Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination
Abstract
:1. Introduction
2. Convergence of Branches in the Same Tree of Integrated Tick Management Research: Commonalities in the Continuum between Cattle Fever Tick Eradication in the United States and Control in Mexico of Cattle Fever Ticks
3. Epidemiology and Diagnostic Tools for the Detection and Control of Bovine Babesiosis
4. Tick Resistance to Acaricides
4.1. Assessment of Phenotypic Resistance
4.2. Assessment of Genotypic Resistance
4.3. Assessment of Metabolic Resistance
4.4. Acaricide Resistance of Rhipicephalus microplus in Mexico and Along the U.S. Border
5. Orientation of Tick Research to Design Cattle Integrated Resilience Program
- Complementary tick buffer zone: In an effort to limit the spread of fever ticks into the U.S., the Permanent Quarantine “Buffer” Zone was created and now serves as the buffer between Texas and Mexico. To further utilize the buffer zone idea, the group proposed to create a complementary tick buffer zone on the Mexico side of the Rio Grande (approximately 500 miles long). Utilization of a technical working group format to develop uniform processes for both the Mexico and U.S. buffer zones was also proposed. The group should include representation from a bi-national committee of “tick experts”, professional organizations (i.e., the United States Animal Health Association) to generate resolutions of support. In both countries, it would be desirable to standardize and make uniform the use of anti-tick vaccines, management of dip vats, policies in biosecurity, treatment and management of gathering pens, premises and vats, protocols for treatment of resistant ticks, and officially approved laboratories for tick and Babesia spp. diagnostics.
- Create a bi-national scientific exchange process for Mexico and US: The meeting participants also proposed to hold an annual meeting between academic researchers and government (i.e., SADER/USDA), for both Mexico and the U.S. internally (separately) and an international meeting between representatives of both countries held jointly. In this meeting, a collaborative environment to exchange research ideas and knowledge is desired (genetic material, new or important strains of ticks, resistance data, and other important data for development of vaccines or new treatments for Babesia spp. or ticks).
- Through dialogue, develop a new framework for tick control that will be compatible on both sides of the border.
- Establish binational efforts to monitor livestock crossing the border.
- Establish binational efforts to develop tests jointly for diagnosis and monitoring of acaricide resistance and other relevant characteristics in tick populations through standardized data collection matrices, protocols, deliverables, and timelines that are realistic for both countries.
- Development of an affordable and reliable “point of care” diagnostic, for detecting both the presence of ticks and Babesia pathogens in animals.
- Designate officially-approved laboratories for the diagnosis of ticks and Babesia pathogens in animals.
- Develop best management practices and protocols when treating cattle infested with ticks resistant to acaricides.
- Link epidemiological data with agricultural economics studies to better estimate the economic impact of CFT and bovine babesiosis to all parties.
- Utilize “implementation research” to address issues regarding uniformity in the delivery of strategies to control ticks in the buffer zone for both countries.
- Develop binational training programs for farmers and producers to improve implementation of novel IPM strategies in the buffer zone for both countries.
- Create a Bi-National Scientific Program (MX–U.S.) with meetings between scientists and government officials, to generate a collaborative environment to exchange research ideas.
- Develop best anti-tick vaccine (s) that could be legally used in both Mexico and the U.S. buffer zones.
- Investigate the possibility of using the anti-tick vaccine in wildlife (i.e., cervids and nilgai antelope).
- Exchange of genetic material and information related to resistant ticks and epidemiology of outbreaks.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giles, J.R.; Peterson, A.T.; Busch, J.D.; Olafson, P.U.; Scoles, G.A.; Davey, R.B.; Pound, J.M.; Kammlah, D.M.; Lohmeyer, K.H.; Wagner, D.M. Invasive potential of cattle fever ticks in the southern United States. Parasit Vectors 2014, 7, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez de Leon, A.A.; Mitchell, R.D. Ectoparasites of cattle. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 173–185. [Google Scholar] [CrossRef]
- Grisi, L.; Leite, R.C.; Martins, J.R.; Barros, A.T.; Andreotti, R.; Cancado, P.H.; Leon, A.A.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartín-Rojas, A. Transboundary Animal Diseases and International Trade. In International Trade from Economic and Policy Perspective; Bobem, V., Ed.; InTechOpen: London, UK, 2012; pp. 143–166. [Google Scholar] [CrossRef]
- Thomson, G.R.; Tambi, E.N.; Hargreaves, S.K.; Leyland, T.J.; Catley, A.P.; van’t Klooster, G.G.; Penrith, M.L. International trade in livestock and livestock products: The need for a commodity-based approach. Vet. Rec. 2004, 155, 429–433. [Google Scholar] [PubMed]
- Pérez de León, A.A.; Rodríguez-Vivas, R.I.; Guerrero, F.D.; García-Vázquez, Z.; Temeyer, K.B.; Domínguez-García, D.I.; Li, A.; Cespedes, N.; Miller, R.J.; Rosario-Cruz, R. Acaricide resistance in Rhipicephalus (Boophilus) microplus: Impact on agro-biosecurity and cattle trade between Mexico and the United States of America. In Proceedings of the 3th International Symposium on Pesticide Resistance in Arthropods: Integrated Cattle Tick and Fly Control and Mitigation of Pesticide Resistance, Ixtapa, Zihuatanejo, Mexico, 24 June 2013; pp. 18–35. [Google Scholar]
- Gerry, A.; Murillo, A. Promoting biosecurity through insect management at animal facilities. In Biosecurity in Animal Production and Veterinary Medicine; Dewulf, J., Van Immerseel, F., Eds.; CABI: Ghent University: Gent, Belgium, 2018; p. 524. [Google Scholar]
- Pérez de León, A.A.; Strickman, D.A.; Knowles, D.P.; Fish, D.; Thacker, E.; de la Fuente, J.; Krause, P.J.; Wikel, S.K.; Miller, R.S.; Wagner, G.G.; et al. One Health approach to identify research needs in bovine and human babesioses: Workshop report. Parasit Vectors 2010, 3, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmeyer, K.H.; May, M.A.; Thomas, D.B.; Perez de Leon, A.A. Implication of Nilgai Antelope (Artiodactyla: Bovidae) in Reinfestations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in South Texas: A Review and Update. J. Med. Entomol. 2018, 55, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Vivas, R.I.; Grisi, L.; de León, A.A.; Villela, H.S.; de Jesús Torres-Acosta, J.F.; Sánchez, H.F.; Salas, D.R.; Cruz, R.R.; Saldierna, F.; Carrasco, D.G. Potential economic impact assessment for cattle parasites in Mexico. Rev. Mex. Cienc. Pecu. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Mosqueda, J.; Hernández-Silva, D.J.; Hidalgo-Ruiz, M. Genome-Based Vaccinology Applied to Bovine Babesiosis. In Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment; Quiroz-Castañeda, R.E., Ed.; IntechOpen: London, UK, 2017; pp. 65–81. [Google Scholar]
- Esteve-Gassent, M.D.; Pérez de León, A.A.; Romero-Salas, D.; Feria-Arroyo, T.P.; Patino, R.; Castro-Arellano, I.; Gordillo-Pérez, G.; Auclair, A.; Goolsby, J.; Rodriguez-Vivas, R.I.; et al. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande. Front. Public Health 2014, 2. [Google Scholar] [CrossRef]
- Trapapa, B. The Campaign against Boophilus Microplus in Mexico, Benefit, Problems and Prospects; FAO: Mexico, 1989; pp. 50–75. [Google Scholar]
- Bautista-Garfias, C.R.; Castañeda-Arriola, R.; Álvarez-Martínez, J.A.; Rojas-Martínez, C.; Figueroa-Millán, J.V.; Rodríguez-Lozano, A. La vacunación simultánea de bovinos con Lactobacillus casei y la vacuna bivalente contra babesiosis bovina genera una mejor protección contra Babesia bovis y B. bigemina transmitidas por garrapatas en condiciones extremas de campo. The simultaneous vaccination of bovines with Lactobacillus casei and the bivalent vaccine against bovine babesiosis induces a better protection against Babesia bovis and B. bigemina transmitted by ticks in extreme field conditions. Vet. Méx. 2012, 43, 189–200. [Google Scholar]
- United States Department of Agriculture. U.S.-Mexico Binational Committee for Tuberculosis, Brucellosis, and Cattle Fever Tick; United States Department of Agriculture: Riverdale, CA, USA, 2020.
- Pérez de León, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA is Required to Mitigate the Impact of Global Change. Front. Physiol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.B.; Klafke, G.; Busch, J.D.; Olafson, P.U.; Miller, R.A.; Mosqueda, J.; Stone, N.E.; Scoles, G.; Wagner, D.M.; Perez-De-Leon, A. Tracking the Increase of Acaricide Resistance in an Invasive Population of Cattle Fever Ticks (Acari: Ixodidae) and Implementation of Real-Time PCR Assays to Rapidly Genotype Resistance Mutations. Annu. Entomol. Soc. Am. 2020. [Google Scholar] [CrossRef]
- González Sáenz Pardo, J.R.; Hernández Ortiz, R. Boophilus microplus: Estado actual de la resistencia a los acaricidas en la frontera México Estados Unidos y su impacto en la relación comercial. Rev. Mex. Cienc. Pecu. 2012, 3, 1–8. [Google Scholar]
- Miller, R.; Estrada-Pena, A.; Almazan, C.; Allen, A.; Jory, L.; Yeater, K.; Messenger, M.; Ellis, D.; Perez de Leon, A.A. Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine 2012, 30, 5682–5687. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.E.; Ratcliffe, S.T.; Rice, M.E. The IPM paradigm: Concepts, strategies and tactics. In Integrated Pest Management: Concepts, Tactics, Strategies, and Case Studies; Radcliffe, E.B., Hutchison, W.D., Cancelado, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 2–13. [Google Scholar]
- Pérez de León, A.A.; Teel, P.D.; Li, A.; Ponnusamy, L.; Roe, R.M. Advancing Integrated Tick Management to Mitigate Burden of Tick-Borne Diseases. Outlooks Pest Manag. 2014, 25, 382–389. [Google Scholar] [CrossRef]
- Higley, L.G.; Peterson, R.K.D. Economic decision rules for IPM. In Integrated Pest Management: Concepts, Tactics, Strategies, and Case Studies; Radcliffe, E.B., Hutchison, W.D., Cancelado, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 25–32. [Google Scholar]
- Benavides Ortiz, E.; Romero Prada, J.; Villamil Jiménez, L.C. Las Garrapatas del Ganado Bovino y los Agentes de Enfermedad que Transmiten en Escenarios Epidemiológios de Cambio Climático; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 2016. [Google Scholar]
- Lavery, J.V.; Tinadana, P.O.; Scott, T.W.; Harrington, L.C.; Ramsey, J.M.; Ytuarte-Nuñez, C.; James, A.A. Towards a framework for community engagement in global health research. Trends Parasitol. 2010, 26, 279–283. [Google Scholar] [CrossRef]
- Rose Vineer, H. What Modeling Parasites, Transmission, and Resistance Can Teach Us. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 145–158. [Google Scholar] [CrossRef]
- Wang, H.H.; Teel, P.D.; Grant, W.E.; Soltero, F.; Urdaz, J.; Ramirez, A.E.P.; Miller, R.J.; Perez de Leon, A.A. Simulation tools for assessment of tick suppression treatments of Rhipicephalus (Boophilus) microplus on non-lactating dairy cattle in Puerto Rico. Parasites Vectors 2019, 12, 185. [Google Scholar] [CrossRef]
- Dallwitz, M.J.; Young, A.S.; Mahoney, D.F.; Sutherst, R.W. Comparative epidemiology of tick-borne diseases of cattle with emphasis on modelling. Int. J. Parasitol. 1987, 17, 629–637. [Google Scholar] [CrossRef]
- Bock, R.; Jackson, L.; de Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef]
- Olafson, P.U.; Thomas, D.B.; May, M.A.; Buckmeier, B.G.; Duhaime, R.A. Tick vector and disease pathogen surveillance of nilgai antelope (Boselaphus tragocamelus) in southeastern texas, USA. J. Wildl. Dis. 2018, 54, 734–744. [Google Scholar] [CrossRef]
- Ueti, M.W.; Olafson, P.U.; Freeman, J.M.; Johnson, W.C.; Scoles, G.A. A Virulent Babesia bovis Strain Failed to Infect White-Tailed Deer (Odocoileus virginianus). PLoS ONE 2015, 10, e0131018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnittger, L.; Rodriguez, A.E.; Florin-Christensen, M.; Morrison, D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012, 12, 1788–1809. [Google Scholar] [CrossRef] [PubMed]
- Lack, J.B.; Reichard, M.V.; Van Den Bussche, R.A. Phylogeny and evolution of the Piroplasmida as inferred from 18S rRNA sequences. Int. J. Parasitol. 2012, 42, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Jalovecka, M.; Sojka, D.; Ascencio, M.; Schnittger, L. Babesia Life Cycle—When Phylogeny Meets Biology. Trends Parasitol. 2019, 35, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.E.; Kingston, T.G.; de Vos, A.J. Effect of breed of cattle on transmission rate and innate resistance to infection with Babesia bovis and B bigemina transmitted by Boophilus microplus. Aust. Vet. J. 1999, 77, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Goff, W.L.; Johnson, W.C.; Parish, S.M.; Barrington, G.M.; Tuo, W.; Valdez, R.A. The age-related immunity in cattle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-gamma and inducible nitric oxide synthase mRNA expression in the spleen. Parasite Immunol. 2001, 23, 463–471. [Google Scholar] [CrossRef]
- Héctor Quiroz, R.; Juan Antonio, F.C.; Froylán, I.V.; María, E.L.A. Epidemiologia de Enfermedades Parasitarias en Animales Domesticos; AMPAVE: Mexico City, Mexico, 2011. [Google Scholar]
- Mosqueda, J.; Olvera-Ramirez, A.; Aguilar-Tipacamu, G.; Canto, G.J. Current advances in detection and treatment of babesiosis. Curr. Med. Chem. 2012, 19, 1504–1518. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, N.N.; Bock, R.E.; Jorgensen, W.K.; Morton, J.M.; Stear, M.J. Is endemic stability of tick-borne disease in cattle a useful concept? Trends Parasitol. 2012, 28, 85–89. [Google Scholar] [CrossRef]
- Ramirez, G.T.; Jones, T.W.; Brown, C.G.; Dominguez, J.L.; Honhold, N. Bovine babesiosis in dual purpose calves in the state of Yucatan, Mexico. Trop. Anim. Health Prod. 1998, 30, 45–52. [Google Scholar] [CrossRef]
- Mahoney, D.F. Bovine babesiasis: A study of factors concerned in transmission. Ann. Trop. Med. Parasitol. 1969, 63, 1–14. [Google Scholar] [CrossRef]
- Mahoney, D.F.; Wright, I.G.; Mirre, G.B. Bovine babesiasis: The persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Ann. Trop. Med. Parasitol. 1973, 67, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Holman, P.J.; Carroll, J.E.; Pugh, R.; Davis, D.S. Molecular detection of Babesia bovis and Babesia bigemina in white-tailed deer (Odocoileus virginianus) from Tom Green County in central Texas. Vet. Parasitol. 2011, 177, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Martinez, C.; Rodriguez-Vivas, R.I.; Millan, J.V.F.; Bautista-Garfias, C.R.; Castaneda-Arriola, R.O.; Lira-Amaya, J.J.; Uriostegui, P.V.; Carrasco, J.J.O.; Martinez, J.A.A. Bovine babesiosis: Cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium. Parasitol. Int. 2018, 67, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Teclaw, R.F.; Castaneda, M.; Wagner, G.G.; Romo, S.; Garcia, Z. A seroepidemiologic study of bovine babesiosis in the Mexican states of Nuevo Leon, Tamaulipas and Coahuila. Prevent. Vet. Med. 1985, 3, 403–415. [Google Scholar] [CrossRef]
- Kim, C.; Iseki, H.; Herbas, M.S.; Yokoyama, N.; Suzuki, H.; Xuan, X.; Fujisaki, K.; Igarashi, I. Development of taqman-based real-time PCR assays for diagnostic detection of Babesia bovis and Babesia bigemina. Am. J. Trop. Med. Hyg. 2007, 77, 837. [Google Scholar] [CrossRef]
- El-Sayed, S.; Rizk, M.A.; Terkawi, M.; Igarashi, I. Cocktail Babesia bovis antigens for global detection of Babesia bovis infection in cattle. Exp. Parasitol. 2019, 206, 107758. [Google Scholar] [CrossRef]
- Dominguez, M.; Echaide, I.; de Echaide, S.T.; Wilkowsky, S.; Zabal, O.; Mosqueda, J.J.; Schnittger, L.; Florin-Christensen, M. Validation and Field Evaluation of a Competitive Enzyme-Linked Immunosorbent Assay for Diagnosis of Babesia bovis Infections in Argentina. Clin. Vaccine Immunol. 2012, 19, 924–928. [Google Scholar] [CrossRef] [Green Version]
- Goff, W.L.; Johnson, W.C.; Molloy, J.B.; Jorgensen, W.K.; Waldron, S.J.; Figueroa, J.V.; Matthee, O.; Adams, D.S.; McGuire, T.C.; Pino, I.; et al. Validation of a Competitive Enzyme-Linked Immunosorbent Assay for Detection of Babesia bigemina Antibodies in Cattle. Clin. Vaccine Immunol. 2008, 15, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Buening, G.M.; Figueroa, J.V. Use of polymerase chain reaction in bovine babesiosis research. Ann. N. Y. Acad. Sci. 1996, 791, 466–468. [Google Scholar] [CrossRef]
- Calder, J.A.; Reddy, G.R.; Chieves, L.; Courtney, C.H.; Littell, R.; Livengood, J.R.; Norval, R.A.; Smith, C.; Dame, J.B. Monitoring Babesia bovis infections in cattle by using PCR-based tests. J. Clin. Microbiol. 1996, 34, 2748–2755. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, J.; Rodriguez, M.; Montero, C.; Redondo, M.; Garcia-Garcia, J.C.; Mendez, L.; Serrano, E.; Valdes, M.; Enriquez, A.; Canales, M.; et al. Vaccination against ticks (Boophilus spp.): The experience with the Bm86-based vaccine Gavac. Genet. Ann. Biomol. Eng. 1999, 15, 143–148. [Google Scholar] [CrossRef]
- Oliveira-Sequeira, T.C.G.; Oliveira, M.C.S.; Araujo, J.P.; Amarante, A.F.T. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int. J. Parasitol. 2005, 35, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Junior, L.M.; Rabelo, E.M.; Martins Filho, O.A.; Ribeiro, M.F. Comparison of different direct diagnostic methods to identify Babesia bovis and Babesia bigemina in animals vaccinated with live attenuated parasites. Vet. Parasitol. 2006, 139, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Bendele, K.G.; Davey, R.B.; George, J.E. Detection of Babesia bigemina infection in strains of Rhipicephalus (Boophilus) microplus collected from outbreaks in South Texas. Vet. Parasitol. 2007, 145, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.B.; Andre, M.R.; da Fonseca, A.H.; de Albuquerque Lopes, C.T.; da Silva Lima, D.H.; de Andrade, S.J.; Oliveira, C.M.; Barbosa, J.D. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. Vet. Parasitol. 2013, 197, 678–681. [Google Scholar] [CrossRef]
- Mtshali, M.S.; Mtshali, P.S. Molecular diagnosis and phylogenetic analysis of Babesia bigemina and Babesia bovis hemoparasites from cattle in South Africa. BMC Vet. Res. 2013, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Al-Hosary, A. Comparison between conventional and molecular methods for diagnosis of bovine babesiosis (Babesia bovis infection) in tick infested cattle in upper Egypt. J. Parasit. Dis. 2017, 41, 243. [Google Scholar] [CrossRef] [Green Version]
- Guswanto, A.; Allamanda, P.; Mariamah, E.S.; Sodirun, S.; Wibowo, P.E.; Indrayani, L.; Nugroho, R.H.; Wirata, I.K.; Jannah, N.; Dias, L.P.; et al. Molecular and serological detection of bovine babesiosis in Indonesia. Parasites Vectors 2017, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Carmen, R.; Julio, V.F. Diagnostic Tools for the Identification of Babesia sp. in Persistently Infected Cattle. Pathogens 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Myalkhaa, M.; Kruecken, J.; Battsetseg, G.; Batsukh, Z.; Baumann, M.P.O.; Clausen, P.-H.; Nijhof, A.M. Molecular detection of tick-borne pathogens in bovine blood and ticks from Khentii, Mongolia. Transbound. Emerg. Dis. 2019. [Google Scholar] [CrossRef]
- Ganzinelli, S.; Benitez, D.; Gantuya, S.; Guswanto, A.; Florin-Christensen, M.; Schnittger, L.; Igarashi, I. Highly sensitive nested PCR and rapid immunochromatographic detection of Babesia bovis and Babesia bigemina infection in a cattle herd with acute clinical and fatal cases in Argentina. Transbound. Emerg. Dis. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, H.B.; Karagenç, T.; Simuunza, M.; Shiels, B.; Tait, A.; Eren, H.; Weir, W. Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Exp. Parasitol. 2013, 133, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Kelly, P.; Zhang, J.; Xu, C.; Wang, C. Development of a pan-Babesia FRET-qPCR and a survey of livestock from five Caribbean islands. BMC Vet. Res. 2015, 11, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iseki, H.; Alhassan, A.; Ohta, N.; Thekisoe, O.M.M.; Yokoyama, N.; Inoue, N.; Nambota, A.; Yasuda, J.; Igarashi, I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J. Microbiol. Methods 2007, 71, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Buling, A.; Criado-Fornelio, A.; Asenzo, G.; Benitez, D.; Barba-Carretero, J.C.; Florin-Christensen, M. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet. Parasitol. 2007, 147, 16–25. [Google Scholar] [CrossRef]
- Thompson, G.; Medellin, J.; Treviño, G.; Wagner, G. Bovine babesiosis in northern Mexico. Trop. Anim. Health Prod. 1980, 12, 132–136. [Google Scholar] [CrossRef]
- Romero-Salas, D.; Mira, A.; Mosqueda, J.; García-Vázquez, Z.; Hidalgo-Ruiz, M.; Vela, N.A.O.; de León, A.A.P.; Florin-Christensen, M.; Schnittger, L. Molecular and serological detection of Babesia bovis- and Babesia bigemina-infection in bovines and water buffaloes raised jointly in an endemic field. Vet. Parasitol. 2016, 217, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantu, C.A.; Ortega, S.J.; Garcia-Vazquez, Z.; Mosqueda, J.; Henke, S.E.; George, J.E. Epizootiology of Babesia bovis and Babesia bigemina in free-ranging white-tailed deer in northeastern Mexico. J. Parasitol. 2009, 95, 536–542. [Google Scholar] [CrossRef]
- Foley, A.M.; León, A.P.r.d.; Alfonso Ortega, S.; Andy, S.; David, G.H.; Dee, E.; Ortega-S, J.A.; John, A.G.; Nirbhay, K.S.; Tyler, A.C. Movement patterns of nilgai antelope in South Texas: Implications for cattle fever tick management. Prev. Vet. Med. 2017, 146, 166–172. [Google Scholar] [CrossRef]
- Cárdenas-Canales, E.M.; Ortega-Santos, J.A.; Campbell, T.A.; García-Vázquez, Z.; Cantú-Covarrubias, A.; Figueroa-Millán, J.V.; DeYoung, R.W.; Hewitt, D.G.; Bryant, F.C. Nilgai Antelope in Northern Mexico as a Possible Carrier for Cattle Fever Ticks and Babesia bovis and Babesia bigemina. J. Wildl. Dis. 2011, 47, 777–779. [Google Scholar] [CrossRef] [Green Version]
- Busch, J.D.; Stone, N.E.; Nottingham, R.; Araya-Anchetta, A.; Lewis, J.; Hochhalter, C.; Giles, J.R.; Gruendike, J.; Freeman, J.; Buckmeier, G.; et al. Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer. Parasites Vectors 2014, 7, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [Green Version]
- FAO. Resistance Management and Integrated Parasite Control in Ruminants, Guidelines; Organisation des Nations Unies pour l’Alimentation et l’agriculture. Division de la Production et de la santé Animales: FAO: Rome, Italy, 2004. [Google Scholar]
- Stone, B.F.; Haydock, K.P. A method for measuring the acaricide-susceptibility of the cattle tick Boophilus microplus (Can.). Bull. Entomol. Res. 1962, 53, 563–578. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Hope, M. Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Vet. Parasitol. 2007, 146, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, F.D.; Pérez de León, A.; Rodriguez-Vivas, R.I.; Jonsson, N.; Miller, R.J.; Andreotti, R. Acaricide research and development, resistance and resistance monitoring. In Biology of Ticks; Sonenshine, D.E., Roe, R.R., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 353–381. [Google Scholar]
- Shaw, R.D. Culture of an organophosphorus-resistant strain of Boophilus microplus (Can.) and an assessment of its resistance spectrum. Bull. Entomol. Res. 1966, 56, 389–405. [Google Scholar] [CrossRef]
- Perez-Cogollo, L.C.; Rodriguez-Vivas, R.I.; Ramirez-Cruz, G.T.; Miller, R.J. First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. Vet. Parasitol. 2010, 168, 165–169. [Google Scholar] [CrossRef]
- Castro-Janer, E.; Rifran, L.; Gonzalez, P.; Niell, C.; Piaggio, J.; Gil, A.; Schumaker, T.T. Determination of the susceptibility of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT) in Uruguay. Vet. Parasitol. 2011, 178, 148–155. [Google Scholar] [CrossRef] [PubMed]
- White, W.H.; Plummer, P.R.; Kemper, C.J.; Miller, R.J.; Davey, R.B.; Kemp, D.H.; Hughes, S.; Smith, C.K.; Gutierrez, J.A. An in vitro larval immersion microassay for identifying and characterizing candidate acaricides. J. Med. Entomol. 2004, 41, 1034–1042. [Google Scholar] [CrossRef]
- Sindhu, Z.U.; Jonsson, N.N.; Iqbal, Z. Syringe test (modified larval immersion test): A new bioassay for testing acaricidal activity of plant extracts against Rhipicephalus microplus. Vet. Parasitol. 2012, 188, 362–367. [Google Scholar] [CrossRef]
- Lovis, L.; Guerrero, F.D.; Miller, R.J.; Bodine, D.M.; Betschart, B.; Sager, H. Distribution patterns of three sodium channel mutations associated with pyrethroid resistance in Rhipicephalus (Boophilus) microplus populations from North and South America, South Africa and Australia. Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Drummond, R.O.; Graham, O.H.; Ernest, S.E. Evaluation of insecticides for the control of Boophilus anulatus (Say) and Boophilus microplus (Canestrini) (Acarina: Ixodidae) on cattle. In Proceedings of the II International Congress on Acarology, Sutton Bonington, UK, 19–25 July 1967; Akadémiai Kiadó: Budapest, Hungary, 1967; pp. 493–498. [Google Scholar]
- Consortium, R.E.X. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 2013, 28, 110–118. [Google Scholar] [CrossRef]
- Fular, A.; Sharma, A.K.; Kumar, S.; Nagar, G.; Chigure, G.; Ray, D.D.; Ghosh, S. Establishment of a multi-acaricide resistant reference tick strain (IVRI-V) of Rhipicephalus microplus. Ticks Tick-Borne Dis. 2018, 9, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, S.H.; Ortiz, E.M.; Soberanes, C.N.; Santamaría, V.M.; Ortiz, N.A. Epidemiología de la resistencia a ixodicidas en garrapatas Boophilus microplus en la República Mexicana. In Proceedings of the III Seminario Internacional de Parasitología Animal, Acapulco, Guerrero, México, 11–13 October 1995; pp. 45–57. [Google Scholar]
- Ortiz, E.M.; Santamaría, V.M.; Ortiz, N.A.; Soberanes, C.N.; Osorio, M.J.; Franco, B.R.; Martinez, I.F.; Quezada, D.R.; Fragoso, S.H. Characterization of Boophilus microplus resistance to ixodicides in México. In Proceedings of the III Seminario Internacional de Parasitología Animal, Acapulco, Guerrero, México, 11–13 October 1995; pp. 58–66. [Google Scholar]
- Miller, R.J.; Davey, R.B.; George, J.E. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 533–538. [Google Scholar] [CrossRef]
- David, J.P.; Ismail, H.M.; Chandor-Proust, A.; Paine, M.J. Role of cytochrome P450s in insecticide resistance: Impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chen, A.C.; Davey, R.B.; Ivie, G.W.; George, J.E. Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem. Biophys. Res. Commun. 1999, 261, 558–561. [Google Scholar] [CrossRef]
- Guerrero, F.D.; Davey, R.B.; Miller, R.J. Use of an allele-specific polymerase chain reaction assay to genotype pyrethroid resistant strains of Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2001, 38, 44–50. [Google Scholar] [CrossRef]
- Rosario-Cruz, R.; Almazan, C.; Miller, R.J.; Dominguez-Garcia, D.I.; Hernandez-Ortiz, R.; de la Fuente, J. Genetic basis and impact of tick acaricide resistance. Front. Biosci. Landmark Ed. 2009, 14, 2657–2665. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Vivas, R.I.; Hodgkinson, J.E.; Rosado-Aguilar, J.A.; Villegas-Perez, S.L.; Trees, A.J. The prevalence of pyrethroid resistance phenotype and genotype in Rhipicephalus (Boophilus) microplus in Yucatan, Mexico. Vet. Parasitol. 2012, 184, 221–229. [Google Scholar] [CrossRef]
- Morgan, J.A.; Corley, S.W.; Jackson, L.A.; Lew-Tabor, A.E.; Moolhuijzen, P.M.; Jonsson, N.N. Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus (Boophilus) microplus associated with resistance to synthetic pyrethroid acaricides. Int. J. Parasitol. 2009, 39, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Lovis, L.; Mendes, M.C.; Perret, J.L.; Martins, J.R.; Bouvier, J.; Betschart, B.; Sager, H. Use of the Larval Tarsal Test to determine acaricide resistance in Rhipicephalus (Boophilus) microplus Brazilian field populations. Vet. Parasitol. 2013, 191, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.E.; Olafson, P.U.; Davey, R.B.; Buckmeier, G.; Bodine, D.; Sidak-Loftis, L.C.; Giles, J.R.; Duhaime, R.; Miller, R.J.; Mosqueda, J.; et al. Multiple mutations in the para-sodium channel gene are associated with pyrethroid resistance in Rhipicephalus microplus from the United States and Mexico. Parasites Vectors 2014, 7, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klafke, G.M.; Miller, R.J.; Tidwell, J.P.; Thomas, D.B.; Sanchez, D.; Feria Arroyo, T.P.; Perez de Leon, A.A. High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Int. J. Parasitol. Drugs Drug Resist. 2019, 9, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Cossio-Bayugar, R.; Miranda-Miranda, E.; Ortiz-Najera, A.; Neri-Orantes, S. Boophilus microplus Pyrethroid Resistance Associated to Increased Levels of Monooxygenase Enzymatic Activity in Field Isolated Mexican Ticks. J. Biol. Sci. 2008, 8, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Li, A.Y.; Davey, R.B.; Miller, R.J.; George, J.E. Detection and characterization of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2004, 41, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, V.L.; Klafke, G.M.; Torres, T.T. Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Sci. Rep. 2018, 8, 12401. [Google Scholar] [CrossRef] [Green Version]
- Baxter, G.D.; Green, P.; Stuttgen, M.; Barker, S.C. Detecting resistance to organophosphates and carbamates in the cattle tick Boophilus microplus, with a propoxur-based biochemical test. Exp. Appl. Acarol. 1999, 23, 907–914. [Google Scholar] [CrossRef]
- Dary, O.; Georghiou, G.P.; Parsons, E.; Pasteur, N. Dot-blot test for identification of insecticide-resistant acetylcholinesterase in single insects. J. Econ. Entomol. 1991, 84, 28–33. [Google Scholar] [CrossRef]
- Mavridis, K.; Wipf, N.; Medves, S.; Erquiaga, I.; Müller, P.; Vontas, J. Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector anopheles gambiae. Parasites Vectors 2019, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Vivas, R.I.; Perez-Cogollo, L.C.; Rosado-Aguilar, J.A.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Miller, R.J.; Li, A.Y.; de Leon, A.P.; Guerrero, F.; Klafke, G. Rhipicephalus (Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. Rev. Bras. Parasitol. Vet. 2014, 23, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Fragoso-Sanchez, H.; Garcia-Vazquez, Z.; Tapia-Perez, G.; Ortiz-Najera, A.; Rosario-Cruz, R.; Rodriguez-Vivas, R.I. Response of Mexican Rhipicephalus (Boophilus) microplus Ticks to Selection by Amitraz and Genetic Analysis of Attained Resistance. J. Entomol. 2011, 8, 218–228. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Rivas, A.L.; Chowell, G.; Fragoso, S.H.; Rosario, C.R.; Garcia, Z.; Smith, S.D.; Williams, J.J.; Schwager, S.J. Spatial distribution of acaricide profiles (Boophilus microplus strains susceptible or resistant to acaricides) in southeastern Mexico. Vet. Parasitol. 2007, 146, 158–169. [Google Scholar] [CrossRef]
- Cabrera-Jiménez, D.; Rosado-Aguilar, J.A.; Rodríguez-Vivas, R.I. Evaluación de la resistencia a la cipermetina en cepas de campo de Boophilus microplus obtenidas de ranchos bovinos del estado de Yucatán, México. Rev. Mex. Cienc. Pecu. 2008, 46, 439–448. [Google Scholar]
- Soberanes-Céspedes, N.; Santamaría-Vargas, M.; Fragoso-Sánchez, H.; García-Vázquez, Z. Primer caso de resistencia al amitraz en la garrapata del ganado Boophilus microplus en México. Téc. Pecu. Méx. 2002, 40, 81–92. [Google Scholar]
- Rodriguez-Vivas, R.I.; Rodriguez-Arevalo, F.; Alonso-Diaz, M.A.; Fragoso-Sanchez, H.; Santamaria, V.M.; Rosario-Cruz, R. Prevalence and potential risk factors for amitraz resistance in Boophilus microplus ticks in cattle farms in the State of Yucatan, Mexico. Prev. Vet. Med. 2006, 75, 280–286. [Google Scholar] [CrossRef]
- Tipacamú, G.A.; Nazar, P.M.; Sesma, B.R.; Llaven, M.Á.; Martínez, C.E.; Trujillo, G.U. Resistencia al amitraz de Rhipicephalus (Boophilus) microplus en unidades de producción del estado de Chiapas. Quehacer Cient. Chiapas 2009, 1, 16–22. [Google Scholar]
- Miller, R.J.; Almazan, C.; Ortiz-Estrada, M.; Davey, R.B.; George, J.E.; De Leon, A.P. First report of fipronil resistance in Rhipicephalus (Boophilus) microplus of Mexico. Vet. Parasitol. 2013, 191, 97–101. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Li, A.Y.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Rosado-Aguilar, J.A.; Miller, R.J.; Perez de Leon, A.A. In vitro and in vivo evaluation of cypermethrin, amitraz, and piperonyl butoxide mixtures for the control of resistant Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in the Mexican tropics. Vet. Parasitol. 2013, 197, 288–296. [Google Scholar] [CrossRef]
- Perez-Cogollo, L.C.; Rodriguez-Vivas, R.I.; Ramirez-Cruz, G.T.; Rosado-Aguilar, J.A. Survey of Rhipicephalus microplus resistance to ivermectin at cattle farms with history of macrocyclic lactones use in Yucatan, Mexico. Vet. Parasitol. 2010, 172, 109–113. [Google Scholar] [CrossRef]
- Fernandez-Salas, A.; Rodriguez-Vivas, R.I.; Alonso-Diaz, M.A.; Basurto-Camberos, H. Ivermectin resistance status and factors associated in Rhipicephalus microplus (Acari: Ixodidae) populations from Veracruz, Mexico. Vet. Parasitol. 2012, 190, 210–215. [Google Scholar] [CrossRef]
- Fernandez-Salas, A.; Rodriguez-Vivas, R.I.; Alonso-Diaz, M.A. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Vet. Parasitol. 2012, 183, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Miller, R.J.; Ojeda-Chi, M.M.; Rosado-Aguilar, J.A.; Trinidad-Martinez, I.C.; Perez de Leon, A.A. Acaricide and ivermectin resistance in a field population of Rhipicephalus microplus (Acari: Ixodidae) collected from red deer (Cervus elaphus) in the Mexican tropics. Vet. Parasitol. 2014, 200, 179–188. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Alonso-Diaz, M.A.; Rodriguez-Arevalo, F.; Fragoso-Sanchez, H.; Santamaria, V.M.; Rosario-Cruz, R. Prevalence and potential risk factors for organophosphate and pyrethroid resistance in Boophilus microplus ticks on cattle ranches from the State of Yucatan, Mexico. Vet. Parasitol. 2006, 136, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Rosado-Aguilar, J.A.; Rodriguez-Vivas, R.I.; Garcia-Vazquez, Z.; Fragoso-Sanchez, H.; Ortiz-Najera, A.; Rosario-Cruz, R. Development of amitraz resistance in field populations of Boophilus microplus (Acari: Ixodidae) undergoing typical amitraz exposure in the Mexican tropics. Vet. Parasitol. 2008, 152, 349–353. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Trees, A.J.; Rosado-Aguilar, J.A.; Villegas-Perez, S.L.; Hodgkinson, J.E. Evolution of acaricide resistance: Phenotypic and genotypic changes in field populations of Rhipicephalus (Boophilus) microplus in response to pyrethroid selection pressure. Int. J. Parasitol. 2011, 41, 895–903. [Google Scholar] [CrossRef]
- Olivares-Pérez, J.S.; Rojas-Hernández, M.T.; Valencia-Almazan, I.; Gutiérrez-Segura, I.; Míreles-Martínez, E.J. Prevalence of resistant strains of Rhipicephalus microplus to acaricides in cattle ranch in the tropical region of Tecpan of Galeana, Guerrero, Mexico. Pak. Vet. J. 2011, 32, 366–368. [Google Scholar]
- Fernandez-Salas, A.; Rodriguez-Vivas, R.I.; Alonso-Diaz, M.A. Resistance of Rhipicephalus microplus to amitraz and cypermethrin in tropical cattle farms in Veracruz, Mexico. J. Parasitol. 2012, 98, 1010–1014. [Google Scholar] [CrossRef]
- Klafke, G.M.; Moreno, H.C.; Tidwell, J.P.; Miller, R.J.; Thomas, D.B.; Feria-Arroyo, T.P.; Perez de Leon, A.A. Partial characterization of the voltage-gated sodium channel gene and molecular detection of permethrin resistance in Rhipicephalus annulatus (Say, 1821). Ticks Tick-Borne Dis. 2020, 11, 101368. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Davey, R.B.; George, J.E. First report of permethrin-resistant Boophilus microplus (Acari: Ixodidae) collected within the United States. J. Med. Entomol. 2007, 44, 308–315. [Google Scholar] [CrossRef]
- Showler, A.T.; Pérez de León, A. Landscape ecology of Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) outbreaks in the South Texas coastal plain wildlife corridor including man-made barriers. Environ. Entomol. 2020, 49, 546–552. [Google Scholar] [CrossRef]
- Strom, C. Making Catfish Bait out of Government Boys: The Fight against Cattle Ticks and the Transformation of the Yeoman South; University of Georgia Press: Athens, GA, USA, 2010. [Google Scholar]
- Perez de León, A.A.; Mahan, S.; Messenger, M.; Ellis, D.; Varner, K.; Schwartz, A.; Baca, D.; Andreotti, R.; Valle, M.R.; Cruz, R.R.; et al. 10. Public-private partnership enabled use of anti-tick vaccine for integrated cattle fever tick eradication in the USA. In Pests and Vector-Borne Diseases in the Livestock Industry; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; Volume 5, pp. 275–298. [Google Scholar]
Author | Acaricide | Test |
---|---|---|
[87] | Dieldrin, lindano, coumaphos, diazinon, dioxation, dimetoato, ethion, cypermethrin, deltamethrin | Larval packet test |
[109] | Amitraz | Larval immersion test |
[100] | Carbaryl | Larval packet test |
[118] | Diazinon, coumaphos, chlorfenvinphos | Larval packet test |
Flumethrin, deltamethrin, cypermethrin | Larval immersion test | |
[110] | Amitraz | Larval immersion test |
[107] | Diazinon, coumaphos, chlorfenvinphos, | Larval packet test |
Flumethrin, deltamethrin, cypermethrin | Larval immersion test | |
[119] | Amitraz | Larval immersion test |
[111] | Amitraz | Larval packet test |
[78] | Ivermectin | Larval immersion test |
[114] | Ivermectin | Larval immersion test |
[120] | Cypermethrin | Larval packet test |
[121] | Amitraz, flumethrin, deltamethrin, cypermethrin, chlorpyrifos, coumaphos, diazinon | Larval packet test |
[122] | Cypermethrin | Larval packet test |
Amitraz | Larval immersion test | |
[115,116] | Diazinon, flumethrin, deltamethrin, cypermethrin | Larval packet test |
Ivermectin | Larval immersion test | |
[112] | Fipronil | Larval packet test |
[117] | chlorpyrifos, coumaphos, cypermethrin, permethrin, fipronil | Larval packet test |
Amitraz, ivermectina | Larval immersion test | |
[113] | Ivermectin, amitraz | Larval immersion test |
chlorpyrifos, coumaphos, cypermethrin, permethrin, fipronil | Larval packet test |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteve-Gasent, M.D.; Rodríguez-Vivas, R.I.; Medina, R.F.; Ellis, D.; Schwartz, A.; Cortés Garcia, B.; Hunt, C.; Tietjen, M.; Bonilla, D.; Thomas, D.; et al. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens 2020, 9, 871. https://doi.org/10.3390/pathogens9110871
Esteve-Gasent MD, Rodríguez-Vivas RI, Medina RF, Ellis D, Schwartz A, Cortés Garcia B, Hunt C, Tietjen M, Bonilla D, Thomas D, et al. Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens. 2020; 9(11):871. https://doi.org/10.3390/pathogens9110871
Chicago/Turabian StyleEsteve-Gasent, Maria D., Roger I. Rodríguez-Vivas, Raúl F. Medina, Dee Ellis, Andy Schwartz, Baltazar Cortés Garcia, Carrie Hunt, Mackenzie Tietjen, Denise Bonilla, Don Thomas, and et al. 2020. "Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination" Pathogens 9, no. 11: 871. https://doi.org/10.3390/pathogens9110871
APA StyleEsteve-Gasent, M. D., Rodríguez-Vivas, R. I., Medina, R. F., Ellis, D., Schwartz, A., Cortés Garcia, B., Hunt, C., Tietjen, M., Bonilla, D., Thomas, D., Logan, L. L., Hasel, H., Alvarez Martínez, J. A., Hernández-Escareño, J. J., Mosqueda Gualito, J., Alonso Díaz, M. A., Rosario-Cruz, R., Soberanes Céspedes, N., Merino Charrez, O., ... Pérez de León, A. A. (2020). Research on Integrated Management for Cattle Fever Ticks and Bovine Babesiosis in the United States and Mexico: Current Status and Opportunities for Binational Coordination. Pathogens, 9(11), 871. https://doi.org/10.3390/pathogens9110871