Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Biological Material
2.2.1. Obtaining Duddingtonia flagrans Chlamydospores
2.2.2. Obtaining Infective Haemonchus contortus Larvae (L3)
2.2.3. Obtaining Artemisia cina n-Hexane Extract
2.3. Animals
2.4. Experimental Groups
2.5. Statistical Analysis
3. Results
3.1. Reduction in Haemonchus contortus Egg Population Recovered from Feces Attributed to Effect of Different Treatments
3.2. Reduction in Infective Haemonchus contortus Larvae Population (L3) Recovered from Feces Attributed to Effect of Different Treatments
4. Discussion
4.1. Reduction in Haemonchus contortus Egg Population Recovered from Feces Attributed to Effect of Different Treatments
4.2. Reduction in Infective H. contortus Larvae Population (L3) Recovered from Feces Attributed to the Effect of the Different Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar] [PubMed]
- Naeem, M.; Iqbal, Z.; Roohi, N. Ovine haemonchosis: A review. Trop. Anim. Health Prod. 2021, 53, 19. [Google Scholar] [CrossRef] [PubMed]
- Crilly, J.P.; Evans, M.; Tähepõld, K.; Sargison, N. Haemonchosis: Dealing with the increasing threat of the barber’s pole worm. Livestock 2020, 25, 237–246. [Google Scholar] [CrossRef]
- Muñoz-Guzmán, M.A.; Cuenca-Verde, C.; Valdivia-Anda, G.; Cuéllar-Ordaz, J.A.; Alba-Hurtado, F. Differential immune response between fundic and pyloric abomasal regions upon experimental ovine infection with Haemonchus contortus. Vet. Parasitol. 2012, 185, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Höglund, J.; Carlsson, A.; Gustafsson, K. Effects of lambing season on nematode fecal egg output in ewes. Vet. Parasitol. Reg. Stud. Rep. 2021, 26, 100633. [Google Scholar]
- Bassetto, C.C.; Albuquerque, A.C.A.; Lins, J.G.G.; Marinho-Silva, N.M.; Chocobar, M.L.; Bello, H.J.; Mena, M.O.; Niciura, S.C.M.; Amarante, A.F.T.; Chagas, A.C.S. Revisiting anthelmintic resistance in sheep flocks from Sao Paulo State, Brazil. Int. J. Parasitol. Drugs Drug Resist. 2024, 24, 100527. [Google Scholar] [CrossRef] [PubMed]
- Ng’etich, A.I.; Amoah, I.D.; Bux, F.; Kumari, S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol. Res. 2024, 123, 62. [Google Scholar] [CrossRef]
- Avcı, B.; Filazi, A. The effects of heat applications on macrocyclic lactone-structured antiparasitic drug residues in cows’ milk. Food Addit. Contam. Part A 2020, 37, 1145–1155. [Google Scholar] [CrossRef]
- Pérez-Cogollo, L.C.; Rodríguez-Vivas, R.I.; Basto-Estrella, G.D.S.; Reyes-Novelo, E.; Martínez-Morales, I.; Ojeda-Chi, M.M.; Favila, M.E. Toxicity and adverse effects of macrocyclic lactones on dung beetles: A review. Rev. Mex. Biodivers. 2018, 89, 1293–1314. [Google Scholar]
- Gilaverte-Hentz, S.; Reye- Reyes, F.G.; Kaschuk, G.; Bittencourt-de Oliveira, L.; Machado-Fernandes, M.A.; Gomes-Monteiro, A.L. Does Faeces Excreted by Moxidectin-Treated Sheep Impact Coprophagous Insects and the Activity of Soil Microbiota in Subtropical Pastures? Scientifica 2024, 2024, 1960065. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, M.; Gebeyaw, D.T.; Kefale, D.; Kang, Y. Overview of nematophagous fungi, isolation techniques, and their role in biological control of helminthic parasites: A literature review. Acta Entomol. Zool. 2024, 5, 133–143. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Ran, Y.; Zhang, K.Q.; Li, G.H. AfLaeA, a global regulator of mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in the nematode-trapping fungus Arthrobotrys flagrans. Microbiol. Spectr. 2023, 11, e00186-23. [Google Scholar] [CrossRef]
- Delmilho, G.; Bohland, E.; Stephanie, N.; Vaz, C.C.D.; Alvarez, L.R.D.; Costa, R.L.D. Evaluation of the supply of Duddingtonia flagrans for the control of gastrointestinal parasites in sheep. An. Acad. Bras. Ciências 2024, 96, e20220940. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jiang, L.; Fan, Z.; Hao, L.; Li, Z.; Zhang, Y.; Li, Q.; Wang, R.; Luo, H. Nematode controlling effects and safety tests of Duddingtonia flagrans biological preparation in sheep. Sci. Rep. 2025, 15, 1843. [Google Scholar] [CrossRef] [PubMed]
- Chavarría-Joya, L.; Alonso-Díaz, M.Á.; Olmedo-Juárez, A.; Von Son-de Fernex, E.; Mendoza-de-Gives, P. Assessing the individual and combined use of Caesalpinia coriaria (Plantae: Fabaceae) and Duddingtonia flagrans (Fungi: Orbiliaceae) as sustainable alternatives of control of sheep parasitic nematodes. Biocontrol Sci. Technol. 2022, 32, 1260–1274. [Google Scholar] [CrossRef]
- Arango-De la Pava, L.D.; González-Cortázar, M.; Zamilpa, A.; Cuéllar-Ordaz, J.A.; de la Cruz-Cruz, H.A.; Higuera-Piedrahita, R.I.; López-Arellano, R. Bio-guided isolation of a new sesquiterpene from Artemisia cina with anthelmintic activity against Haemonchus contortus L3 infective larvae. PLoS ONE 2024, 19, e0305155. [Google Scholar] [CrossRef] [PubMed]
- Llerandi-Juárez, R.D.; Mendoza-de Gives, P. Resistance of chlamydospores of nematophagous fungi to the digestive processes of sheep in Mexico. J. Helminthol. 1998, 72, 155–158. [Google Scholar] [CrossRef]
- Arkhipov, S. Method for Counting Fungal Spores. 2016. Available online: https://www.researchgate.net/publication/305994258_Method_for_counting_fungal_spores (accessed on 10 December 2024).
- Liébano-Hernández, E.; López-Arellano, M.E.; Vázquez-Prats, V.; Mendoz-de Gives, P. Cryopreservation of infective larvae of Haemonchus contortus. Rev Latinoam Microbiol. 1996, 38, 111–114. [Google Scholar] [PubMed]
- van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 1–14. [Google Scholar] [CrossRef]
- Sancho, F.V.; Vázquez, F.A.R.; García, Á.S.O.; Novillo, M.B.A.; Sopeña, L.M. Atlas de Parasitología Ovina; Servet: Palm Beach Gardens, FL, USA, 2009. [Google Scholar]
- Santiago-Figueroa, I.; González-Cortazar, M.; Estrada-Flores, J.G.; Cuéllar-Ordaz, J.A.; López-Arellano, M.E.; González-Reyes, F.J.; Olmedo-Juárez, A.; Higuera-Piedrahita, R.I. Synergistic Interaction Effect of Artemisia cina n-hexane Extract and Tagetes lucida Ethyl Acetate Extract on Haemonchus contortus. Acta Parasitol 2024, 69, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- González-Garduño, R.; Arece-García, J.; Torres-Hernández, G. Physiological, immunological and genetic factors in the resistance and susceptibility to gastrointestinal nematodes of sheep in the peripartum period: A review. Helminthologia 2021, 58, 134–151. [Google Scholar] [CrossRef] [PubMed]
- Macarthur, F.A.; Kahn, L.P.; Windon, R.G. Immune response of twin-bearing Merino ewes when infected with Haemonchus contortus: Effects of fat score and prepartum supplementation. Livest. Sci. 2013, 157, 568–576. [Google Scholar] [CrossRef]
- Brunsdon, R.V.; Vlassoff, A. The post-parturient rise: A comparison of the pattern and relative generic composition of strongyle egg output from lactating and non-lactating ewes. N. Z. Vet. J. 1971, 19, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, G.; Arsenos, G.; Brozos, C.; Fragkou, I.; Giadinis, N.; Giannenas, I.; Mavrogianni, V.; Papadopoulos, E.; Valasi, I. Health management of ewes during pregnancy. Anim. Reprod. Sci. 2012, 130, 198–212. [Google Scholar] [CrossRef]
- Navarro, M.; Cristofol, C.; Carretero, A.; Arboix, M.; Ruberte, J. Anthelmintic induced congenital malformations in sheep embryos using netobimin. Vet. Rec. 1998, 142, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Saunders, L.Z.; Shone, D.K.; Philip, J.; Birkhead, H.A. The effects of methyl-5 (6)-butyl-2-benzimidazole carbamate (parbendazole) on reproduction in sheep and other animals. I. Malformations in newborn lambs. Cornell Vet. 1974, 64, 7–40. [Google Scholar]
- Radiostits, O.M.; Gray, C.C.; Hinchelift, K.W.; Constable, P.D. Veterinary medicine. A textbook of the disease of cattle, horses. In Sheep, Pigs and Goats, 10th ed.; Sunders: London, UK, 2007; pp. 1576–1580. [Google Scholar]
- Higuera-Piedrahita, R.I.; Dolores-Hernández, M.; de la Cruz-Cruz, H.A.; López-Arellano, R.; Mendoza-de Gives, P.; Olmedo-Juárez, A.; Cuéllar-Ordaz, J.A.; González-Cortazar, M.; Ble-González, E.A.; López-Arellano, M.E.; et al. 3′-Demethoxy-6-O-demethylisoguaiacin and norisoguaiacin nematocidal lignans from Artemisia cina against Haemonchus contortus infective larvae. Plants 2023, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.T.; Miller, J.E.; Fontenot, M.E.; Gillespie, A.; Larsen, M. Evaluation of Duddingtonia flagrans in reducing infective larvae of Haemonchus contortus in feces of sheep. Vet. Parasitol. 2002, 103, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, T.S.; Leathwick, D.M.; Chen, L.-Y.; Skipp, R.A. Efficacy of the nematode-trapping fungus Duddingtonia flagrans against three species of gastro-intestinal nematodes in laboratory faecal cultures from sheep and goats. Vet. Parasitol. 2003, 118, 227–234. [Google Scholar] [CrossRef]
- Mendoza-de Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.; Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions—Dose/response assessment. Vet. Parasitol. 2018, 263, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-de Gives, P. Soil-Borne nematodes: Impact in agriculture and livestock and sustainable strategies of prevention and control with special reference to the use of nematode natural enemies. Pathogens 2022, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol. 2016, 100, 3799–3812. [Google Scholar] [CrossRef] [PubMed]
- de Freitas-Soares, F.E.; Sufiate, B.L.; Tavares, G.P.; Ramírez, N.M.; Cardoso, E.F.; de Queiroz, J.H. Fungal Natural Products Focused on Combating Helminthiases. Stud. Nat. Prod. Chem. 2018, 57, 221–245. [Google Scholar]
- Mei, X.; Wang, X.; Li, G. Pathogenicity and Volatile Nematicidal Metabolites from Duddingtonia flagrans against Meloidogyne incognita. Microorganisms 2021, 9, 2268. [Google Scholar] [CrossRef] [PubMed]
- Squires, J.M.; Ferreira, J.F.; Lindsay, D.S.; Zajac, A.M. Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones unguiculatus). Vet. Parasitol. 2011, 175, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Akkari, H.; Rtibi, K.; B’chir, F.; Rekik, M.; Darghouth, M.A.; Gharbi, M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 2014, 38, 249–255. [Google Scholar] [CrossRef] [PubMed]
Day of Sampling | Control | Iv | Df | Ac | Df/Ac | |
---|---|---|---|---|---|---|
Prepartum | ||||||
d −30 | Mean ± SE | 0.0 ± 0.0 | 0.0 ± 0.0 | 137.5 ± 37.5 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Median (Min–Max) | 0.0 (0–0) a | 0.0 (0–0) a | 150.0 (50–200) b | 0.0 (0–0) a | 0.0 (0–0) a | |
d −15 | Mean ± SE | 133.3 ± 44.1 | 175.0 ± 43.3 | 150.0 ± 84.2 | 25.0 ± 14.4 | 50.0 ± 20.4 |
Median (Min–Max) | 150.0 (50–200) | 150.0 (100–300) | 75.0 (50–400) | 25.0 (0–50) | 50.0 (0–100) | |
Partum | ||||||
d 0 | Mean ± SE | 641.7 ± 282.2 | 62.5 ± 47.3 | 137.5 ± 55.4 | 325.0 ± 118.1 | 662.5 ± 498.5 |
Median (Min–Max) | 600.0 (175–1150) | 25.0 (0–200) | 100.0 (50–300) | 400.0 (0–500) | 225.0 (50–2150) | |
Postpartum | ||||||
d +15 | Mean ± SE | 2800.0 ± 1311.5 | 62.5 ± 62.5 | 125.0 ± 32.3 | 875.0 ± 340.6 | 4287.5 ± 967.3 |
Median (Min–Max) | 3800.0 (200–3800) ab | 0.0 (0–250) b | 125.0 (50–200) ab | 975.0 (0–1550) ab | 3725.0 (2650–7050) a | |
d +30 | Mean ± SE | 2883.3 ± 1728.3 | 75.0 ± 43.3 | 150.0 ± 54.0 | 533.3 ± 533.3 | 2562.5 ± 678.7 |
Median (Min–Max) | 2500.0 (100–6050) | 75.0 (0–150) | 125.0 (50–300) | 0.0 (0–1600) | 2950.0 (1550–4500) |
Day of Sampling | Control | Iv | Df | Ac | Df/Ac | |
---|---|---|---|---|---|---|
Prepartum | ||||||
d −30 | Mean ± SE | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Median (Min–Max) | 0.0 (0–0) | 0.0 (0–0) | 0.0 (0–0) | 0.0 (0–0) | 0.0 (0–0) | |
d −15 | Mean ± SE | 500.0 ± 173.2 | 942.5 ± 466.8 | 25.0 ± 25.0 | 120.0 ± 120.0 | 240.0 ± 240.0 |
Median (Min–Max) | 500.0 (200–800) | 845.0 (0–2080) | 0.0 (0–100) | 0.0 (0–480) | 0.0 (0–960) | |
Partum | ||||||
d 0 | Mean ± SE | 4683.3 ± 4460.23 | 906.5 ± 482.2 | 100.0 ± 100.0 | 435.8 ± 105.4 | 932.5 ± 326.0 |
Median (Min–Max) | 450.0 (0–13,600) | 773.0 (0–2080) | 100.0 (0–400) | 478.5 (148–638) | 1138.0 (1–1453) | |
Postpartum | ||||||
d +15 | Mean ± SE | 9901.7 ± 7853.5 | 17.0 ± 17.0 | 125.0 ± 75.0 | 542.3 ± 257.0 | 233.0 ± 222.45 |
Median (Min–Max) | 2505.0 (1600–25,600) a | 0.0 (0–68.0) b | 100.0 (0–300.0) ab | 394.0 (105–1276) ab | 16.0 (0–900.0) ab | |
d +30 | Mean ± SE | 4816.67 ± 4592.2 | 100.0 ± 57.735 | 100.0 ± 100.0 | 137.5 ± 121.4 | 225.0 ± 225.0 |
Median (Min–Max) | 350.0 (0–13,600) | 100.0 (0–200.0) | 0.0 (0–400.0) | 25.0 (0–500.0) | 0.0 (900.0) | |
Mean of overall fecal larvae reduction per group | ------- | 91.4% | 97.4% | 89.9% | 84.3% |
Treatment | Nematode | Results | References |
---|---|---|---|
In lambs and kids (12–20 weeks old) At doses of 250,000 or 500,000 spores/kg live weight, administered on two consecutive days | Haemonchus contortus, Ostertagia (Teladorsagia) circumcincta, or Trichostrongylus colubriformis. | 78% effectivity in fecal samples | [31] |
In sheep, six treatments of 5 × 104, 1 × 105, 2.5 × 105, 5 × 105, and 1 × 106 chlamydospores/kg of body weight for 7 days | Gastrointestinal nematodes Larvae in feces | The reduction in infective larvae ranged from 76.6 to 100.0%. | [32] |
In lambs D. flagrans chlamydospore aqueous suspension, at 5 × 105 chlamydospores/kg BW Orally administered every third day for 15 days | Gastrointestinal nematodes EPG and infective larvae from coprocultures | EPG Reduction = 62.6 % Larval reduction = 96.2% | [16] |
In Cebu calves, 0.025 × 106 0.5 × 106 1 × 106 D. flagrans chlamydospore aqueous suspension, every day for ten days | Gastrointestinal nematodes Larvae (L3) in feces | The highest larvae reduction = 88.5, 95.8, and 88.9% | [33] |
Extract | Percent Reduction in EPG or Larvae | Doses | Authors |
---|---|---|---|
Artemisia cina hexanic extract | 76.6% of the larvae (in vitro) | 4 mg/mL | [23] |
Artemisia cina hexanic extract | 31.7 % in EPG and 86.9% of the larvae (in vivo) | 4 mg/mL | [38] |
Artemisia annua ethanolic extract | 24.7 % of the larvae (in vitro) | 600 mg/kg | [39] |
Artemisia campestris ethanolic extracts | 91.3 % of the larvae (in vitro) | 2 mg/mL | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Crúz-Crúz, H.A.; Higuera-Piedrahita, R.I.; Zamilpa, A.; Alcalá-Canto, Y.; Ocampo-Gutiérrez, A.Y.; Arango-de la Pava, L.D.; López-Arellano, M.E.; Hernandez-Patlan, D.; Cuéllar-Ordaz, J.A.; Mendoza-de Gives, P. Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes. Pathogens 2025, 14, 105. https://doi.org/10.3390/pathogens14020105
de la Crúz-Crúz HA, Higuera-Piedrahita RI, Zamilpa A, Alcalá-Canto Y, Ocampo-Gutiérrez AY, Arango-de la Pava LD, López-Arellano ME, Hernandez-Patlan D, Cuéllar-Ordaz JA, Mendoza-de Gives P. Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes. Pathogens. 2025; 14(2):105. https://doi.org/10.3390/pathogens14020105
Chicago/Turabian Stylede la Crúz-Crúz, Héctor Alejandro, Rosa Isabel Higuera-Piedrahita, Alejandro Zamilpa, Yazmín Alcalá-Canto, Ana Yuridia Ocampo-Gutiérrez, Luis David Arango-de la Pava, María Eugenia López-Arellano, Daniel Hernandez-Patlan, Jorge Alfredo Cuéllar-Ordaz, and Pedro Mendoza-de Gives. 2025. "Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes" Pathogens 14, no. 2: 105. https://doi.org/10.3390/pathogens14020105
APA Stylede la Crúz-Crúz, H. A., Higuera-Piedrahita, R. I., Zamilpa, A., Alcalá-Canto, Y., Ocampo-Gutiérrez, A. Y., Arango-de la Pava, L. D., López-Arellano, M. E., Hernandez-Patlan, D., Cuéllar-Ordaz, J. A., & Mendoza-de Gives, P. (2025). Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes. Pathogens, 14(2), 105. https://doi.org/10.3390/pathogens14020105