Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection, Transport and Preservation
2.2. Bacterial Isolation and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
3. Results
3.1. Isolates and Genera Detected in Nasal Samples
3.2. Diversity of Genera and Species Detected
3.3. Diversity of Gram-Positive Bacteria
3.4. Diversity of Gram-Negative Bacteria
3.5. Co-Colonization of Bacterial Species in Nasal Samples of European Wild Rabbits
3.6. Phenotype of Antimicrobial Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zanardi, G.; Iemmi, T.; Spadini, C.; Taddei, S.; Cavirani, S.; Cabassi, C.S. Wild Micromammals as Bioindicators of Antibiotic Resistance in Ecopathology in Northern Italy. Animals 2020, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Fernández-Fernández, R.; Juárez-Fernández, G.; Martínez-Álvarez, S.; Eguizábal, P.; Zarazaga, M.; Lozano, C.; Torres, C. Wild Animals Are Reservoirs and Sentinels of Staphylococcus aureus and MRSA Clones: A Problem with “One Health” Concern. Antibiotics 2021, 10, 1556. [Google Scholar] [CrossRef]
- OIE. World Organisation for Animal Health. 2018. Available online: http://www.oie.int/ (accessed on 15 May 2020).
- Benavides, J.A.; Salgado-Caxito, M.; Torres, C.; Godreuil, S. Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface. Med. Sci. Forum 2024, 25, 1. [Google Scholar] [CrossRef]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correira, S.; Igrejas, G. Potential impact of antimicrobial resistance in wild life, environment, and human health. Front. Microbiol. 2014, 5, 23. [Google Scholar] [CrossRef]
- Mercato, A.; Cortimiglia, C.; Abualsha’ar, A.; Piazza, A.; Marchesini, F.; Milani, G.; Bonardi, S.; Cocconcelli, P.S.; Migliavacca, R. Wild Boars as an Indicator of Environmental Spread of ESβL-Producing Escherichia coli. Front. Microbiol. 2022, 13, 838383. [Google Scholar] [CrossRef]
- Rodríguez-Beltrán, J.; DelaFuente, J.; León-Sampedro, R.; MacLean, R.C.; San Millán, Á. Beyond horizontal gene transfer: The role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 2021, 19, 347–359. [Google Scholar] [CrossRef]
- Ekhlas, D.; Sanjuán, J.M.O.; Manzanilla, E.G.; Leonard, F.C.; Argüello, H.; Burgess, C.M. Comparison of antimicrobial resistant Escherichia coli isolated from Irish commercial pig farms with and without zinc oxide and antimicrobial usage. Gut Pathog. 2023, 15, 8. [Google Scholar] [CrossRef]
- Carneiro, M.; Ferrand, N.; Nachman, M.W. Recombination and speciation: Loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 2009, 181, 593–606. [Google Scholar] [CrossRef]
- Branco, M.; Ferrand, N.; Monnerot, M. Phylogeography of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity 2000, 85, 307–317. [Google Scholar] [CrossRef]
- Ferrand, N.; Branco, M. The European Rabbit: The History and Biology of a Successful Colonizer; Springer: Berlin/Heidelberg, Germany, 2007; pp. 207–235. [Google Scholar]
- Delibes-Mateos, M.; Delibes, M.; Ferreras, P.; Villafuerte, R. Key role of the European rabbits in the conservation of the western Mediterranean basin hotspot. Biol. Conserv. 2008, 22, 301–309. [Google Scholar] [CrossRef]
- Sevillano Morales, J.; Moreno-Ortega, A.; Amaro-López, M.A.; Arenas-Casas, A.; Cámara-Martos, F.; Moreno-Rojas, R. Game meat consumption by hunters and their relatives: A probabilistic approach. Food Addit. Contam. Part A 2018, 35, 1739–1748. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, V.; Silva, A.; Silva, N.; Ribeiro, J.; Tejedor-Junco, M.T.; Capita, R.; Chenouf, N.S.; Alonso-Calleja, C.; Rodrigues, T.M.; et al. Staphylococci among Wild European Rabbits from the Azores: A Potential Zoonotic Issue? J. Food Prot. 2020, 83, 1110–1114. [Google Scholar] [CrossRef]
- Martin, C.; Pastoret, P.P.; Brochier, B.; Humblet, M.F.; Saegerman, C. A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet. Res. 2011, 42, 70. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Juárez-Fernández, G.; Höfle, Ú.; Cardona-Cabrera, T.; Mínguez, D.; Pineda-Pampliega, J.; Lozano, C.; Zarazaga, M.; Torres, C. Nasotracheal Microbiota of Nestlings of Parent White storks with Different Foraging Habits in Spain. EcoHealth 2023, 20, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ripa, L.; Alcalá, L.; Simón, C.; Gómez, P.; Mama, O.M.; Rezusta, A.; Zarazaga, M.; Torres, C. Diversity of Staphylococcus aureus clones in wild mammals in Aragon, Spain, with detection of MRSA ST130-mecC in wild rabbits. J. Appl. Microbiol. 2019, 127, 284–291. [Google Scholar] [CrossRef]
- Silva, V.; Almeida, F.; Carvalho, J.A.; Castro, A.P.; Ferreira, E.; Manageiro, V.; Tejedor-Junco, M.T.; Caniça, M.; Igrejas, G.; Poeta, P. Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 39, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.; Igrejas, G.; Figueiredo, N.; Gonçalves, A.; Radhouani, H.; Rodrigues, J.; Poeta, P. Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci. Total Environ. 2010, 408, 4871–4876. [Google Scholar] [CrossRef]
- Hu, X.; Wang, F.; Yang, S.; Yuan, X.; Yang, T.; Zhou, Y.; Li, Y. Rabbit microbiota across the whole body revealed by 16S rRNA gene amplicon sequencing. BMC Microbiol. 2020, 21, 312. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, S.; Rafael, M.; Coelho, J.; Pacheco, H.; Fernandes, M.; Alves, P.C.; Santos, N. High Mortality of Wild European Rabbits during a Natural Outbreak of Rabbit Haemorrhagic Disease GI. 2 Revealed by a Capture-Mark-Recapture Study. Transbound. Emerg. Dis. 2023, 9, 3451338. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Zarazaga, M.; Saidenberg, A.B.S.; Stegger, M.; Torres, C. Clonal relatedness of coagulase-positive staphylococci among healthy dogs and dog-owners in Spain. Detection of multidrug-resistant-MSSA-CC398 and novel linezolid-resistant-MRSA-CC5. Front. Microbiol. 2023, 14, 1121564. [Google Scholar] [CrossRef] [PubMed]
- EUCAST, The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2024. Available online: http://www.eucast.org/ (accessed on 15 December 2024).
- CLSI, Clinical Laboratory Standarsds Institute. Performance Antimicrobial Susceptibility, 32nd ed.; CLSI: Wayne, PA, USA, 2024; Available online: https://clsi.org/ (accessed on 15 December 2024).
- Cotozzolo, E.; Cremonesi, P.; Curone, G.; Menchetti, L.; Riva, F.; Biscarini, F.; Marongiu, M.L.; Castrica, M.; Castiglioni, B.; Miraglia, D.; et al. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals 2020, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Galilea, M.; Piles, M.; Viñas, M.; Rafel, O.; González-Rodríguez, O.; Guivernau, M.; Sánchez, J.P. Rabbit Microbiota Changes Throughout the Intestinal Tract. Front. Microbiol. 2018, 9, 2144. [Google Scholar] [CrossRef]
- Flenghi, L.; Mazouffre, M.; Le Loc’h, A.; Le Loc’h, G.; Bulliot, C. Normal bacterial flora of the oral cavity in healthy pet rabbits (Oryctolagus cuniculus). Vet. Med. Sci. 2023, 9, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Gómez, P.; González-Barrio, D.; Benito, D.; García, J.T.; Viñuela, J.; Zarazaga, M.; Ruiz-Fons, F.; Torres, C. Detection of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in wild small mammals in Spain. J. Antimicrob. Chemother. 2014, 69, 2061–2064. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Mama, O.M.; Morales, L.; Ruiz-Ripa, L.; Zarazaga, M.; Torres, C. High prevalence of multidrug resistant S. aureus-CC398 and frequent detection of enterotoxin genes among non-CC398 S. aureus from pig-derived food in Spain. Int. J. Food Microbiol. 2020, 320, 108510. [Google Scholar] [CrossRef]
- Quero, S.; Serras-Pujol, M.; Párraga-Niño, N.; Torres, C.; Navarro, M.; Vilamala, A.; Puigoriol, E.; de Los Ríos, J.D.; Arqué, E.; Serra-Pladevall, J.; et al. Methicillin-resistant and methicillin-sensitive Staphylococcus aureus in pork industry workers, Catalonia, Spain. One Health 2023, 16, 100538. [Google Scholar] [CrossRef]
- Haenni, M.; Murri, S.; Lefrère, C.; Larsen, J.; Drapeau, A.; Botman, J.; François, P.; Gourlay, P.; Meurens, F.; Madec, J.Y. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in French hedgehogs admitted to a wildlife health center. One Health 2024, 19, 100938. [Google Scholar] [CrossRef]
- Moreno-Grúa, E.; Pérez-Fuentes, S.; Muñoz-Silvestres, A.; Viana, D.; Fernández-Ros, A.B.; Sanz-Tejero, C.; Corpa, J.M.; Selva, L. Characterization of Livestock-Associated methicillin-resistant Staphylococcus aureus isolates obtained from commercial rabbitries located in the Iberian Peninsula. Front. Microbiol. 2018, 9, 1812. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Gómez, P.; Alonso, C.A.; Camacho, M.C.; Ramiro, Y.; de la Puente, J.; Fernández-Fernández, R.; Quevedo, M.Á.; Blanco, J.M.; Báguena, G.; et al. Frequency and characterization of antimicrobial resistance and virulence genes of coagulase-negative staphylococci from wild birds in Spain. Detection of tst-carrying S. sciuri isolates. Microorganisms 2020, 8, 1317. [Google Scholar] [CrossRef]
- Otto, M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 2013, 35, 4–11. [Google Scholar] [CrossRef]
- Schwartzman, J.A.; Lebreton, F.; Salamzade, R.; Shea, T.; Martin, M.J.; Schaufler, K.; Urhan, A.; Abeel, T.; Camargo, I.L.B.C.; Sgardioli, B.F.; et al. Global diversity of enterococci and description of 18 previously unknown species. Proc. Natl. Acad. Sci. USA 2024, 121, e2310852121. [Google Scholar] [CrossRef] [PubMed]
- García, L.A.; Torres, C.; López, A.R.; Rodríguez, C.O.; Valencia, C.S. Antimicrobial Resistance of Enterococcus Species Isolated from Wild Mammals in Aragón, Spain. J. Vet. Res. 2022, 66, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, W. Salmonelosis in Animals; Merck Sharp & Dohme Corp: Rahway, NJ, USA, 2024; Available online: https://www.msdvetmanual.com/digestive-system/salmonellosis/salmonellosis-in-animals (accessed on 9 February 2025).
- Mallon, D.J.; Corkill, J.E.; Hazel, S.M.; Wilson, J.S.; French, N.P.; Bennett, M.; Hart, C.A. Excretion of vancomycin-resistant enterococci by wild mammals. Emerg. Infect. Dis. 2002, 8, 636–638. [Google Scholar] [CrossRef]
- Lozano, C.; Gonzalez-Barrio, D.; Camacho, M.C.; Lima-Barbero, J.F.; de la Puente, J.; Höfle, U.; Torres, C. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb. Ecol. 2016, 72, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Smoglica, C.; Vergara, A.; Angelucci, S.; Festino, A.R.; Antonucci, A.; Marsilio, F.; Di Francesco, C.E. Evidence of Linezolid Resistance and Virulence Factors in Enterococcus spp. Isolates from Wild and Domestic Ruminants, Italy. Antibiotics 2022, 11, 223. [Google Scholar] [CrossRef]
- McClure, D. Disorders and Diseases of Rabbits; Merck Sharp & Dohme Corp: Rahway, NJ, USA, 2020; Available online: https://www.msdvetmanual.com/all-other-pets/rabbits/disorders-and-diseases-of-rabbits (accessed on 9 February 2025).
- Mayer, J. Bacterial and Fungal Diseases of Rabbits; Merck Sharp & Dohme Corp: Rahway, NJ, USA, 2021; Available online: https://www.msdvetmanual.com/exotic-and-laboratory-animals/rabbits/bacterial-and-mycotic-diseases-of-rabbits (accessed on 9 February 2025).
- Sabença, C.; Romero-Rivera, M.; Barbero-Herranz, R.; Sargo, R.; Sousa, L.; Silva, F.; Lopes, F.; Abrantes, A.C.; Vieira-Pinto, M.; Torres, C.; et al. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet. Sci. 2024, 11, 469. [Google Scholar] [CrossRef]
- Martínez-Álvarez, S.; Châtre, P.; Cardona-Cabrera, T.; François, P.; Sánchez-Cano, A.; Höfle, U.; Zarazaga, M.; Madec, J.Y.; Haeni, M.; Torres, C. Detection and genetic characterization of blaESBL-carrying plasmids of cloacal Escherichia coli isolates from white stork nestlings (Ciconia ciconia) in Spain. J. Glob. Antimicrob. Resist. 2023, 34, 186–194. [Google Scholar] [CrossRef]
- Chenouf, N.S.; Carvelho, I.; Messaï, C.R.; Ruiz-Ripa, L.; Mama, O.M.; Titouche, Y.; Zitouni, A.; Hakem, A.; Torres, C. Extended Spectrum β-Lactamase Producing Escherichia coli and Klebsiella pneumoniae from Broiler Liver in the Center of Algeria, with Detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichia coli. Microb. Drug Resist. 2021, 27, 268–276. [Google Scholar] [CrossRef]
- Ikeuchi, S.; Bui, H.T.; Sassa-O’brien, Y.; Niwa, T.; Okumura, M.; Hara-Kudo, Y.; Taniguchi, T.; Hayashidani, H. Development of detection methods by multiplex real-time PCR for highly pathogenic Yersinia enterocolitica, low pathogenic Yersinia enterocolitica, and Yersinia pseudotuberculosis based on SYBR Green and TaqMan probes. J. Microbiol. Methods 2023, 211, 106779. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, M.; Yabata, J.; Obane, N.; Otsuka, H.; Nomura, Y. Detection of pathogenic Yersinia enterocolitica in pet Djungarian hamsters in Japan. J. Vet. Med. Sci. 2016, 78, 1639–1641. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, S.; Chen, Y.; Chen, D.; Sang, L.; Xie, X. Characterisation of Bordetella bronchiseptica isolated from rabbits in Fujian, China. Epidemiol. Infect. 2020, 148, e237. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, U.; Liu, M.; Tomida, S.; Park, J.; Souda, P.; Whitelegge, J.; Li, H.; Harvill, E.T.; Parkhill, J.; Miller, J.F. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol. 2012, 12, 167. [Google Scholar] [CrossRef]
- González-Barrio, D. Zoonoses and Wildlife: One Health Approach. Animals 2022, 12, 480. [Google Scholar] [CrossRef]
Genera | Species | Number of Isolates * | Number of Animals with: | |
---|---|---|---|---|
This Species | This Genus | |||
Staphylococcus | S. aureus | 28 | 20 | 65 |
S. pseudintermedius | 10 | 10 | ||
S. xylosus | 20 | 18 | ||
S. saprophyticus | 14 | 14 | ||
S. epidermidis | 13 | 12 | ||
S. hominis | 9 | 6 | ||
S. succinus | 7 | 6 | ||
S. equorum | 4 | 4 | ||
S. borealis | 3 | 3 | ||
S. capitis | 3 | 3 | ||
S. haemolyticus | 2 | 2 | ||
S. gallinarum | 1 | 1 | ||
S. hyicus | 1 | 1 | ||
S. pasteuri | 1 | 1 | ||
S. simulans | 1 | 1 | ||
S. warneri | 1 | 1 | ||
Mammaliicoccus | M. sciuri | 34 | 30 | 45 |
M. lentus | 30 | 22 | ||
M. vitulinus | 1 | 1 | ||
Enteroccoccus | E. faecium | 41 | 36 | |
E.casseliflavus | 26 | 24 | ||
E. hirae | 23 | 20 | ||
E. faecalis | 19 | 17 | ||
E. mundtii | 13 | 13 | 92 | |
E. gallinarum | 4 | 4 | ||
E. durans | 2 | 2 | ||
E. gilvus | 1 | 1 | ||
E. hermanniensis | 1 | 1 | ||
Aerococcus | A. viridans | 9 | 9 | 9 |
Lactococcus | L. lactis | 6 | 6 | 6 |
Cellulosimicrobium | C. cellulans | 2 | 2 | 2 |
Micrococcus | M. luteus | 2 | 2 | 2 |
Paenibacillus | P. glucanolyticus | 1 | 1 | 2 |
P. lautus | 1 | 1 | ||
Streptococcus | S. gallolyticus | 1 | 1 | 2 |
S. parauberis | 1 | 1 | ||
Aeromicrobium | A. massiliense | 1 | 1 | 1 |
Carnobacterium | C. maltanomaticum | 1 | 1 | 1 |
Corynebacterium | C. afermentans | 1 | 1 | 1 |
Jeotgalicoccus | J. halotolerans | 1 | 1 | 1 |
Kocuria | K. rhizophila | 1 | 1 | 1 |
Oceanobacillus | O. picturae | 1 | 1 | 1 |
Pseudoclavibacter | P. helvous | 1 | 1 | 1 |
Vagococcus | V. penai | 1 | 1 | 1 |
Genera | Species | Number of Isolates * | Number of Animals with: | |
---|---|---|---|---|
This Species | This Genus | |||
Enterobacter | E. cloacae | 22 | 22 | |
E.r kobei | 9 | 9 | ||
E. hormaechei | 5 | 5 | ||
E. ludwigii | 5 | 5 | 38 | |
E. asburiae | 4 | 4 | ||
E. bugandensis | 2 | 2 | ||
E. cancerogenus | 1 | 1 | ||
Citrobacter | C. braakii | 11 | 11 | |
C. gillenii | 9 | 9 | 22 | |
C. freundii | 5 | 5 | ||
Serratia | S. marcenses | 5 | 5 | 16 |
S. liquefaciens | 3 | 3 | ||
S. ficaria | 2 | 2 | ||
S. fonticola | 2 | 2 | ||
S. rubidaea | 2 | 2 | ||
S. odorífera | 1 | 1 | ||
S. plymuthica | 1 | 1 | ||
Escherichia | E. coli | 31 | 25 | 26 |
E. hermannii | 2 | 2 | ||
Klebsiella | K. oxytoca | 13 | 12 | 14 |
K. pneumoniae | 2 | 2 | ||
Hafnia | H. alvei | 14 | 14 | 14 |
Pantoea | P. agglomerans | 12 | 12 | 12 |
Achromobacter | A. spanius | 5 | 5 | 6 |
A. piechaudii | 1 | 1 | ||
A. xylosoxidans | 1 | 1 | ||
Lelliottia | L. amnigena | 7 | 7 | 7 |
Raoultella | R. ornithinolytica | 4 | 4 | 7 |
R. terrígena | 2 | 2 | ||
R. planticola | 1 | 1 | ||
Acinetobacter | A. radioresistens | 3 | 3 | 4 |
A. pittii | 1 | 1 | ||
Leclercia | L. adecarboxylata | 4 | 4 | 4 |
Ranhella | R. aquatilis | 3 | 3 | 3 |
Buttiauxella | B. agrestis | 2 | 2 | 3 |
B. gaviniae | 1 | 1 | ||
Yersinia | Y. enterocolitica | 3 | 2 | 2 |
Kluyvera | K. cryocrescens | 1 | 1 | 2 |
K. intermedia | 1 | 1 | ||
Kosakonia | K. cowanii | 2 | 2 | 2 |
Ochrobactrum | O. grignonense | 2 | 2 | 2 |
Pseudescherichia | P. vulneris | 2 | 2 | 2 |
Aeromonas | A. hydrophila | 1 | 1 | 1 |
Advenella | A. incenta | 1 | 1 | 1 |
Bordetella | B.brochiseptica | 1 | 1 | 1 |
Stenotrophomonas | S. maltophila | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Azcona, C.; Jiménez-Ruiz, S.; Santos, N.; Del Campo-Fernández, I.; Rojas-Tigasi, K.; Álvarez-Gómez, T.; Marañón-Clemente, I.; Eguizábal, P.; Abdullahi, I.N.; Alonso, C.A.; et al. Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest. Pathogens 2025, 14, 317. https://doi.org/10.3390/pathogens14040317
González-Azcona C, Jiménez-Ruiz S, Santos N, Del Campo-Fernández I, Rojas-Tigasi K, Álvarez-Gómez T, Marañón-Clemente I, Eguizábal P, Abdullahi IN, Alonso CA, et al. Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest. Pathogens. 2025; 14(4):317. https://doi.org/10.3390/pathogens14040317
Chicago/Turabian StyleGonzález-Azcona, Carmen, Saúl Jiménez-Ruiz, Nuno Santos, Inés Del Campo-Fernández, Katherine Rojas-Tigasi, Tamara Álvarez-Gómez, Irene Marañón-Clemente, Paula Eguizábal, Idris Nasir Abdullahi, Carla Andrea Alonso, and et al. 2025. "Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest" Pathogens 14, no. 4: 317. https://doi.org/10.3390/pathogens14040317
APA StyleGonzález-Azcona, C., Jiménez-Ruiz, S., Santos, N., Del Campo-Fernández, I., Rojas-Tigasi, K., Álvarez-Gómez, T., Marañón-Clemente, I., Eguizábal, P., Abdullahi, I. N., Alonso, C. A., Torres, C., & Lozano, C. (2025). Culturomics Profiling of Nasal Cavities of European Wild Rabbits on the Iberian Peninsula: Antimicrobial Resistance and Detection of Microorganisms of Public Health Interest. Pathogens, 14(4), 317. https://doi.org/10.3390/pathogens14040317