Control of Gray Mold on Clamshell-Packaged ‘Benitaka’ Table Grapes Using Sulphur Dioxide Pads and Perforated Liners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiments and Materials used
2.2. Artificial and Natural Occurring Infections
2.2.1. Inoculation of Grapes with B. cinerea
2.2.2. Natural Infection
2.3. Postharvest Quality Assessments
2.4. Statistical Analysis
3. Results and Discussion
3.1. Artificial Inoculation with B. cinerea
3.2. Natural Occurring Infection of Gray Mold
3.3. Grape Quality
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kishino, A.A.; Roberto, S.R.; Genta, W. Implantação do pomar. In Viticultura Tropical: O Sistema de Produção de Uvas de Mesas do Paraná, 2nd ed.; Kishino, A.Y., Carvalho, S.L.C., Roberto, S.R., Eds.; Instituto Agronômico do Paraná: Londrina, Brazil, 2019; pp. 161–200. [Google Scholar]
- Maia, J.D.G.; Ritschel, P.; Camargo, U.A.; De Souza, R.T.; Fajardo, T.V.M.; Girardi, C.L. BRS Núbia: Nova Cultivar de Uva de Mesa Com Sementes e Coloração Preta Uniforme (Comunicado Técnico 139); Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2013. [Google Scholar]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hort. 2020, 259, 108859. [Google Scholar] [CrossRef]
- Champa, H. Pre and postharvest practices for quality improvement of table grapes (Vitis vinifera L.). J. Nat. Sci. Foun. 2015, 43, 3–9. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Latorre, B.A. Table grapes: Vitis vinifera L. In Postharvest Biology and Technology of Tropical and Subtropical Fruits: Coco to Mango; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 179–207. [Google Scholar]
- Gabler, F.M.; Mercier, J.; Jimenez, J.I.; Smilanick, J.L. Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 2010, 55, 78–84. [Google Scholar] [CrossRef]
- Karaca, H.; Smilanick, J.L. The influence of plastic composition and ventilation area on ozone diffusion through some food packaging materials. Postharvest Biol. Technol. 2011, 62, 85–88. [Google Scholar] [CrossRef]
- Saito, S.; Xiao, C.L. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries. Int. Vaccinium Symp. 2017, 1180, 123–128. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R.; Chiarotti, F.; Koyama, R.; Hussain, I.; Souza, R.T. Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Sci. Hort. 2015, 193, 316–321. [Google Scholar] [CrossRef]
- Nigro, F.; Schena, L.; Ligorio, A.; Pentimone, I.; Ippolito, A.; Salerno, M.G. Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biol. Technol. 2006, 42, 142–149. [Google Scholar] [CrossRef]
- Jacometti, M.A.; Wratten, S.D.; Walter, M. Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res. 2010, 16, 154–172. [Google Scholar] [CrossRef]
- Calvo-Garrido, C.; Roudet, J.; Aveline, N.; Davidou, L.; Dupin, S.; Fermaud, M. Microbial Antagonism Toward Botrytis Bunch Rot of Grapes in Multiple Field Tests Using One Bacillus ginsengihumi Strain and Formulated Biological Control Products. Front. Plant Sci. 2019, 10, 105. [Google Scholar] [CrossRef]
- Liguori, G.; Sortino, G.; De Pasquale, C.; Inglese, P. Effects of modified atmosphere packaging on quality parameters of minimally processed table grapes during cold storage. Adv. Hort. Sci. 2015, 29, 152–154. [Google Scholar]
- Ahmed, S.; Ruffo Roberto, S.; Youssef, K.; Carlos Colombo, R.; Shahab, M.; José Chaves Junior, O.; Hideki Sumida, C.; Teodoro de Souza, R. Postharvest Preservation of the New Hybrid Seedless Grape, ‘BRS Isis’, Grown Under the Double-Cropping a Year System in a Subtropical Area. Agronomy 2019, 9, 603. [Google Scholar] [CrossRef]
- Litcher, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grapes storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. HortTechnology 2008, 18, 206–214. [Google Scholar]
- Ngcobo, M.E.K.; Opara, U.L.; Thiart, G.D. Effects of Packaging Liners on Cooling Rate and Quality Attributes of Table Grape (cv. Regal Seedless). Pack. Tech. Sci. 2012, 25, 73–84. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Sousa, S.I.V.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Management of air quality monitoring using principal component and cluster analisys—Art I: SO2 and PM10. Atmos. Environ. 2008, 42, 1249–1260. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe—UNECE. UNECE Standard FFV-19 Concerning the Marketing and Commercial Quality Control of Table Grapes, 2017 Edition. Available online: http://www.unece.org/fileadmin/DAM/trade/agr/standard/standard/fresh/FFV-Std/English/19_TablesGrapes.pdf (accessed on 25 July 2019).
- De Lima, M.A.C.; Antoniolli, L. Boas Práticas de Fabricação e Manejo na Colheita e Postharvest de Uvas Finas de Mesa; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2008; pp. 1–13. [Google Scholar]
- Romanazzi, G.; Lichter, A.; Gabler, F.M.; Smilanick, J.L. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol. Technol. 2012, 63, 141–147. [Google Scholar] [CrossRef]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest. Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Leesch, J.G.; Smilanick, J.L.; Muhareb, J.S.; Tebbets, J.S.; Hurley, J.M.; Jones, T.M. Effects of box liner perforation area on methyl bromide diffusion into table grape packages during fumigation. Crop Prot. 2014, 63, 36–40. [Google Scholar] [CrossRef]
- Caviglione, J.H.; Kiihl, L.R.B.; Caramori, P.H.; Oliveira, D. Cartas Climáticas do Paraná; IAPAR: Londrina, Brazil, 2000; p. 595. [Google Scholar]
- Youssef, K.; Roberto, S.R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Lijavetzky, D.; Carbonell-Bejerano, P.; Grimplet, J.; Bravo, G.; Flores, P.; Fenoll, J.; Hellín, P.; Oliveros, J.C.; Martínez-Zapater, J.M. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PloS ONE 2012, 7, e39547. [Google Scholar] [CrossRef]
- Fernandez-Trujillo, J.P.; Obando-Ulloa, J.M.; Baró, R.; Martinez, J.A. Quality of two table grape cultivars treated with single or dual-phase release SO2 generators. J. App. Bot. Food Qual. 2008, 82, 1–8. [Google Scholar]
- Murali, R.S.; Shankarshana, T.; Sridhar, S. Air separation by polymer-based membrane technology. Sep. Pur. Rev. 2013, 42, 130–186. [Google Scholar] [CrossRef]
- Sortino, G.; Allegra, A.; Passufiume, R.; Gianguzzi, G.; Gullo, G.; Gallota, A. Postharvest Application of Sulphur Dioxide Fumigation to Improve Quality and Storage Ability of ‘Red Globe’ Grape Cultivar During Long Cold Storage. Chem. Eng. Trans. 2017, 58, 403–408. [Google Scholar]
- Domingues, A.R.; Roberto, S.R.; Ahmed, S.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Postharvest techniques to prevent the incidence of Botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae 2018, 4, 17. [Google Scholar] [CrossRef]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Chaves Junior, O.J.C.; Hideki, C.S.; Souza, R.T. Effects of different sulfur dioxide pads on Botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef]
- Henríquez, J.L.; Pinochet, S. Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Hortic. 2016, 1144, 267–272. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Mackey, B.E.; Reese, R.; Usall, J.; Margosan, D.A. Influence of concentration of soda ash, temperature, and immersion period on the control of postharvest green mold of oranges. Plant Dis. 1997, 81, 379–382. [Google Scholar] [CrossRef]
- Hashim, A.F.; Youssef, K.; Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur. J. Plant Pathol. 2019, 154, 377–388. [Google Scholar] [CrossRef]
- Salem, E.A.; Youssef, K.; Sanzani, S.M. Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hort. 2016, 198, 86–90. [Google Scholar] [CrossRef]
- Fallanaj, F.; Sanzani, S.M.; Youssef, K.; Zavanella, C.; Salerno, M.G.; Ippolito, A. A new perspective in controlling postharvest citrus rots: The use of electrolyzed water. Acta Hort. 2015, 1065, 1599–1606. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest technology of horticultural crops—An overview from farm to fork. Ethiop. J. Appl. Sci. Technol. 2013, 1, 1–8. [Google Scholar]
Type of SO2 Release and Amount of SO2 in Pads (A) | Incidence of Gray Mold (% of Affected Berries) | ||
---|---|---|---|
After 30 Days in Cold Chamber | After 45 Days in Cold Chamber | After 3 Days at Shelf-Life | |
Slow release—4 g | 22.86 ± 7.05 a | 71.09 ± 9.51 a | 98.60 ± 9.64 a |
Slow release—7 g | 4.68 ± 2.15 b | 19.67 ± 6.08 b | 25.80 ± 9.52 b |
Dual release—5 g | 0.00 ± 0.00 b | 1.02 ± 1.02 b | 2.23 ± 1.51 b |
Dual release—8 g | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Ventilation area of perforated plastic liners (B) | |||
0.3% | 11.17 ± 5.99 a | 25.11 ± 9.87a | 34.74 ± 11.70 a |
0.9% | 4.58 ± 3.60 a | 22.39 ± 7.92a | 32.89 ± 11.53 a |
1.0% | 4.90 ± 3.49 a | 21.33 ± 9.13a | 34.94 ± 10.40 a |
Contrast of the additional treatment with the factorial | |||
Additional treatment | 13.16 ± 9.47 a | 50.85 ± 24.13 a | 86.19 ± 18.94 a |
Factorial | 6.88 ± 4.50 a | 22.95 ± 8.86 a | 34.19 ± 11.04 b |
F (A) | 7.74 * | 10.48 * | 13.01 * |
F (B) | 1.20 ns | 0.05 ns | 0.00 ns |
F (A × B) | 0.66 ns | 0.46 ns | 0.62 ns |
F (additional treat. × factorial) | 0.79 ns | 2.25 ns | 4.15 * |
CV % | 30.34 | 5.64 | 5.24 |
Type of SO2 Release and Amount of SO2 in Pads (A) | Incidence of Gray Mold (% of Affected Berries) | ||
---|---|---|---|
After 30 Days in Cold Chamber | After 45 Days in Cold Chamber | After 3 Days at Shelf-Life | |
Slow release—4 g | 0.31 ± 0.11 a | 0.92 ± 0.20 a | 2.68 ± 0.42 a |
Slow release—7 g | 0.03 ± 0.04 b | 0.35 ± 0.12 b | 0.35 ± 0.07 b |
Dual release—5 g | 0.00 ± 0.00 b | 0.04 ± 0.00 b | 0.04 ± 0.00 b |
Dual release—8 g | 0.00 ± 0.00 b | 0.00 ± 0.04 b | 0.00 ± 0.00 b |
Ventilation area of perforated plastic liners (B) | |||
0.3% | 0.10 ± 0.07 a | 0.37 ± 0.17 a | 0.69 ± 0.34 a |
0.9% | 0.03 ± 0.04 a | 0.26 ± 0.11 a | 0.66 ± 0.28 a |
1.0% | 0.12 ± 0.08 a | 0.35 ± 0.18 a | 0.95 ± 0.53 a |
Contrast of the additional treatment with the factorial | |||
Additional treatment | 0.59 ± 0.23 a | 1.45 ± 0.57 a | 1.46 ± 0.55 a |
Factorial | 0.08 ± 0.07 b | 0.32 ± 0.16 b | 0.71 ± 0.39 a |
F (A) | 5.41 * | 11.19 * | 55.32 * |
F (B) | 0.65 ns | 0.16 ns | 0.43 ns |
F (A × B) | 0.66 ns | 0.85 ns | 0.82 ns |
F (additional treat. × factorial) | 17.43 * | 18.96 * | 2.58 ns |
CV % | 19.74 | 32.44 | 47.69 |
Type of SO2 Release and Amount of SO2 in Pads (A) | Shattered Berries (%) | ||
---|---|---|---|
After 30 Days in Cold Chamber | After 45 Days in Cold Chamber | After 3 Days at Shelf-Life | |
Slow release—4 g | 0.22 ± 0.09 a | 0.65 ± 0.23 a | 1.11 ± 0.06 a |
Slow release—7 g | 0.34 ± 0.06 a | 0.50 ± 0.12 a | 1.05 ± 0.05 a |
Dual release—5 g | 0.28 ± 0.12 a | 0.55 ± 0.20 a | 1.06 ± 0.04 a |
Dual release—8 g | 0.20 ± 0.10 a | 0.43 ± 0.11 a | 1.17 ± 0.05 a |
Ventilation area of perforated plastic liners (B) | |||
0.3% | 0.15 ± 0.09 a | 0.34 ± 0.20 b | 1.03 ± 0.03 b |
0.9% | 0.36 ± 0.09 a | 0.81 ± 0.14 a | 1.18 ± 0.06 a |
1.0% | 0.27 ± 0.09 a | 0.45 ± 0.13 ab | 1.08 ± 0.06 ab |
Contrast of the additional treatment with the factorial | |||
Additional treatment | 0.38 ± 0.38 a | 0.11 ± 0.12 a | 1.29 ± 0.05 a |
Factorial | 0.26 ± 0.09 a | 0.53 ± 0.17 a | 1.10 ± 0.05 b |
F (A) | 0.43 ns | 1.04 ns | 1.36 ns |
F (B) | 1.53 ns | 3.61 * | 3.81 * |
F (A × B) | 0.30 ns | 0.18 ns | 1.40 ns |
F (additional treat. × factorial) | 0.07 ns | 2.23 ns | 5.23 * |
CV % | 21.86 | 2.76 | 15.85 |
Type of SO2 Release and Amount of SO2 in Pads (A) | Stem Browning a | ||
---|---|---|---|
After 30 Days in a Cold Chamber | After 45 Days in a Cold Chamber | After 3 Days at Shelf-Life | |
Slow release—7 g | 1.00 ± 0.00 a | 1.28 ± 0.11 ab | 2.08 ± 0.09 a |
Slow release—4 g | 1.00 ± 0.00 a | 1.30 ± 0.06 a | 2.33 ± 0.07 a |
Dual release—5 g | 1.00 ± 0.00 a | 1.11 ± 0.07 ab | 2.06 ± 0.08 a |
Dual release—8 g | 1.05 ± 0.00 a | 1.05 ± 0.04 b | 2.30 ± 0.08 a |
Ventilation area of perforated plastic liners (B) | |||
0.3% | 1.00 ± 0.00 a | 1.31 ± 0.07 a | 2.10 ± 0.05 b |
0.9% | 1.00 ± 0.00 a | 1.12 ± 0.09 a | 2.40 ± 0.09 a |
1.0% | 1.00 ± 0.00 a | 1.12 ± 0.07 a | 2.08 ± 0.08 b |
Contrast of the additional treatment with the factorial | |||
Additional treatment | 1.05 ± 0.05 a | 1.20 ± 0.08 a | 2.19 ± 0.13 a |
Factorial | 1.00 ± 0.00 a | 1.18 ± 0.08 a | 2.07 ± 0.08 b |
F (A) | 0.14 ns | 3.51 * | 4.29 * |
F (B) | 1.08 ns | 0.80 ns | 8.46 * |
F (A × B) | 0.07 ns | 1.59 ns | 0.55 ns |
F (additional treat. × factorial) | 12.00 ns | 0.01 ns | 18.39 * |
CV % | 27.41 | 21.95 | 13.14 |
Type of SO2 Release and Amount of SO2 in Pads (A) | Mass Loss (%) | Firmness (N) | |
---|---|---|---|
After 30 Days in Cold Chamber | After 45 Days in Cold Chamber | After 45 Days in Cold Chamber | |
Slow release—4 g | 0.75 ± 0.12 a | 1.53 ± 0.14 a | 8.28 ± 0.21 a |
Slow release—7 g | 0.79 ± 0.14 a | 1.53 ± 0.17 a | 8.71 ± 0.29 a |
Dual release—5 g | 0.58 ± 0.12 a | 1.08 ± 0.19 a | 8.56 ± 0.13 a |
Dual release—8 g | 0.56 ± 0.16 a | 1.30 ± 0.19 a | 8.25 ± 0.11 a |
Ventilation area of perforated plastic liners (B) | |||
0.3% | 0.51 ± 0.11 b | 0.99 ± 0.18 b | 8.60 ± 0.20 a |
0.9% | 0.86 ± 0.10 a | 1.81 ± 0.10 a | 8.14 ± 0.15 a |
1.0% | 0.63 ± 0.16 ab | 1.27 ± 0.16 b | 8.61 ± 0.21 a |
Contrast of the additional treatment with the factorial | |||
Additional treatment | 0.91 ± 0.23 a | 1.57 ± 0.25 a | 8.73 ± 0.28 a |
Factorial | 0.67 ± 0.13 a | 1.36 ± 0.18 a | 8.45 ± 0.20 a |
F (A) | 1.09 ns | 2.93 ns | 1.57 ns |
F (B) | 3.25 * | 13.16 * | 3.28 ns |
F (A × B) | 1.68 ns | 1.95 ns | 1.77 ns |
F (additional treat. × factorial) | 1.34 ns | 0.92 ns | 0.82 ns |
CV (%) | 19.22 | 17.10 | 7.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, O.J.C.; Youssef, K.; Koyama, R.; Ahmed, S.; Dominguez, A.R.; Mühlbeier, D.T.; Roberto, S.R. Control of Gray Mold on Clamshell-Packaged ‘Benitaka’ Table Grapes Using Sulphur Dioxide Pads and Perforated Liners. Pathogens 2019, 8, 271. https://doi.org/10.3390/pathogens8040271
Junior OJC, Youssef K, Koyama R, Ahmed S, Dominguez AR, Mühlbeier DT, Roberto SR. Control of Gray Mold on Clamshell-Packaged ‘Benitaka’ Table Grapes Using Sulphur Dioxide Pads and Perforated Liners. Pathogens. 2019; 8(4):271. https://doi.org/10.3390/pathogens8040271
Chicago/Turabian StyleJunior, Osmar Jose Chaves, Khamis Youssef, Renata Koyama, Saeed Ahmed, Allan Ricardo Dominguez, Débora Thaís Mühlbeier, and Sergio Ruffo Roberto. 2019. "Control of Gray Mold on Clamshell-Packaged ‘Benitaka’ Table Grapes Using Sulphur Dioxide Pads and Perforated Liners" Pathogens 8, no. 4: 271. https://doi.org/10.3390/pathogens8040271
APA StyleJunior, O. J. C., Youssef, K., Koyama, R., Ahmed, S., Dominguez, A. R., Mühlbeier, D. T., & Roberto, S. R. (2019). Control of Gray Mold on Clamshell-Packaged ‘Benitaka’ Table Grapes Using Sulphur Dioxide Pads and Perforated Liners. Pathogens, 8(4), 271. https://doi.org/10.3390/pathogens8040271