Susceptibility of Neisseria gonorrhoeae to Zoliflodacin and Quinolones in Hyogo Prefecture, Japan
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Antimicrobial Susceptibility Testing
2.3. DNA Extraction, Detection of Amino Acid Alterations in QRDR Genes, and NG-MAST
2.4. Statistical Analysis
3. Results
3.1. Detection of Antimicrobial Resistance Genes
3.2. Annual Trend of Non-Susceptible N. Gonorrhoeae Strains
3.3. Detection of Amino Acid Alterations in QRDR Genes
3.4. NG-MAST
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLSI | clinical laboratory standards institute |
CPFX | ciprofloxacin |
CTRX | ceftriaxone |
GRNX | garenoxacin |
I | intermediate |
MIC | minimum inhibitory concentration |
NG-MAST | N. gonorrhoeae multiantigen sequence typing |
NS | not susceptible |
NT | not typed |
PCR | polymerase chain reaction |
QRDR | quinolone resistance-determining region |
R | resistant |
S | susceptible |
ST | sequence type |
STFX | sitafloxacin |
WHO | World Health Organization |
ZFD | zoliflodacin |
References
- Gonorrhoa (Neisseria gonorrhoeae). Available online: https://www.who.int/news-room/fact-sheets/detail/gonorrhoea-(neisseria-gonorrhoeae-infection) (accessed on 4 December 2024).
- Marshall, H.S.; Molina, J.M.; Berlaimont, V.; Mulgirigama, A.; Sohn, W.Y.; Berçot, B.; Bobde, S. Eur Management and prevention of Neisseria meningitidis and Neisseria gonorrhoeae infections in the context of evolving antimicrobial resistance trends. J. Clin. Microbiol. Infect. Dis. 2025, 44, 233–250. [Google Scholar] [CrossRef]
- Unemo, M.; Del Rio, C.; Shafer, W.M. Antimicrobial resistance expressed by Neisseria gonorrhoeae: A major global public health problem in the 21st Century. Microbiol. Spectr. 2016, 10, 213–237. [Google Scholar] [CrossRef]
- Unemo, U. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 2021, 76, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Alm, R.A.; Lahiri, S.D.; Kutschke, A.; Otterson, L.G.; McLaughlin, R.E.; Whiteaker, J.D.; Lewis, L.A.; Su, X.; Huband, M.D.; Gardner, H.; et al. Characterization of the novel DNA gyrase inhibitor AZD0914: Low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2015, 59, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Yasuda, M.; Nakano, M.; Ozeki, S.; Kanematsu, E.; Kawada, Y.; Ezaki, T.; Saito, I. Uncommon occurrence of alterations in the gyrB gene associated with quinolone resistance in clinical isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 1996, 40, 2437–2438. [Google Scholar] [CrossRef]
- Lindbäck, E.; Rahman, M.; Jalal, S.; Wretlind, B. Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 2002, 110, 651–657. [Google Scholar] [CrossRef]
- Ng, L.K.; Sawatzky, P.; Martin, I.E.; Booth, S. Characterization of ciprofloxacin resistance in Neisseria gonorrhoeae isolates in Canada. Sex. Transm. Dis. 2002, 29, 780–788. [Google Scholar] [CrossRef]
- Unemo, M.; Fasth, O.; Fredlund, H.; Limnios, A.; Tapsall, J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother. 2009, 63, 1142–1151. [Google Scholar] [CrossRef]
- PubMLST. Available online: https://pubmlst.org/organisms/neisseria-spp (accessed on 4 December 2024).
- CLSI. Available online: https://clsi.org/ast-2024 (accessed on 4 December 2024).
- Le, W.; Su, X.; Lou, X.; Li, X.; Gong, X.; Wang, B.; Genco, C.A.; Mueller, J.P.; Rice, P.A. Susceptibility trends of zoliflodacin against multidrug-resistant Neisseria gonorrhoeae clinical isolates in Nanjing, China. 2014 to 2018. Antimicrob. Agents Chemother. 2021, 65, e00863-20. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Foerster, S.; Drusano, G.; Golparian, D.; Neely, M.; Piddock, L.J.V.; Alirol, E.; Unemo, M. In vitro antimicrobial combination testing of and evolution of resistance to the first-in-class spiropyrimidinetrione zoliflodacin combined with six therapeutically relevant antimicrobials for Neisseria gonorrhoeae. Antimicrob. Chemother. 2019, 74, 3521–3529. [Google Scholar] [CrossRef]
- Reimche, J.L.; Clemons, A.A.; Chivukula, V.L.; Joseph, S.J.; Schmerer, M.W.; Pham, C.D.; Schlanger, K.; St Cyr, S.B.; Kersh, E.N.; Gernert, K.M. Antimicrobial-Resistant Working Group. Genomic analysis of 1710 surveillance-based Neisseria gonorrhoeae isolates from the USA in 2019 identifies predominant strain types and chromosomal antimicrobial-resistance determinants. Microb. Genom. 2023, 9, mgen001006. [Google Scholar]
- Golparian, D.; Bazzo, M.L.; Ahlstrand, J.; Schörner, M.A.; Gaspar, P.C.; de Melo Machado, H.; Martins, J.M.; Bigolin, A.; Ramos, M.C.; Ferreira, W.A.; et al. Recent dynamics in Neisseria gonorrhoeae genomic epidemiology in Brazil: Antimicrobial resistance and genomic lineages in 2017–2020 compared to 2015–2016. J. Antimicrob. Chemother. 2024, 79, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.N.; Marrazzo, J.; Batteiger, B.E.; Hook, E.W., III; Seña, A.C.; Long, J.; Wierzbicki, M.R.; Kwak, H.; Johnson, S.M.; Lawrence, K.; et al. Single-Dose Zoliflodacin (ETX0914) for Treatment of Urogenital Gonorrhea. N. Engl. J. Med. 2018, 379, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Han, Y.; Yuan, L.F.; Zhu, X.Y.; Yin, Y.P. Identification of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China. Emerg. Infect. Dis. 2019, 25, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Tickner, J.A.; Lahra, M.M.; Whiley, D.M. The need for a commercial test using the penA60 allele to identify ceftriaxone-resistant Neisseria gonorrhoeae. Lancet Infect. Dis. 2022, 22, 1271–1272. [Google Scholar] [CrossRef]
- GARDP. Positive Results in Largest Pivotal Phase 3 Trial of a Novel Antibiotic to Treat Gonorrhoea. Available online: https://gardp.org/positive-results-announced-in-largest-pivotal-phase-3-trial-of-a-first-in-class-oral-antibiotic-to-treat-uncomplicated-gonorrhoea/ (accessed on 4 December 2024).
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular mechanisms of drug resistance and epidemiology of multidrug-resistant variants of Neisseria gonorrhoeae. Int. J. Mol. Sci. 2022, 23, 10499. [Google Scholar] [CrossRef]
- Lee, K.; Nakayama, S.I.; Osawa, K.; Yoshida, H.; Arakawa, S.; Furubayashi, K.I.; Kameoka, H.; Shimuta, K.; Kawahata, T.; Unemo, M.; et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother. 2019, 74, 1812–1819. [Google Scholar] [CrossRef]
- Shigemura, K.; Osawa, K.; Miura, M.; Tanaka, K.; Arakawa, S.; Shirakawa, T.; Fujisawa, M. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo, Japan. Antimicrob. Agents Chemother. 2015, 59, 2695–2699. [Google Scholar] [CrossRef]
- Miura, M.; Shigemura, K.; Osawa, K.; Nakanishi, N.; Nomoto, R.; Onishi, R.; Yoshida, H.; Sawamura, T.; Fang, S.B.; Chiang, Y.T.; et al. Genetic characteristics of azithromycin-resistant Neisseria gonorrhoeae collected in Hyogo, Japan during 2015–2019. J. Med. Microbiol. 2022, 71, 001533. [Google Scholar] [CrossRef]
- WHO. Updated Recommendations for the Treatment of Neisseria gonorrhoeae, Chlamydia trachomatis and Treponema pallidum (Syphilis), and New Recommendations on Syphilis Testing and Partner Service. Available online: https://iris.who.int/bitstream/handle/10665/378228/B09099-eng.pdf (accessed on 4 December 2024).
- CDC. Clinical Treatment of Gonorrhoea. Available online: https://www.cdc.gov/gonorrhea/hcp/clinical-care/index.html (accessed on 4 December 2024).
- Moran, J.S.; Levine, W.C. Drugs of choice for the treatment of uncomplicated gonococcal infections. Clin. Infect. Dis. 1995, 20 (Suppl. S1), S47–S65. [Google Scholar] [CrossRef]
- Kagawa, N.; Aoki, K.; Komori, K.; Ishii, Y.; Shimuta, K.; Ohnishi, M.; Tateda, K. Molecular epidemiological and antimicrobial-resistant mechanisms analysis of prolonged Neisseria gonorrhoeae collection between 1971 and 2005 in Japan. JAC Antimicrob. Resist. 2024, 6, dlae040. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Cole, M.J.; Spiteri, G.; Day, M.; Unemo, M.; Euro-GASP Network. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in the European Union/European Economic Area and patients’ gender, sexual orientation and anatomical site of infection, 2009–2016. BMC Infect. Dis. 2021, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xi, Y.; Gong, X.; Chen, S. Ceftriaxone-Resistant Gonorrhea–China, 2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Al-Maslamani, M.; Elmagboul, E.B.I.; Puthiyottil, A.; Chemaitelly, H.; Varghese, M.K.; Al Romaihi, H.E.; Al-Thani, M.H.; Al Khal, A.; Unemo, M.; Abu-Raddad, L.J. First characterisation of antimicrobial susceptibility and resistance of Neisseria gonorrhoeae isolates in Qatar, 2017–2020. PLoS ONE. 2022, 17, e0264737. [Google Scholar] [CrossRef]
- Zhong, J.; Le, W.; Li, X.; Su, X. Evaluating the efficacy of different antibiotics against Neisseria gonorrhoeae: A pharmacokinetic/pharmacodynamic analysis. BMC Infect. Dis. 2024, 24, 104. [Google Scholar] [CrossRef]
- Collins, J.A.; Basarab, G.S.; Chibale, K.; Osheroff, N. Interactions between Zoliflodacin and Neisseria gonorrhoeae gyrase and topoisomerase IV: Enzymological basis for cellular targeting. enzymological basis for cellular targeting. ACS Infect. Dis. 2024, 10, 3071–3082. [Google Scholar] [CrossRef]
- Gaspari, V.; Djusse, M.E.; Morselli, S.; Rapparini, L.; Foschi, C.; Ambretti, S.; Lazzarotto, T.; Piraccini, B.M.; Marangoni, A. Non-pathogenic Neisseria species of the oropharynx as a reservoir of antimicrobial resistance: A cross-sectional study. Front. Cell Infect. Microbiol. 2023, 13, 1308550. [Google Scholar] [CrossRef]
Antibiotic | No. of Strains (%) | Chi-Square Test (p) | |||||
---|---|---|---|---|---|---|---|
NS | CTRX | CPFX | GRNX | GRNX | |||
R | I | S | |||||
CTRX | 0 (0.0) | 0 (0.0) | 147 (100.0) | ||||
CPFX | 105 (71.4) | 13 (8.8) | 29 (19.7) | <0.0001 | − | − | − |
GRNX | 105 (71.4) | 18 (12.2) | 24 (16.3) | <0.0001 | 0.4481 | − | − |
STFX | 0 (0.0) | 96 (65.3) | 51 (34.7) | <0.0001 | 0.0039 | 0.0003 | − |
ZFD | 0 (0.0) | 58 (39.5) | 89 (60.5) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Amino Acid Alterations | No. of Non-Susceptibility Strains (%) | Total Strains | ||||
---|---|---|---|---|---|---|
CPFX | GRNX | STFX | ZFD | |||
gyrA | No alteration | 7 (22.6) | 9 (29.0) | 8 (25.8) | 10 (32.3) | 31 |
S91F + D95A/G/N | 103 (95.4) | 106 (98.1) | 82 (75.9) | 43 (39.8) | 108 | |
S91F | 6 (100.0) | 6 (100.0) | 5 (83.3) | 4 (66.7) | 6 | |
D95G | 2 (100.0) | 2 (100.0) | 1 (50.0) | 1 (50.0) | 2 | |
gyrB | No alteration | 118 (80.3) | 123 (83.7) | 96 (65.3) | 58 (39.5) | 147 |
parC | No alteration | 7 (22.6) | 7 (22.6) | 6 (19.4) | 11 (35.5) | 31 |
S87H/I/N/R | 82 (96.5) | 85 (100.0) | 69 (81.2) | 39 (45.9) | 85 | |
S87R + S88P | 14 (93.3) | 15 (100.0) | 13 (86.7) | 5 (33.3) | 15 | |
S87N/R + E91G/K | 10 (100.0) | 9 (90.0) | 5 (50.0) | 2 (20.0) | 10 | |
D86N | 2 (100.0) | 2 (100.0) | 2 (100.0) | 0 (0.0) | 2 | |
E91G/K | 2 (100.0) | 2 (100.0) | 1 (50.0) | 0 (0.0) | 2 | |
others | 1 (50.0) | 2 (100.0) | 2 (100.0) | 1 (50.0) | 2 | |
parE | No alteration | 113 (79.6) | 117 (82.4) | 95 (66.9) | 57 (40.1) | 142 |
D437N | 3 (100.0) | 3 (100.0) | 0 (0.0) | 0 (0.0) | 3 | |
P456S | 2 (100.0) | 2 (100.0) | 0 (0.0) | 1 (50.0) | 2 |
ST | Total Strains | No. of Non-Susceptibility Strains (%) | ||||
---|---|---|---|---|---|---|
2015 Year | 2020–2022 Years | CPFX | GRNX | STFX | ZFD | |
6800 | 14 | 0 | 11 (78.6) | 14 (100.0) | 14 (100.0) | 12 (85.7) |
1407 | 10 | 0 | 9 (90.0) | 10 (100.0) | 10 (100.0) | 9 (90.0) |
14,149 | 0 | 7 | 6 (85.7) | 7 (100.0) | 6 (85.7) | 2 (28.6) |
4207 | 0 | 8 | 1 (12.5) | 0 (0.0) | 2 (25.0) | 1 (12.5) |
NT | 0 | 38 | − | − | − | − |
Others | 22 | 48 | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurube, T.; Shigemura, K.; Kobayashi, Y.; Maeda, T.; Nishimura, N.; Yamada, A.; Kotani, K.; Horii, S.; Yoshida, H.; Osawa, K. Susceptibility of Neisseria gonorrhoeae to Zoliflodacin and Quinolones in Hyogo Prefecture, Japan. Pathogens 2025, 14, 831. https://doi.org/10.3390/pathogens14080831
Yurube T, Shigemura K, Kobayashi Y, Maeda T, Nishimura N, Yamada A, Kotani K, Horii S, Yoshida H, Osawa K. Susceptibility of Neisseria gonorrhoeae to Zoliflodacin and Quinolones in Hyogo Prefecture, Japan. Pathogens. 2025; 14(8):831. https://doi.org/10.3390/pathogens14080831
Chicago/Turabian StyleYurube, Takashi, Katsumi Shigemura, Yurino Kobayashi, Taishi Maeda, Nami Nishimura, Ayaka Yamada, Kotoko Kotani, Saki Horii, Hiroyuki Yoshida, and Kayo Osawa. 2025. "Susceptibility of Neisseria gonorrhoeae to Zoliflodacin and Quinolones in Hyogo Prefecture, Japan" Pathogens 14, no. 8: 831. https://doi.org/10.3390/pathogens14080831
APA StyleYurube, T., Shigemura, K., Kobayashi, Y., Maeda, T., Nishimura, N., Yamada, A., Kotani, K., Horii, S., Yoshida, H., & Osawa, K. (2025). Susceptibility of Neisseria gonorrhoeae to Zoliflodacin and Quinolones in Hyogo Prefecture, Japan. Pathogens, 14(8), 831. https://doi.org/10.3390/pathogens14080831