madec, J.Y.; Haenni, M.; Mansour, W. Prevalence and characterization of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacterales from Tunisian seafood. Microorganisms 2022, 10, 1364. [Google Scholar] [CrossRef] [PubMed]
- Saidani, M.; Messadi, L.; Sahmin, E.; Zouaoui, S.; Soudani, A.; Daaloul-Jedidi, M.; Mamlouk, A.; Chehida, F.B.; Madec, J.-Y.; Haenni, M. ESBL- and mcr-1-producing Escherichia coli in veal calves in Tunisia. J. Glob. Antimicrob. Resist. 2019, 19, 104–105. [Google Scholar] [CrossRef]
- EUCAST. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Available online: https://www.eucast.org/eucastguidancedocuments (accessed on 1 July 2024).
- Doumith, M.; Day, M.J.; Hope, R.; Wain, J.; Woodford, N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 2012, 50, 3108–3110. [Google Scholar] [CrossRef]
- Souguir, M.; Châtre, P.; Drapeau, A.; Azaiez, S.; Hmidi, I.; Ncir, S.; Lupo, A.; Madec, J.-Y.; Haenni, M.; Mansour, W. CTX-M-15/27-positive Escherichia coli and VIM-2-producing Pseudomonas putida in free-living pigeons (Columba livia) in Tunisia. J. Glob. Antimicrob. Resist. 2024, 36, 70–75. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Lu, N.; Zhu, B. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal. Gut Microbes 2014, 5, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Sommer, H.; Gladstone, B.P.; Foschi, F.; Hellman, J.; Evengard, B.; Tacconelli, E. Gender differences in antibiotic prescribing in the community: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, L.; Fava, F.; Tuohy, K.M.; Selmi, C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J. Autoimmun. 2018, 92, 12–34. [Google Scholar] [CrossRef]
- Sarmiento, M.R.A.; de Paula, T.O.; Borges, F.M.; Ferreira-Machado, A.B.; Resende, J.A.; Moreira, A.P.B.; Dutra Luquetti, S.C.P.; Cesar, D.E.; da Silva, V.L.; Diniz, C.G. Obesity, xenobiotic intake and antimicrobial-resistance genes in the human gastrointestinal tract: A comparative study of eutrophic, overweight and obese Individuals. Genes 2019, 10, 349. [Google Scholar] [CrossRef]
- Narayanan, N.; Lin, T.; Vinarov, D.; Bucek, T.; Johnson, L.; Mathew, C.; Chaudhry, S.; Brunetti, L. Relationship between multidrug-resistant Enterobacterales and obesity in older adults. Infect. Drug Resist. 2021, 14, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Huang, Z.; Xiao, Y.; Gao, H.; Bai, X.; Wang, D. Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis. Drug Resist. Updates 2024, 73, 101036. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, C.T.; Lipsitch, M.; Levin, B.R. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 2000, 155, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Saras, E.; Metayer, V.; Doublet, B.; Cloeckaert, A.; Madec, J.Y. Spread of the blaTEM-52 gene is mainly ensured by IncI1/ST36 plasmids in Escherichia coli isolated from cattle in France. J. Antimicrob. Chemother. 2012, 67, 2774–2776. [Google Scholar] [CrossRef]
- Hordijk, J.; Wagenaar, J.A.; Kant, A.; van Essen-Zandbergen, A.; Dierikx, C.; Veldman, K.; Wit, B.; Mevius, D. Cross-sectional study on prevalence and molecular characteristics of plasmid mediated ESBL/AmpC-producing Escherichia coli isolated from veal calves at slaughter. PLoS ONE 2013, 8, e65681. [Google Scholar] [CrossRef]
- Dahmen, S.; Haenni, M.; Madec, J.Y. IncI1/ST3 plasmids contribute to the dissemination of the blaCTX-M-1 gene in Escherichia coli from several animal species in France. J. Antimicrob. Chemother. 2012, 67, 3011–3012. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Penha Filho, R.A.; Andrade, L.N.; Berchieri, A., Jr.; Darini, A.L. IncI1/ST113 and IncI1/ST114 conjugative plasmids carrying blaCTX-M-8 in Escherichia coli isolated from poultry in Brazil. Diagn. Microbiol. Infect. Dis. 2014, 80, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.A.; Dierikx, C.M.; van Essen-Zandbergen, A.; van Roermund, H.J.; Mevius, D.J.; Stegeman, A.; Klinkenberg, D. The IncI1 plasmid carrying the blaCTX-M-1 gene persists in in vitro culture of a Escherichia coli strain from broilers. BMC Microbiol. 2014, 14, 77. [Google Scholar] [CrossRef]
- Zurfluh, K.; Wang, J.; Klumpp, J.; Nuesch-Inderbinen, M.; Fanning, S.; Stephan, R. Vertical transmission of highly similar blaCTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid. Front. Microbiol. 2014, 5, 519. [Google Scholar] [CrossRef]
- Cloeckaert, A.; Praud, K.; Lefevre, M.; Doublet, B.; Pardos, M.; Granier, S.A.; Brisabois, A.; Weill, F.X. IncI1 plasmid carrying extended-spectrum beta-lactamase gene blaCTX-M-1 in Salmonella enterica isolates from poultry and humans in France, 2003 to 2008. Antimicrob. Agents Chemother. 2010, 54, 4484–4486. [Google Scholar] [CrossRef]
- Madec, J.Y.; Haenni, M.; Metayer, V.; Saras, E.; Nicolas-Chanoine, M.H. High prevalence of the animal-associated blaCTX-M-1 IncI1/ST3 plasmid in human Escherichia coli isolates. Antimicrob. Agents Chemother. 2015, 59, 5860–5861. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Ben Slama, K.; Rojo-Bezares, B.; Porres-Osante, N.; Jouini, A.; Klibi, N.; Boudabous, A.; Saenz, Y.; Torres, C. IncI1 plasmids carrying blaCTX-M-1 or blaCMY-2 genes in Escherichia coli from healthy humans and animals in Tunisia. Microb. Drug Resist. 2014, 20, 495–500. [Google Scholar] [CrossRef]
- Du, P.; Zhang, P.; Wang, J.; Li, R.; Fanning, S.; Bai, L. Molecular characterization of two novel NDM-1-producing atypical enteroaggregative Escherichia coli isolates from patients. Plasmid 2021, 115, 102568. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, A.P.A.; Landman, F.; de Haan, A.; Witteveen, S.; van Santen-Verheuvel, M.G.; Schouls, L.M.; Dutch Cpe Surveillance Study Group. blaOXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb. Genom. 2021, 7, 000512. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Ngan, B.T.; Huong, B.T.; Hirai, I.; Tuyen, L.D.; Yamamoto, Y. Limited transmission of blaCTX-M-9-type-positive Escherichia coli between humans and poultry in Vietnam. Antimicrob. Agents Chemother. 2015, 59, 3574–3577. [Google Scholar] [CrossRef]
- Grevskott, D.H.; Ghavidel, F.Z.; Svanevik, C.S.; Marathe, N.P. Resistance profiles and diversity of β-lactamases in Escherichia coli strains isolated from city-scale sewage surveillance in Bergen, Norway mimic clinical prevalence. Ecotoxicol. Environ. Saf. 2021, 226, 112788. [Google Scholar] [CrossRef] [PubMed]
- Haverkate, M.R.; Platteel, T.N.; Fluit, A.C.; Cohen Stuart, J.W.; Leverstein-van Hall, M.A.; Thijsen, S.F.T.; Scharringa, J.; Kloosterman, R.C.; Bonten, M.J.M.; Bootsma, M.C.J. Quantifying within-household transmission of extended-spectrum β-lactamase-producing bacteria. Clin. Microbiol. Infect. 2017, 23, 46.e1–46.e7. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; López-Cerero, L.; Navarro, M.D.; de Alba, P.D.; Pascual, A. Faecal carriage of extended-spectrum β-lactamase-producing Escherichia coli: Prevalence, risk factors and molecular epidemiology. J. Antimicrob. Chemother. 2008, 62, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Health 2019, 3, e357–e369. [Google Scholar] [CrossRef] [PubMed]
E. coli (n = 24) | ||
---|---|---|
No. of Strains | % of Resistance | |
Kanamycin | 2 | 8.3 |
Tobramycin | 1 | 4.2 |
Gentamicin | 1 | 4.2 |
Apramycin | 0 | 0.0 |
Streptomycin | 14 | 58.3 |
Amikacin | 0 | 0.0 |
Netilmicin | 0 | 0.0 |
Tetracycline | 18 | 75.0 |
Chloramphenicol | 2 | 8.3 |
Florfenicol | 2 | 8.3 |
Colistin | 0 | 0.0 |
Nalidixic acid | 2 | 8.3 |
Ciprofloxacin | 1 | 4.2 |
Trimethoprim | 18 | 75.0 |
Sulfonamides | 18 | 75.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahjoub Khachroub, A.; Souguir, M.; Châtre, P.; Elhouda Bouhlel, N.; Jaidane, N.; Drapeau, A.; El Kantaoui, M.; Azaiez, S.; Madec, J.-Y.; Mansour, W.; et al. Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population. Pathogens 2024, 13, 624. https://doi.org/10.3390/pathogens13080624
Mahjoub Khachroub A, Souguir M, Châtre P, Elhouda Bouhlel N, Jaidane N, Drapeau A, El Kantaoui M, Azaiez S, Madec J-Y, Mansour W, et al. Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population. Pathogens. 2024; 13(8):624. https://doi.org/10.3390/pathogens13080624
Chicago/Turabian StyleMahjoub Khachroub, Ahlem, Meriem Souguir, Pierre Châtre, Nour Elhouda Bouhlel, Nadia Jaidane, Antoine Drapeau, Marah El Kantaoui, Sana Azaiez, Jean-Yves Madec, Wejdene Mansour, and et al. 2024. "Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population" Pathogens 13, no. 8: 624. https://doi.org/10.3390/pathogens13080624
APA StyleMahjoub Khachroub, A., Souguir, M., Châtre, P., Elhouda Bouhlel, N., Jaidane, N., Drapeau, A., El Kantaoui, M., Azaiez, S., Madec, J.-Y., Mansour, W., & Haenni, M. (2024). Carriage Rate of Enterobacterales Resistant to Extended-Spectrum Cephalosporins in the Tunisian Population. Pathogens, 13(8), 624. https://doi.org/10.3390/pathogens13080624