The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases
Abstract
:Summary
Author Contributions
Funding
Conflicts of Interest
References
- Feasey, N.; Wansbrough-Jones, M.; Mabey, D.C.; Solomon, A.W. Neglected tropical diseases. Br. Med. Bull. 2010, 9, 179–200. [Google Scholar] [CrossRef]
- Álvarez-Hernández, D.A.; Rivero-Zambrano, L.; Martínez-Juárez, L.A.; García-Rodríguez-Arana, R. Overcoming the global burden of neglected tropical diseases. Ther. Adv. Infect. Dis. 2020, 7, 2049936120966449. [Google Scholar] [CrossRef] [PubMed]
- Aagaard-Hansen, J.; Nombela, N.; Alvar, J. Population movement: A key factor in the epidemiology of neglected tropical diseases. Trop. Med. Int. Health 2010, 15, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Bodimeade, C.; Marks, M.; Mabey, D. Neglected tropical diseases: Elimination and eradication. Clin. Med. 2019, 19, 157–160. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Combating Neglected Tropical Diseases; WHO: Geneva, Switzerland, 2023; Available online: https://www.un.org/africarenewal/magazine/february-2023/combating-neglected-tropical-diseases (accessed on 5 May 2024).
- World Health Organization (WHO). Global Report on Neglected Tropical Diseases 2024; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/teams/control-of-neglected-tropical-diseases/global-report-on-neglected-tropical-diseases-2024 (accessed on 5 May 2024).
- Ackley, C.; Elsheikh, M.; Zaman, S. Scoping review of neglected tropical disease interventions and health promotion: A framework for successful NTD interventions as evidenced by the literature. PLoS Negl. Trop. Dis. 2021, 15, e0009278. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Chowdhury, R.; Rahat, M.A.; Hossain, F.; Arpha, N.E.; Kristan, M.; Higgins, M.; El Wahed, A.A.; Goto, Y.; Islam, M.M.T.; et al. Dried Blood Spots (DBS): A suitable alternative to using whole blood samples for diagnostic testing of visceral leishmaniasis in the post-elimination era. PLoS Negl. Trop. Dis. 2023, 17, e0011680. [Google Scholar] [CrossRef]
- Sadones, N.; Capiau, S.; De Kesel, P.M.M.; Lambert, W.E.; Stove, C.P. Spot them in the spot: Analysis of abused substances using dried blood spots. Bioanalysis 2014, 6, 2211–2227. [Google Scholar] [CrossRef]
- Michely, J.A.; Meyer, M.R.; Maurer, H.H. Dried urine spots—A novel sampling technique for comprehensive LC-MSn drug screening. Anal. Chim. Acta 2017, 982, 112–121. [Google Scholar] [CrossRef]
- Moretti, M.; Manfredi, A.; Freni, F.; Previderé, C.; Osculati, A.M.M.; Grignani, P.; Tronconi, L.; Carelli, C.; Vignali, C.; Morini, L. A comparison between two different dried blood substrates in determination of psychoactive substances in postmortem samples. Forensic Toxicol. 2021, 39, 385–393. [Google Scholar] [CrossRef]
- Xie, F.; De Thaye, E.; Vermeulen, A.; Bocxlaer, J.V.; Colin, P. A dried blood spot assay for paclitaxel and its metabolites. J. Pharm. Biomed. Anal. 2018, 148, 307–315. [Google Scholar] [CrossRef]
- Chen, G. by high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 252–258. [Google Scholar] [CrossRef]
- Xue, K.S.; Cai, W.; Tang, L.; Wang, J.S. Aflatoxin B(1)-lysine adduct in dried blood spot samples of animals and humans. Food Chem. Toxicol. Assoc. 2016, 98, 210–219. [Google Scholar] [CrossRef]
- Ross, S.A.; Ahmed, A.; Palmer, A.L.; Michaels, M.G.; Sanchez, P.J.; Stewart, A.; Bernstein, D.I.; Feja, K.; Fowler, K.B.; Boppana, S.B.; et al. Newborn dried blood spot polymerase chain reaction to identify infants with congenital cytomegalovirus-associated sensorineural hearing loss. J. Pediatr. 2017, 184, 57–61. [Google Scholar] [CrossRef]
- Bassaganyas, L.; Freedman, G.; Vaka, D.; Wan, E.; Lao, R.; Chen, F.; Kvale, M.; Currier, R.J.; Puck, J.M.; Kwok, P.-Y. Whole exome and whole genome sequencing with dried blood spot DNA without whole genome amplification. Hum. Mutat. 2018, 39, 167–171. [Google Scholar] [CrossRef]
- Sadler, S.S.; Castañera, A.A.; Dias, M.J. Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J. Pharm. Biomed. Anal. 2018, 147, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Levy, H. Newborn screening. In Schaffer’s Diseases of the Newborn, Avey, M., Taeusch, H., Eds.; 5th ed.; WB Saunders: Philadelphia, PA, USA, 1984; pp. 60–64. [Google Scholar]
- Ashkar, T.; Ochilo, M. The application of the indirect fluorescent antibody test to samples of sera and dried blood from cattle in the Lambwe Valley, South Nyanza, Kenya. Bull. World Health Organ. 1972, 47, 769–772. [Google Scholar] [PubMed]
- Ambroise-Thomas, P.; Meyer, H.A. Hepatic amebiasis in the Kilimanjaro region. Serodiagnosis on micro-specimens of dried blood and attempts at treatment with tinidazole (fasigyn). Acta Trop. 1975, 32, 359–364. (In French) [Google Scholar]
- Farzadegan, H.; Noori, K.H.; Ala, F. Detection of hepatitis-B surface antigen in blood and blood products dried on filter paper. Lancet 1978, 1, 362–363. [Google Scholar] [CrossRef]
- Sander, J.; Niehaus, C. Rubella screening using the haemolysis-in-gel test from dried newborn blood on filter paper. Dtsch. Med. Wochenschr. 1980, 105, 827–829. [Google Scholar] [CrossRef]
- Barac, A.; Poljak, M.; Ong, D.S.Y. Innovative Approaches in Diagnosis of Emerging/Re-emerging Infectious Diseases. Front. Microbiol. 2020, 11, 619498. [Google Scholar] [CrossRef] [PubMed]
- Tuaillon, E.; Kania, D.; Pisoni, A.; Bollore, K.; Taieb, F.; Ngoyi, E.N.O.; Schaub, R.; Plantier, J.-C.; Makinson, A.; Van de Perre, P. Dried Blood Spot Tests for the Diagnosis and Therapeutic Monitoring of HIV and Viral Hepatitis B and C. Front. Microbiol. 2020, 11, 373. [Google Scholar] [CrossRef] [PubMed]
- Resnisk, L.; Veren, K.; Salahuddin, S.Z.; Tondreau, S.; Markham, P.D. Stability and inactivation of HTLV III/LAV under clinical and laboratorv environments. JAMA 1986, 255, 1887–1891. [Google Scholar] [CrossRef]
- Bond, W.W.; Favero, M.S.; Petersen, N.J.; Gravelle, C.R.; Ebert, J.W.; Maynard, J.E. Survival of hepatitis B virus after drying for one week. Lancet 1981, 1, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Balashova, E.E.; Trifonova, O.P.; Maslov, D.L.; Lokhov, P.G. Application of dried blood spot for analysis of low molecular weight fraction (metabolome) of blood. Health Prim. Car. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Zakaria, R.; Allen, K.J.; Koplin, J.J.; Roche, P.; Greaves, R.F. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC. 2016, 27, 288–317. [Google Scholar]
- Yang, Y.R.; Craig, P.S.; Vuitton, D.A.; Williams, G.M.; Sun, T.; Liu, T.X.; Boufana, B.; Giraudoux, P.; Teng, J.; Li, Y.; et al. Serolo- gical prevalence of echinococcosis and risk factors for infection among children in rural communities of southern Ningxia, China. Trop. Med. Int. Health 2008, 13, 1086–1094. [Google Scholar] [CrossRef]
- Coltorti, E.; Guarnera, E.; Larrieu, E.; Santillán, G.; Aquino, A. Seroepidemiology of human hydatidosis: Use of dried blood samples on filter paper. Trans. R. Soc. Trop. Med. Hyg. 1988, 82, 607–610. [Google Scholar] [CrossRef]
- Bartholomot, G.; Vuitton, D.A.; Harraga, S.; Shi, D.Z.; Giraudoux, P.; Barnish, G.; Wang, Y.H.; MacPherson, C.N.L.; Craig, P.S. Combined ultrasound and serologic screening for hepatic alveolar echinococcosis in central China. Am. J. Trop. Med. Hyg. 2002, 66, 23–29. [Google Scholar] [CrossRef]
- Kenny, J.V.; MacCabe, R.J. Sero-epidemiology of hydatid disease in the non-intervention area of north-east Turkana. Ann. Trop. Med. Parasitol. 1993, 87, 45–47. [Google Scholar] [CrossRef]
- Sánchez, A.G.; Alvarellos, E.; Kohout, I.; Schulz, D.G.R. Corde Detection of Trypanosoma cruzi and treatment monitoring by PCR from dried blood spot samples in children. Rev. Fac. Cien. Med. Univ. Nac. Cordoba 2016, 73, 176–180. [Google Scholar]
- Silgado, A.; Bosch-Nicolau, P.; Sánchez-Montalvá, A.; Cerviá, A.; Prat, J.G.I.; Bagaria, G.; Rodriguez, R.; Goterris, L.; Serre-Delcor, N.; Oliveira-Souto, I.; et al. Opportunistic community screening of chronic Chagas Disease using a rapid diagnosis test in pharmacies in Barcelona (Catalonia, Spain): Study protocol and pilot phase results. Int. J. Public Health 2022, 67, 1605386. [Google Scholar] [CrossRef] [PubMed]
- Palacios, X.; Belli, A.; Espino, A.M. Detection of antibodies against Trypanosoma cruzi in Somoto, Nicaragua, using indirect ELISA and IFI on blood samples on filter paper. Rev. Panam. Salud Pública 2000, 8, 411–417. (In Spanish) [Google Scholar] [CrossRef]
- de Aquino Santana, M.; da Silva Ferreira, A.L.; Dos Santos, L.V.B.; Campos, J.H.F.; de Sena, L.L.J.; Mendonça, V.J. Seroprevalence of Chagas disease in rural communities at Campinas do Piauí city, Brazil. Trop. Med. Int. Health 2021, 26, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.R.D.; Euzébio, D.M.; Oliveira, G.G.; Chagas, M.S.; Ferreira, A.R.; Mendonça, L.A.; Correia, D.; da Silva, A.M. Systematic neonatal screening for congenital Chagas disease in Northeast Brazil: Prevalence of Trypanosoma cruzi infection in the Southern region of Sergipe. Rev. Soc. Bras. Med. Trop. 2018, 51, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Daag, J.V.; Ylade, M.; Jadi, R.; Adams, C.; Cuachin, A.M.; Alpay, R.; Aportadera, E.T.C.; Yoon, I.-K.; de Silva, A.M.; Lopez, A.L.; et al. Performance of dried blood spots compared with serum samples for measuring dengue seroprevalence in a cohort of children in Cebu, Philippines. Am. J. Trop. Med. Hyg. 2021, 104, 130–135. [Google Scholar] [CrossRef]
- Maldonado-Rodríguez, A.; Rojas-Montes, O.; Vazquez-Rosales, G.; Chavez-Negrete, A.; Rojas-Uribe, M.; Posadas-Mondragon, A.; Aguilar-Faisal, L.; Cevallos, A.M.; Xoconostle-Cazares, B.; Lira, R. Serum dried samples to detect dengue antibodies: A field study. Biomed. Res. Int. 2017, 2017, 7215259. [Google Scholar] [CrossRef]
- Würsch, D.; Rojas-Montes, O.; Maldonado-Rodríguez, A.; Sevilla-Reyes, E.; Cevallos, A.M.; Sànchez-Burgos, G.; Chàvez-Negrete, A.; Lira, R. Dried serum samples for antibody detection in arthropod-borne virus infections are an effective alternative to serum samples. Am. J. Trop. Med. Hyg. 2023, 109, 933–936. [Google Scholar] [CrossRef]
- Ruangturakit, S.; Rojanasuphot, S.; Srijuggravanvong, A.; Duangchanda, S.; Nuangplee, S.; Igarashi, A. Storage stability of dengue IgM and IgG antibodies in whole blood and serum dried on filter paper strips detected by ELISA. Southeast Asian J. Trop. Med. Public Health 1994, 25, 560–564. [Google Scholar]
- Magalhaes, T.; Portilho, M.M.; Moreira, P.S.S.; Marinho, M.L.; Dias, W.P.; Gonçalves, N.M.; Rodrigues, O.A.S.; Montes, J.; Reis, L.; Jesus, D.F.; et al. Validation of the use of dried blood spots in a chikungunya virus IgG serological assay. J. Immunol. Methods 2023, 522, 113571. [Google Scholar] [CrossRef]
- Arkell, P.; Angelina, J.; do Carmo Vieira, A.; Wapling, J.; Marr, I.; Monteiro, M.; Matthews, A.; Amaral, S.; da Conceicao, V.; Kim, S.H.; et al. Integrated serological surveillance of acute febrile illness in the context of a lymphatic filariasis survey in Timor-Leste: A pilot study using dried blood spots. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 531–537. [Google Scholar] [CrossRef]
- Bradbury, R.S.; Arguello, I.; Lane, M.; Cooley, G.; Handali, S.; Dimitrova, S.D.; Nascimento, F.S.; Jameson, S.; Hellman, K.; Tharp, M. Parasitic infection surveillance in Mississippi Delta children. Am. J. Trop. Med. Hyg. 2020, 103, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Strauss, W.; O’Neill, S.M.; Parkinson, M.; Angles, R.; Dalton, J.P. Short report: Diagnosis of human fascioliasis: Detection of anti-cathepsin L antibodies in blood samples collected on filter paper. Am. J. Trop. Med. Hyg. 1999, 60, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Toledo, R.; Esteban, J.G.; Fried, B. Current status of food-borne trematode infections. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- Inocencio da Luz, R.; Phanzu, D.M.; Kiabanzawoko, O.N.; Miaka, E.; Verlé, P.; De Weggheleire, A.; Büscher, P.; Hasker, E.; Boelaert, M. Feasibility of a dried blood spot strategy for serological screening and surveillance to monitor elimination of Human African Trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl. Trop. Dis. 2021, 15, e0009407. [Google Scholar] [CrossRef] [PubMed]
- Compaoré, C.F.A.; Kaboré, J.; Ilboudo, H.; Thomas, L.F.; Falzon, L.C.; Bamba, M.; Sakande, H.; Koné, M.; Kaba, D.; Bougouma, C.; et al. Monitoring the elimination of gambiense human African trypanosomiasis in the historical focus of Batié, South-West Burkina Faso. Parasite 2022, 29, 25. [Google Scholar] [CrossRef]
- Hasker, E.; Lutumba, P.; Mumba, D.; Lejon, V.; Büscher, P.; Kande, V.; Muyembe, J.J.; Menten, J.; Robays, J.; Boelaert, M. Diagnostic accuracy and feasibility of serological tests on filter paper samples for outbreak detection of T.b. gambiense human African trypanosomiasis. Am. J. Trop. Med. Hyg. 2010, 83, 374–379. [Google Scholar] [CrossRef]
- Camara, O.; Camara, M.; Lejon, V.; Ilboudo, H.; Sakande, H.; Léno, M.; Büscher, P.; Bucheton, B.; Jamonneau, V. Immune trypanolysis test with blood spotted on filter paper for epidemiological surveillance of sleeping sickness. Trop. Med. Int. Health 2014, 19, 828–831. [Google Scholar] [CrossRef]
- Elrayah, I.E.; Rhaman, M.A.; Karamalla, L.T.; Khalil, K.M.; Büscher, P. Evaluation of serodiagnostic tests for T.b. gambiense human African trypanosomiasis in southern Sudan. East. Mediterr. Health J. 2007, 13, 1098–1107. [Google Scholar] [CrossRef]
- Hasnain, M.G.; Ghosh, P.; Baker, J.; Mondal, D. An evaluation of the performance of direct agglutination test on filter paper blood sample for the diagnosis of visceral leishmaniasis. Am. J. Trop. Med. Hyg. 2014, 91, 342–344. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Mondal, D.; Alvar, J.; Moreno, J.; Carillo, E. Cytokines and chemokines measured in dried SLA-stimulated whole blood spots for asymptomatic Leishmania infantum and Leishmania donovani infection. Sci. Rep. 2017, 7, 17266. [Google Scholar] [CrossRef]
- Mbati, P.A.; Githure, J.I.; Kagai, J.M.; Kirigi, G.; Kibati, F.; Wasunna, K.; Koech, D.K. Evaluation of a standardized direct agglutination test (DAT) for the diagnosis of visceral leishmaniasis in Kenya. Ann. Trop. Med. Parasitol. 1999, 93, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Richardus, R.A.; van der Zwet, K.; van Hooij, A.; Wilson, L.; Oskam, L.; Faber, R.; van den Eeden, S.J.F.; Pahan, D.; Alam, K.; Richardus, J.H.; et al. Longitudinal assessment of anti-PGL-I serology in contacts of leprosy patients in Bangladesh. PLoS Negl. Trop. Dis. 2017, 11, e0006083. [Google Scholar] [CrossRef]
- Nasution, K.; Nadeak, K.; Lubis, S.R. IgM anti PGL-1 antibody level in patients with leprosy: A comparative study between ear lobes capillary and median cubital vein blood samples. J. Med. Sci. 2018, 6, 1346–1348. [Google Scholar] [CrossRef]
- Reeve, D.; Melrose, W. Evaluation of the Og34C filter paper technique in lymphatic filariasis prevalence studies. Lymphology 2014, 47, 65–72. [Google Scholar] [PubMed]
- Ansel Vishal, L.; Nazeer, Y.; Ravishankaran, R.; Mahalakshmi, N.; Kaliraj, P. Evaluation of rapid blood sample collection in the detection of circulating filarial antigens for epidemiological survey by rWbSXP-1 capture assay. PLoS ONE 2014, 9, e102260. [Google Scholar] [CrossRef]
- Masson, J.; Douglass, J.; Roineau, M.; Aye, K.S.; Htwe, K.M.; Warner, J.; Graves, P.M. Concordance between plasma and filter paper sampling techniques for the lymphatic filariasis Bm14 antibody ELISA. Trop. Med. Infect. Dis. 2017, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.; Douglass, J.; Roineau, M.; Aye, K.S.; Htwe, K.M.; Warner, J.; Graves, P.M. Relative performance and predictive values of plasma and dried blood spots with filter paper sampling techniques and dilutions of the lymphatic filariasis Og4C3 antigen ELISA for samples from Myanmar. Trop. Med. Infect. Dis. 2017, 2, 7. [Google Scholar] [CrossRef]
- Herrador, Z.; Garcia, B.; Ncogo, P.; Perteguer, M.J.; Rubio, J.M.; Rivas, E.; Cimas, M.; Ordoñez, G.; de Pablos, S.; Hernàndez-Gonzàlez, A.; et al. Interruption of onchocerciasis transmission in Bioko Island: Accelerating the movement from control to elimination in Equatorial Guinea. PLoS Negl. Trop. Dis. 2018, 12, e0006471. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.A.; Danis-Lozano, R.; Rodríguez, M.H.; Bradley, J.E. Application of an enzyme-linked immunosorbent assay to detect antibodies to Onchocerca volvulus on filter-paper blood spots: Effect of storage and temperature on antibody decay. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 523–524. [Google Scholar] [CrossRef]
- Rakers, L.J.; Emukah, E.; Kahansim, B.; Nwoke, B.E.B.; Miri, E.S.; Griswold, E.; Davies, E.; Ityonzughul, C.; Anyaike, C.; Agbi, P.; et al. Assessing hypoendemic onchocerciasis in Loa loa endemic areas of Southeast Nigeria. Am. J. Trop. Med. Hyg. 2020, 103, 2328–2335. [Google Scholar] [CrossRef]
- Tilli, M.; Botta, A.; Mantella, A.; Nuti, B.; Bartoloni, A.; Boccalini, S.; Zammarchi, L. Community-based seroprevalence survey of schistosomiasis and strongyloidiasis by means of dried blood spot testing on Sub-Saharan migrants resettled in Italy. New Microbiol. 2021, 44, 62–65. [Google Scholar]
- Downs, J.A.; Corstjens, P.L.; Mngara, J.; Lutonja, P.; Isingo, R.; Urassa, M.; Kornelis, D.; van Dam, G.J. Correlation of serum and dried blood spot results for quantitation of Schistosoma circulating anodic antigen: A proof of principle. Acta Trop. 2015, 150, 59–63. [Google Scholar] [CrossRef]
- Downs, J.A.; Dupnik, K.M.; van Dam, G.J.; Urassa, M.; Lutonja, P.; Kornelis, D.; de Dood, C.J.; Hoekstra, P.; Kanjala, C.; Isingo, R.; et al. Effects of schistosomiasis on susceptibility to HIV-1 infection and HIV-1 viral load at HIV-1 seroconversion: A nested case-control study. PLoS Negl. Trop. Dis. 2017, 11, e0005968. [Google Scholar] [CrossRef]
- Senyonjo, L.; Addy, J.; Martin, D.L.; Agyemang, D.; Yeboah-Manu, D.; Gwyn, S.; Marfo, B.; Asante-Poku, A.; Aboe, A.; Mensah, E.; et al. Surveillance for peri-elimination trachoma recrudescence: Exploratory studies in Ghana. PLoS Negl. Trop. Dis. 2021, 15, e0009744. [Google Scholar] [CrossRef] [PubMed]
- Sata, E.; Seife, F.; Ayele, Z.; Murray, S.A.; Wickens, K.; Le, P.; Zerihun, M.; Melak, B.; Chernet, A.; Jensen, K.A.; et al. Wait and watch: A trachoma surveillance strategy from Amhara region, Ethiopia. PLoS Negl. Trop. Dis. 2024, 18, e0011986. [Google Scholar] [CrossRef] [PubMed]
- Butcher, R.; Tagabasoe, J.; Manemaka, J.; Bong, A.; Garae, M.; Daniel, L.; Roberts, C.; Handley, B.L.; Hu, V.H.; Harding-Esch, E.M.; et al. Conjunctival scarring, corneal pannus, and herbert’s Pits in adolescent children in trachoma-endemic populations of the Solomon Islands and Vanuatu. Clin. Infect. Dis. 2021, 73, e2773–e2780. [Google Scholar] [CrossRef] [PubMed]
- Cama, A.; Müller, A.; Taoaba, R.; Butcher, R.M.R.; Itibita, I.; Migchelsen, S.J.; Kiauea, T.; Pickering, H.; Willis, R.; Roberts, C.H.; et al. Prevalence of signs of trachoma, ocular Chlamydia trachomatis infection and antibodies to Pgp3 in residents of Kiritimati Island, Kiribati. PLoS Negl. Trop. Dis. 2017, 11, e0005863. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.M.; Elshafie, B.E.; Abdalla, Z.; Simmons, C.; Goodhew, E.B.; Gonzalez, T.A.; Nute, A.W.; Mohammed, A.; Callahan, E.K.; Martin, D.L.; et al. Serological responses to trachoma antigens prior to the start of mass drug administration: Results from population-based Baseline Surveys, North Darfur, Sudan. Am. J. Trop. Med. Hyg. 2024, tpmd230608. [Google Scholar]
- Perine, P.L.; Nelson, J.W.; Lewis, J.O.; Liska, S.; Hunter, E.F.; Larsen, S.A.; Agadzi, V.K.; Kofi, F.; Ofori, J.A.; Tam, M.R.; et al. New technologies for use in the surveillance and control of yaws. Rev. Infect. Dis. 1985, 7 (Suppl. S2), S295–S299. [Google Scholar] [CrossRef]
- Cooley, G.M.; Mitja, O.; Goodhew, B.; Pillay, A.; Lammie, P.J.; Castro, A.; Moses, P.; Chen, C.; Ye, T.; Ballard, R.; et al. Evaluation of multiplex-based antibody testing for use in large-scale surveillance for yaws: A comparative study. J. Clin. Microbiol. 2016, 54, 1321–1325. [Google Scholar] [CrossRef]
- Ishida, M.M.; Almeida, M.S.; Espíndola, N.M.; Iha, A.; Pereira, D.A.; de Souza, J.G.; Varvakis, T.R.; Vaz, A.J. Seroepidemiological study of human cysticercosis with blood samples collected on filter paper, in Lages, State of Santa Catarina, Brazil, 2004–2005. Rev. Soc. Bras. Med. Trop. 2011, 44, 339–343. [Google Scholar] [CrossRef]
- Jafri, H.S.; Torrico, F.; Noh, J.C.; Bryan, R.T.; Balderrama, F.; Pilcher, J.B.; Tsang, V.C. Application of the enzyme-linked immunoelectrotransfer blot to filter paper blood spots to estimate seroprevalence of cysticercosis in Bolivia. Am. J. Trop. Med. Hyg. 1998, 58, 313–315. [Google Scholar] [CrossRef]
- Peralta, R.H.; Macedo, H.W.; Vaz, A.J.; Machado, L.R.; Perlata, J.M. Detection of anti-cysticercus antibodies by ELISA using whole blood collected on filter paper. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 35–36. [Google Scholar] [CrossRef]
- Wang, L.N.; Ge, L.Y.; Miao, F.; Yu, Z.; Liu, Y.; Zhen, T.; Li, G.; Yang, S. Application of EITB in immunodiagnosis of cysticercosis. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2004, 22, 98–100. (In Chinese) [Google Scholar]
- Poole, C.; Barker, T.; Bradbury, R.; Capone, D.; Chatham, A.H.; Handali, S.; Rodriguez, E.; Qvarnstrom, Y.; Brown, J. Cross-sectional study of soil-transmitted helminthiases in black belt region of Alabama, USA. Emerg. Infect. Dis. 2023, 29, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Formenti, F.; Buonfrate, D.; Prandi, R.; Marquez, M.; Caicedo, C.; Rizzi, E.; Guevara, A.G.; Vicuña, Y.; Huerlo, F.R.; Perandin, F.; et al. Comparison of S. stercoralis serology performed on dried blood spots and on conventional serum samples. Front. Microbiol. 2016, 7, 1778. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, A.; Makene, T.; Kinabo, C.; Ogwengo, G.; Lyamuya, F.; Ngasala, B. Dried urine spot method for detection of Schistosoma mansoni circulating cathodic antigen in resource-limited settings: A proof of concept study. Front. Immunol. 2023, 14, 1216710. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, A.; Kinabo, C.; Makene, T.; Omary, H.; Ogweno, G.; Lyamuya, F.; Ngasala, B. Accuracy and precision of dried urine spot method for the detection of Schistosoma mansoni circulating cathodic antigens in resource-limited settings. Infect. Dis. Poverty 2024, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Fleury, A.; Bouteille, B.; Garcia, E.; Marquez, C.; Preux, P.M.; Escobedo, F.; Sotelo, J.; Dumas, M. Neurocysticercosis: Validity of ELISA after storage of whole blood and cerebrospinal fluid on paper. Trop. Med. Int. Health 2001, 6, 688–693. [Google Scholar] [CrossRef]
- Wasniewski, M.; Barrat, J.; Combes, B.; Guiot, A.L.; Cliquet, F. Use of filter paper blood samples for rabies antibody detection in foxes and raccoon dogs. J. Virol. Methods 2014, 204, 11–16. [Google Scholar] [CrossRef]
- Wasniewski, M.; Barrat, J.; Maiez, S.B.; Kharmachi, H.; Handous, M.; Cliquet, F. Filter papers to collect blood samples from dogs: An easier way to monitor the mass vaccination campaigns against rabies? Viruses 2022, 14, 711. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S.A.; García Casares, L.J.; Muñoz-Calderón, A.A.; Alonso-Padilla, J.; Schijman, A.G. Combination of ultra-rapid DNA purification (PURE) and loop-mediated isothermal amplification (LAMP) for rapid detection of Trypanosoma cruzi DNA in dried blood spots. PLoS Negl. Trop. Dis. 2023, 17, e0011290. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, I.; Kirstein, O.D.; Hailu, A.; Warburg, A. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop. 2016, 162, 20–26. [Google Scholar] [CrossRef]
- Hossain, F.; Picado, A.; Owen, S.I.; Ghosh, P.; Chowdhury, R.; Maruf, S.; Khan, M.A.A.; Rashid, M.U.; Nath, R.; Baker, J.; et al. Evaluation of Loopamp™ Leishmania Detection Kit and Leishmania Antigen ELISA for post-elimination detection and management of visceral Leishmaniasis in Bangladesh. Front. Cell. Infect. Microbiol. 2021, 11, 670759. [Google Scholar] [CrossRef] [PubMed]
- Lodh, N.; Mikita, K.; Bosompem, K.M.; Anyan, W.K.; Quartey, J.K.; Otchere, J.; Shiff, C.J. Point of care diagnosis of multiple schistosome parasites: Species-specific DNA detection in urine by loop-mediated isothermal amplification (LAMP). Acta Trop. 2017, 173, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Mejia, M.F.A.; Pei-Yun, S.; Dar-Der, J. RNA Isolation and RT-qPCR for Dengue, Chikungunya and Zika Viruses. 2023. Available online: https://www.protocols.io/view/rna-isolation-and-rt-qpcr-for-dengue-chikungunya-a-5qpvo5p59l4o/v1 (accessed on 26 April 2024).
- Stienstra, Y.; van der Werf, T.S.; Oosterom, E.; Nolte, I.M.; van der Graaf, W.T.A.; Etuaful, S.; Raghunathan, P.L.; Whitney, E.A.S.; Ampadu, E.O.; Asamoa, K.; et al. Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun. 2006, 7, 185–189. [Google Scholar] [CrossRef]
- Chiurillo, M.A.; Sachdeva, M.; Dole, V.S.; Yepes, Y.; Miliani, E.; Vazquez, L.; Rojas, A.; Crisante, G.; Guevara, P.; Añez, N.; et al. Detection of Leishmania causing visceral leishmaniasis in the Old and New Worlds by a polymerase chain reaction assay based on telomeric sequences. Am. J. Trop. Med. Hyg. 2001, 65, 573–582. [Google Scholar] [CrossRef]
- Vitale, A.; Rey, J.; Fermepin, M.R.; Vaulet, L.G. Trypanosoma cruzi DNA detection by PCR in dried blood spots preserved in filter paper. Open Forum Infect. Dis. 2018, 5 (Suppl. S1), S600. [Google Scholar] [CrossRef]
- Supali, T.; Ismid, I.S.; Wibowo, H.; Djuardi, Y.; Majawati, E.; Ginanjar, P.; Fischer, P. Estimation of the prevalence of lymphatic filariasis by a pool screen PCR assay using blood spots collected on filter paper. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 753–759. [Google Scholar] [CrossRef]
- Fischer, P.; Wibowo, H.; Pischke, S.; Rückert, P.; Liebau, E.; Ismid, I.S.; Supali, T. PCR-based detection and identification of the filarial parasite Brugia timori from Alor Island, Indonesia. Ann. Trop. Med. Parasitol. 2002, 96, 809–821. [Google Scholar] [CrossRef]
- Aubry, M.; Roche, C.; Dupont-Rouzeyrol, M.; Aaskov, J.; Viallon, J.; Marfel, M.; Lalita, P.; Elbourne-Duituturaga, S.; Chanteau, S.; Musso, D.; et al. Use of serum and blood samples on filter paper to improve the surveillance of Dengue in Pacific Island Countries. J. Clin. Virol. 2012, 55, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Curren, E.J.; Tufa, A.J.; Hancock, W.T.; Biggerstaff, B.J.; Vaifanua-Leo, J.S.; Montalbo, C.A.; Sharp, T.M.; Fischer, M.; Hills, S.L.; Gould, C.V. Reverse transcription-polymerase chain reaction testing on filter paper-dried serum for laboratory-based dengue surveillance-American Samoa, 2018. Am. J. Trop. Med. Hyg. 2020, 102, 622–624. [Google Scholar] [CrossRef]
- Matheus, S.; Chappert, J.L.; Cassadou, S.; Berger, F.; Labeau, B.; Bremand, L.; Winicki, A.; Huc-Anais, P.; Quenel, P.; Dussart, P. Virological surveillance of dengue in Saint Martin and Saint Barthelemy, French West Indies, using blood samples on filter paper. Am. J. Trop. Med. Hyg. 2012, 86, 159–165. [Google Scholar] [CrossRef]
- Matheus, S.; Meynard, J.B.; Lacoste, V.; Morvan, J.; Deparis, X. Use of capillary blood samples as a new approach for diagnosis of Dengue virus infection. J. Clin. Microbiol. 2007, 45, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Mumba Ngoyi, D.; Ali Ekangu, R.; Mumvemba Kodi, M.F.; Pyana, P.P.; Balharbi, F.; Decq, M.; Betu, V.K.; der Veken, W.V.; Sese, C.; Menten, J.; et al. Performance of parasitological and molecular techniques for the diagnosis and surveillance of gambiense sleeping sickness. PLoS Negl. Trop. Dis. 2014, 8, e2954. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawabreh, A.; Dumaidi, K.; Ereqat, S.; Nasereddin, A.; Azmi, K.; Al-Jawabreh, H.; Al-Latam, N.; Abdeen, Z. A comparison of the efficiency of three sampling methods for use in the molecular and conventional diagnosis of cutaneous leishmaniasis. Acta Trop. 2018, 182, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Mota, C.A.; Venazzi, E.A.S.; Zanzarini, P.D.; Aristides, S.M.A.; Lonardoni, M.V.C.; Silveira, T.G.V. Filter paper performance in pcr for cutaneous leishmaniasis diagnosis. Rev. Soc. Bras. Med. Trop. 2021, 54, 1–5. [Google Scholar] [CrossRef]
- de Morais, R.C.S.; de Melo, M.G.N.; de Goes, T.C.; Silva, R.P.E.; de Morais, R.F.; de Oliveira Guerra, J.A.; de Brito, M.E.F.; Brandão-Filho, S.P.; de Paiva Cavalcanti, M. Duplex qPCR for Leishmania species identification using lesion imprint on filter paper. Exp. Parasitol. 2020, 219, 108019. [Google Scholar] [CrossRef]
- Lima, T.; Martínez-Sogues, L.; Montserrat-Sangrà, S.; Solano-Gallego, L.; Ordeix, L. Diagnostic performance of a qPCR for Leishmania on stained cytological specimens and on filter paper impressions obtained from cutaneous lesions suggestive of canine leishmaniosis. Vet. Dermatol. 2019, 30, 318-e89. [Google Scholar] [CrossRef]
- Alam, M.Z.; Shamsuzzaman, A.K.M.; Kuhls, K.; Schönian, G. PCR diagnosis of visceral leishmaniasis in an endemic region, Mymensingh district, Bangladesh. Trop. Med. Int. Health 2009, 14, 499–503. [Google Scholar] [CrossRef]
- Ibironke, O.A.; Phillips, A.E.; Garba, A.; Lamine, S.M.; Shiff, C. Diagnosis of Schistosoma haematobium by detection of specific DNA fragments from filtered urine samples. Am. J. Trop. Med. Hyg. 2011, 84, 998–1001. [Google Scholar] [CrossRef]
- Lodh, N.; Naples, J.M.; Bosompem, K.M.; Quartey, J.; Shiff, C.J. Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections of Schistosoma mansoni and S. haematobium from endemic areas in Ghana. PLoS ONE 2014, 9, e91144. [Google Scholar] [CrossRef]
- Ibironke, O.; Koukounari, A.; Asaolu, S.; Moustaki, I.; Shiff, C. Validation of a new test for Schistosoma haematobium based on detection of Dra1 DNA fragments in urine: Evaluation through latent class analysis. PLoS Negl. Trop. Dis. 2012, 6, e1464. [Google Scholar] [CrossRef]
- Fuss, A.; Mazigo, H.D.; Mueller, A. Detection of Schistosoma mansoni DNA using polymerase chain reaction from serum and dried blood spot card samples of an adult population in North-western Tanzania. Infect. Dis. Poverty 2021, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Choudry, J.; Mahmoud, E.S.; Lodh, N. Accurate diagnosis of Schistosoma mansoni and S. haematobium from filtered urine samples collected in Tanzania, Africa. Pathogens 2024, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Wacharapluesadee, S.; Phumesin, P.; Lumlertdaecha, B.; Hemachudha, T. Diagnosis of rabies by use of brain tissue dried on filter paper. Clin. Infect. Dis. 2003, 36, 674–675. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Ishii, A.; Segawa, T.; Takagi, Y.; Kobayashi, Y.; Itou, T. Establishing conditions for the storage and elution of rabies virus RNA using FTA(®) cards. J. Vet. Med. Sci. 2015, 77, 461–465. [Google Scholar] [CrossRef] [PubMed]
Disease | Material | Diagnostic Assay | Reference |
---|---|---|---|
Buruli ulcer | DBS | qPCR | [91] |
Echinococcosis | DBS | immunoenzymatic assay | [30,31,32,33] |
Chagas disease | DBS | immunoenzymatic assay | [34,35,37,38] |
LAMP | [86] | ||
gel-based PCR | [34,93] | ||
Dengue and chikungunya | DBS, DSS | immunoenzymatic assay | [39,40,41,42,43,44] |
DBS | RT-PCR, qPCR | [90] | |
gel-based PCR, RT-PCR | [96,97,98,99] | ||
Foodborne trematodiases | DBS | immunoenzymatic assay | [45,46,47] |
Human African trypanosomiasis | DBS | immunoenzymatic assay | [48,49,50,51,52] |
gel-based PCR | [100] | ||
Leishmaniasis | DBS | immunoenzymatic assay | [8,53,54,55] |
LAMP | [87,88] | ||
qPCR | [53,87] | ||
gel-based PCR | [101,102,103,104,105] | ||
Leprosy | DBS | immunoenzymatic assay | [56,57] |
Lymphatic filariasis | DBS | immunoenzymatic assay | [58,59,60,61] |
gel-based PCR | [94,95] | ||
Onchocerciasis | DBS | immunoenzymatic assay | [62,63,64] |
gel-based PCR | [62] | ||
Schistosomiasis | DBS, DUS | immunoenzymatic assay | [65,66,67,81,82] |
gel-based PCR | [106,107,108,109,110] | ||
DUS | LAMP | [87] | |
Trachoma | DBS | immunoenzymatic assay | [68,69,70,71,72] |
Yaws | DBS | immunoenzymatic assay | [73,74] |
Taeniasis and cysticercosis | DBS, dried cerebrospinal fluid spot | immunoenzymatic assay | [75,76,77,78,83] |
Soil-transmitted helminthiases | DBS | immunoenzymatic assay | [45,79,80] |
Rabies | DBS | immunoenzymatic assay | [84,85] |
RT-PCR | [111] | ||
animal brain samples applied to filter paper | RT-hn-PCR | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richert, W.; Korzeniewski, K. The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases. Pathogens 2024, 13, 734. https://doi.org/10.3390/pathogens13090734
Richert W, Korzeniewski K. The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases. Pathogens. 2024; 13(9):734. https://doi.org/10.3390/pathogens13090734
Chicago/Turabian StyleRichert, Wanesa, and Krzysztof Korzeniewski. 2024. "The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases" Pathogens 13, no. 9: 734. https://doi.org/10.3390/pathogens13090734
APA StyleRichert, W., & Korzeniewski, K. (2024). The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases. Pathogens, 13(9), 734. https://doi.org/10.3390/pathogens13090734