The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review
Abstract
:1. Introduction
2. Changes in Milk Biochemical Parameters
2.1. Milk Production
2.2. Milk Proteins
2.3. Carbohydrates
2.4. Lipids
2.5. Enzymes
2.5.1. Lactate Dehydrogenase
2.5.2. N-Acetyl-β-D-Glucosaminidase
2.5.3. β-Glucuronidase
2.5.4. Metalloproteinases
2.6. Electrical Conductivity
2.7. Milk Somatic Cells
2.7.1. Intrinsic Factors
2.7.2. Extrinsic Factors
3. Oxidative Stress
3.1. Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) and Antioxidant Systems
3.2. Changes in Oxidative Stress Indices in Goat Mastitic Milk
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turkmen, N. The Nutritional Value and Health Benefits of Goat Milk Components. In Nutrients in Dairy and Their Implications on Health and Disease, 1st ed.; Ross, W.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 441–449. [Google Scholar] [CrossRef]
- Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 2017, 18, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitner, G.; Merin, U.; Silanikove, N. Changes in milk composition as affected by subclinical mastitis in goats. J. Dairy Sci. 2004, 87, 1719–1726. [Google Scholar] [CrossRef]
- Pyörälä, S. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albenzio, M.; Santillo, A. Biochemical characteristics of ewe and goat milk: Effect on the quality of dairy products. Small Rumin. Res. 2011, 101, 33–40. [Google Scholar] [CrossRef]
- Rainard, P.; Gitton, C.; Chaumeil, T.; Fassier, T.; Huau, C.; Riou, M.; Tosser-Klopp, G.; Krupova, Z.; Chaize, A.; Gilbert, F.B.; et al. Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Vet. Res. 2018, 49, 72. [Google Scholar] [CrossRef] [Green Version]
- Andrei, S.; Matei, S.; Fit, N.; Cernea, C.; Ciupe, S.; Bogdan, S.; Groza, I.S. Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cow’s milk. Rom. Biotechnol. Lett. 2011, 16, 6209–6217. [Google Scholar]
- Andrei, S.; Matei, S.; Rugină, D.; Bogdan, L.; Ştefănuţ, C. Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J. Anim. Sci. 2016, 61, 407–413. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S.; Malcolm, D.; Prosser, C.G. Prevalence and incidence of intramammary infections in lactating dairy goats. N. Z. Vet. J. 2014, 62, 136–145. [Google Scholar] [CrossRef]
- Le Maréchal, C.; Thiéry, R.; Vautor, E.; Le Loir, Y. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282. [Google Scholar] [CrossRef] [Green Version]
- Contreras, G.A.; Rodríguez, J.M. Mastitis: Comparative etiology and epidemiology. J. Mammary Gland Biol. Neoplasia 2011, 16, 339–356. [Google Scholar] [CrossRef]
- Bergonier, D.; De Crémoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [Green Version]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in small ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, M.M.; Sayeed, M.A.; Islam, M.N.; Hossain, D.; Hoque, M.A.; Koop, G. Prevalence, aetiology and risk factors of subclinical mastitis in goats in Bangladesh. Small Rumin. Res. 2020, 184, 106046. [Google Scholar] [CrossRef]
- Olechnowicz, J.A.N.; Jaśkowski, J.M. Mastitis in small ruminants. Med. Weter. 2014, 70, 67–72. [Google Scholar]
- Rola, J.G.; Sosnowski, M.; Ostrowska, M.; Osek, J. Prevalence and antimicrobial resistance of coagulase-positive staphylococci isolated from raw goat milk. Small Rumin. Res. 2015, 123, 124–128. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Angelidis, A.S.; Giannakou, R.; Filioussis, G.; Kalamaki, M.S.; Arsenos, G. Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J. Dairy Sci. 2016, 99, 3698–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poławska, E.; Bagnicka, A.W.; Niemczuk, K.; Lipinska, J.O. Relations between the oxidative status, mastitis, milk quality and disorders of reproductive functions in dairy cows—A review. Anim. Sci. Pap. Rep. 2012, 30, 297–307. [Google Scholar]
- Bagnicka, E.; Winnicka, A.; Jóźwik, A.; Rzewuska, M.; Strzałkowska, N.; Kościuczuk, E.; Prusak, B.; Kaba, J.; Horbańczuk, J.; Krzyżewski, J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin. Res. 2011, 100, 72–77. [Google Scholar] [CrossRef]
- Akers, R.M.; Nickerson, S.C. Mastitis and its impact on structure and function in the ruminant mammary gland. J. Mammary Gland Biol. Neoplasia 2011, 16, 275–289. [Google Scholar] [CrossRef]
- Moroni, P.; Pisoni, G.; Ruffo, G.; Boettscher, P.J. Risk factors for intramammary infections and relationship with somatic cell counts in Italian dairy goats. Prev. Vet. Med. 2005, 69, 163–173. [Google Scholar] [CrossRef]
- Min, B.R.; Tomita, G.; Hart, S.P. Effect of subclinicalintramammary infection on somatic cell counts and chemical composition of goats’ milk. J. Dairy Res. 2007, 74, 204–210. [Google Scholar] [CrossRef]
- Koop, G.; De Vliegher, S.; De Visscher, A.; Supré, K.; Haesebrouck, F.; Nielen, M.; Van Werven, T. Differences between coagulase-negative Staphylococcus species in persistence and in effect on somatic cell count and milk yield in dairy goats. J. Dairy Sci. 2012, 95, 5075–5084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koop, G.; Van Werven, T.; Schuiling, H.J.; Nielen, M. The effect of subclinical mastitis on milk yield in dairy goats. J. Dairy Sci. 2010, 93, 5809–5817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitner, G.; Merin, U.; Glickman, A.; Weisblit, L.; Krifucks, O.; Shwimmer, A.; Saran, A. Factors influencing milk quantity and quality in Assaf sheep and goat crossbreds. S. Afr. J. Anim. Sci. 2004, 34, 162–164. [Google Scholar]
- Gelasakis, A.I.; Mavrogianni, V.S.; Petridis, I.G.; Vasileiou, N.G.C.; Fthenakis, G.C. Mastitis in sheep–The last 10 years and the future of research. Vet. Microbiol. 2015, 181, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Silanikove, N.; Merin, U.; Shapiro, F.; Leitner, G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J. Dairy Sci. 2014, 97, 3449–3455. [Google Scholar] [CrossRef]
- Gómez-Martín, Á.; Amores, J.; Paterna, A.; De la Fe, C. Contagious agalactia due to Mycoplasma spp. in small dairy ruminants: Epidemiology and prospects for diagnosis and control. Vet. J. 2013, 198, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Olumee-Shabon, Z.; Swain, T.; Smith, E.A.; Tall, E.; Boehmer, J.L. Proteomic analysis of differentially expressed proteins in caprine milk during experimentally induced endotoxin mastitis. J. Dairy Sci. 2013, 96, 2903–2912. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Fleminger, G.; Heftsi, R.; Uzi, M.; Nissim, S.; Gabriel, L. Chemical and structural characterization of bacterially-derived casein peptides that impair milk clotting. Int. Dairy J. 2011, 21, 914–920. [Google Scholar] [CrossRef]
- Fleminger, G.; Ragones, H.; Merin, U.; Silanikove, N.; Leitner, G. Low molecular mass peptides generated by hydrolysis of casein impair rennet coagulation of milk. Int. Dairy J. 2013, 30, 74–78. [Google Scholar] [CrossRef]
- Guerrero, A.; Dallas, D.C.; Contreras, S.; Bhandari, A.; Cánovas, A.; Islas-Trejo, A.; Medrano, J.F.; Parker, E.A.; Wang, M.; Hettinga, K.; et al. Peptidomic analysis of healthy and subclinically mastitic bovine milk. Int. Dairy J. 2015, 46, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrei, S.; Groza, I.S. Fiziologia si Patologia Glandei Mamare la Vacă, 1st ed.; Academic Press: Cluj-Napoca, Romania, 2010; pp. 153–156, 160–166, 170–176, 187. [Google Scholar]
- Leitner, G.; Rovai, M.; Merin, U. Clinical and subclinical intrammamay infection caused by coagulase negative staphylococci negatively affect milk yield and its quality in dairy sheep. Small Rumin. Res. 2019, 180, 74–78. [Google Scholar] [CrossRef]
- Martí-De Olives, A.; Le Roux, Y.; Rubert-Alemán, J.; Peris, C.; Molina, M.P. Effect of subclinical mastitis on proteolysis in ovine milk. J. Dairy Sci. 2011, 94, 5369–5374. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zheng, H.; Li, L.; Shen, X.; Zang, W.; Sun, Y. The effects of matrix metalloproteinase-9 on dairy goat mastitis and cell survival of goat mammary epithelial cells. PLoS ONE 2016, 11, e0160989. [Google Scholar] [CrossRef]
- Dufour, D.; Jameh, N.; Dary, A.; Le Roux, Y. Can the mammopathogenic Escherichia coli P4 strain have a direct role on the caseinolysis of milk observed during bovine mastitis? J. Dairy Sci. 2009, 92, 1398–1403. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. Anim. Sci. J. 2008, 86 (Suppl. 13), 57–65. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Baines, S.K.; Balthazar, C.F.; Cruz, A.G.; Esmerino, E.A.; Freitas, M.Q.; Pimentel, T.C.; Wittwer, A.E.; Naumovski, N.; et al. Probiotics in goat milk products: Delivery capacity and ability to improve sensory attributes. Compr. Rev. Food Sci. Food Saf. 2019, 18, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Pirisi, A.; De Cremoux, R.; Gonzalo, C. Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin. Res. 2007, 68, 126–144. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, J.; Yadav, S.K. Composition, nutritional and therapeutic values of goat milk: A review. Asian J. Dairy Food Res. 2016, 35, 96–102. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Zeng, S.S.; Gipson, T.A. Factors affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, D.K.; Bansal, B.K.; Singh, R.S. Alterations in udder health indicators in goats with intramammary infection. Indian J. Vet. Med. 2019, 39, 22–26. [Google Scholar]
- Silanikove, N.; Merin, U.; Leitner, G. Physiological role of indigenous milk enzymes: An overview of an evolving picture. Int. Dairy J. 2006, 16, 533–545. [Google Scholar] [CrossRef]
- Oliszewski, R.; de Kairuz, M.S.N.; De Elias, S.N.G.; Oliver, G. Assessment of β-glucuronidase levels in goat’s milk as an indicator of mastitis: Comparison with other mastitis detection methods. J. Food Prot. 2002, 65, 864–866. [Google Scholar] [CrossRef]
- Larsen, T. Determination of lactate dehydrogenase (LDH) activity in milk by a fluorometric assay. J. Dairy Res. 2005, 72, 209. [Google Scholar] [CrossRef]
- Chagunda, M.G.; Larsen, T.; Bjerring, M.; Ingvartsen, K.L. L-lactate dehydrogenase and N-acetyl-[beta]-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis. J. Dairy Res. 2006, 73, 431. [Google Scholar] [CrossRef]
- Babaei, H.; Mansouri-Najand, L.; Molaei, M.M.; Kheradmand, A.; Sharifan, M. Assessment of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase activities in cow’s milk as an indicator of subclinical mastitis. Vet. Res. Commun. 2007, 31, 419–425. [Google Scholar] [CrossRef]
- Batavani, R.A.; Asri, S.; Naebzadeh, H. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. 2007, 8, 205–211. [Google Scholar] [CrossRef]
- Batavani, R.A.; Mortaz, E.; Falahian, K.; Dawoodi, M.A. Study on frequency, etiology and some enzymatic activities of subclinical ovine mastitis in Urmia, Iran. Small Rumin. Res. 2003, 50, 45–50. [Google Scholar] [CrossRef]
- Sani, R.N.; Hajigolikhani, B.; Ahmadi-Hamedani, M.; Kafshdouzan, K. Diagnostic evaluation of milk lactate dehydrogenase and alkaline phosphatase activities by receiver operating characteristic analysis curve in early lactation of ewes with subclinical mastitis. Vet. Res. Forum. 2018, 9, 343–348. [Google Scholar] [CrossRef]
- Stuhr, T.; Aulrich, K.; Barth, K.; Knappstein, K.; Larsen, T. Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats. Small Rumin. Res. 2013, 111, 139–146. [Google Scholar] [CrossRef]
- Katsoulos, P.D.; Christodoulopoulos, G.; Minas, A.; Karatzia, M.A.; Pourliotis, K.; Kritas, S.K. The role of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase in the diagnosis of subclinical intramammary infections in dairy sheep and goats. J. Dairy Res. 2010, 77, 107–111. [Google Scholar] [CrossRef]
- Hussain, A.M.; Daniel, R.C.W.; Frost, A.J. The bactericidal effect of N-acetyl-β-D-glucosaminidase on bacteria. Vet. Microbiol. 1992, 32, 75–80. [Google Scholar] [CrossRef]
- Maisi, P. Analysis of physiological changes in caprine milk with CMT, NAGase and antitrypsin. Small Rumin. Res. 1990, 3, 485–492. [Google Scholar] [CrossRef]
- Barth, K.; Aulrich, K.; Müller, U.; Knappstein, K. Somatic cell count, lactoferrin and NAGase activity in milk of infected and non-infected udder halves of dairy goats. Small Rumin. Res. 2010, 94, 161–166. [Google Scholar] [CrossRef]
- Larsen, T.; Aulrich, K. Optimizing the fluorometric β-glucuronidase assay in ruminant milk for a more precise determination of mastitis. J. Dairy Res. 2012, 79, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, L.; Kähäri, V.M. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2571–2580. [Google Scholar] [CrossRef]
- Vandooren, J.; Van den Steen, P.E.; Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 222–272. [Google Scholar] [CrossRef]
- Raulo, S.; Timo, S.; Tervahartiala, T.; Latvanen, T.; Pirilä, E.; Hirvonen, J.; Maisi, P. Increase in milk metalloproteinase activity and vascular permeability in bovine endotoxin-induced and naturally occurring Escherichia coli mastitis. Vet. Immunol. Immunopathol. 2002, 85, 137–145. [Google Scholar] [CrossRef]
- Tangorra, F.M.; Zaninelli, M.; Costa, A.; Agazzi, A.; Savoini, G. Milk electrical conductivity and mastitis status in dairy goats: Results from a pilot study. Small Rumin. Res. 2010, 90, 109–113. [Google Scholar] [CrossRef]
- Díaz, J.R.; Romero, G.; Muelas, R.; Alejandro, M.; Peris, C. Effect of intramammary infection on milk electrical conductivity in Murciano-Granadina goats. J. Dairy Sci. 2012, 95, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Zaninelli, M.; Tangorra, F.M.; Costa, A.; Rossi, L.; Dell’Orto, V.; Savoini, G. Improved fuzzy logic system to evaluate milk electrical conductivity signals from on-line sensors to monitor dairy goat mastitis. Sensors 2016, 16, 1079. [Google Scholar] [CrossRef] [Green Version]
- Ying, C.; Wang, H.T.; Hsu, J.T. Relationship of somatic cell count, physical, chemical and enzymatic properties to the bacterial standard plate count in dairy goat milk. Livest. Prod. Sci. 2002, 74, 63–77. [Google Scholar] [CrossRef]
- Diaz, J.R.; Romero, G.; Muelas, R.; Sendra, E.; Pantoja, J.C.F.; Paredes, C. Analysis of the influence of variation factors on electrical conductivity of milk in Murciano-Granadina goats. J. Dairy Sci. 2011, 94, 3885–3894. [Google Scholar] [CrossRef] [Green Version]
- Romero, G.; Reinemann, D.; Alejandro, M.; Díaz, J.R. Goat mastitis detection using daily records of milk conductivity: Comparative results of different algorithms. Czech J. Anim. Sci. 2014, 59, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562. [Google Scholar] [CrossRef]
- Paape, M.J.; Poutrel, B.; Contreras, A.; Marco, J.C.; Capuco, A.V. Milk somatic cells and lactation in small ruminants. J. Dairy Sci. 2001, 84, E237–E244. [Google Scholar] [CrossRef]
- Boulaaba, A.; Grabowski, N.; Klein, G. Differential cell count of caprine milk by flow cytometry and microscopy. Small Rumin. Res. 2011, 97, 117–123. [Google Scholar] [CrossRef]
- Souza, F.N.; Blagitz, M.; Penna, C.; Della Libera, A.; Heinemann, M.B.; Cerqueira, M. Somatic cell count in small ruminants: Friend or foe? Small Rumin. Res. 2012, 107, 65–75. [Google Scholar] [CrossRef]
- Granado, R.J.; Rodríguez, M.S.; Arce, C.; Estévez, V.R. Factors affecting somatic cell count in dairy goats: A review. Span. J. Agric. Res. 2014, 12, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.Z.; Chang, C.J.; Chiang, C.C.; Peh, H.C.; Huang, M.C.; Lee, J.W.; Zhao, X. Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. Can. J. Vet. Res. 2005, 69, 39–45. [Google Scholar]
- Persson, Y.; Olofsson, I. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Vet. Scand. 2011, 53, 15. [Google Scholar] [CrossRef] [Green Version]
- Cedden, F.; Kaya, S.O.; Daskiran, I. Somatic cell, udder and milk yield in goat. Rev. Med. Vet. 2008, 159, 237–242. [Google Scholar]
- Paape, M.J.; Wiggans, G.R.; Bannerman, D.D.; Thomas, D.L.; Sanders, A.H.; Contreras, A.; Moroni, P.; Miller, R.H. Monitoring goat and sheep milk somatic cell counts. Small Rumin. Res. 2007, 68, 114–125. [Google Scholar] [CrossRef]
- Haenlein, G.F. Relationship of somatic cell counts in goat milk to mastitis and productivity. Small Rumin. Res. 2002, 45, 163–178. [Google Scholar] [CrossRef]
- Marogna, G.; Pilo, C.; Vidili, A.; Tola, S.; Schianchi, G.; Leori, S.G. Comparison of clinical findings, microbiological results, and farming parameters in goat herds affected by recurrent infectious mastitis. Small Rumin. Res. 2012, 102, 74–83. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Maggiolino, A.; De Marchi, M.; Claps, S.; Esposito, L.; Rufrano, D.; Casalino, E.; Tateo, A.; Neglia, G.; De Palo, P. Comparison of Mineral, Metabolic, and Oxidative Profile of Saanen Goat during Lactation with Different Mediterranean Breed Clusters under the Same Environmental Conditions. Animals 2020, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Moroni, P.; Pisoni, G.; Savoini, G.; Van Lier, E.; Acuna, S.; Damian, J.P.; Meikle, A. Influence of estrus of dairy goats on somatic cell count, milk traits, and sex steroid receptors in the mammary gland. J. Dairy Sci. 2007, 90, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.S.; Gomes, V.; Matazo, M.P.; Baldacim, V.A.P.; Madureira, K.M. Effect of the type of milking on mammary gland examination in Saanen goats. Arq. Inst. Biol. 2020, 87, 87. [Google Scholar] [CrossRef]
- Manzur, A. Estudios de Ordeño Mecánico en Ganado Caprino. Ph.D. Dissertation, Universidad Politécnica de Valencia, Valencia, Spain, 2007. [Google Scholar]
- Lerondelle, C.; Richard, Y.; Issartial, J. Factors affecting somatic cell counts in goat milk. Small Rumin. Res. 1992, 8, 129–139. [Google Scholar] [CrossRef]
- Morand-Fehr, P.; Fedele, V.; Decandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- McDougall, S.; Anniss, F.M.; Cullum, A.A. Effect of transport stress on somatic cell counts in dairy goats. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 16–18. [Google Scholar]
- Delgado-Pertiñez, M.; Alcalde, M.J.; Guzmán-Guerrero, J.L.; Castel, J.M.; Mena, Y.; Caravaca, F. Effect of hygiene-sanitary management on goat milk quality in semi-extensive systems in Spain. Small Rumin. Res. 2003, 47, 51–61. [Google Scholar] [CrossRef]
- Vasiu, C.; Bogolin, I.; Bolfa, P. Relation between the geometrical mean of somatic cells from bulk milk and the prevalence of subclinical intramammary infections in sheep and goats. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca. 2008, 65, 339–344. [Google Scholar]
- De Crémoux, R.; Poutrel, B.; Pillet, R.; Perrin, G.; Ducellier, M.; Heuchel, V. Cell counts for diagnosing caprine bacterial mammary infections. In Somatic Cells and Milk of Small Ruminants; Pudoc: Wageningen, The Netherlands, 1996; pp. 35–39. [Google Scholar]
- McDougall, S.; Murdough, P.; Pankey, W.; Delaney, C.; Barlow, J.; Scruton, D. Relationships among somatic cell count, California mastitis test, impedance and bacteriological status of milk in goats and sheep in early lactation. Small Rumin. Res. 2001, 40, 245–254. [Google Scholar] [CrossRef]
- Leitner, G.; Sapeiro, S.; Krifucks, O.; Weisblit, L.; Lavi, Y.; Heller, E.D. Systemic and local mammary gland immunity to udder infection in goats by various Staphylococcus species. Small Rumin. Res. 2011, 95, 160–167. [Google Scholar] [CrossRef]
- Persson, Y.; Järnberg, Å.; Humblot, P.; Nyman, A.K.; Waller, K.P. Associations between Staphylococcus aureus intramammary infections and somatic cell counts in dairy goat herds. Small Rumin. Res. 2015, 133, 62–66. [Google Scholar] [CrossRef]
- de Haas, Y.; Barkema, H.W.; Veerkamp, R.F. The effect of pathogen-specific clinical mastitis on the lactation curve for somatic cell count. J. Dairy Sci. 2002, 85, 1314–1323. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metab. Clin. Exp. 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Andrei, S.; Bunea, A.; Pintea, A. Specii reactive de oxigen si specii reactive de azot. In Stresul Oxidativ și Antioxidanții Naturali; Academic Press: Cluj-Napoca, Romania, 2014; pp. 19–62. [Google Scholar]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [Green Version]
- Toledo, J.C., Jr.; Augusto, O. Connecting the chemical and biological properties of nitric oxide. Chem. Res. Toxicol. 2012, 25, 975–989. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010, 39, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Matei, S.T.; Groza, I.; Bogdan, L.; Ciupe, S.; Fiţ, N.; Andrei, S. Correlation between mastitis pathogenic bacteria and Glutathione peroxidase activity in cows milk. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Vet. Med. 2011, 1, 221–225. [Google Scholar] [CrossRef]
- Silanikove, N.; Shapiro, F.; Silanikove, M.; Merin, U.; Leitner, G. Hydrogen peroxide-dependent conversion of nitrite to nitrate as a crucial feature of bovine milk catalase. J. Agric. Food Chem. 2009, 57, 8018–8025. [Google Scholar] [CrossRef]
- Silanikove, N.; Shapiro, F.; Shamay, A.; Leitner, G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: Manipulation with casein hydrolyzates. Free Radic. Biol. Med. 2005, 38, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Seifu, E.; Donkin, E.F.; Buys, E.M. Potential of lactoperoxidase to diagnose subclinical mastitis in goats. Small Rumin. Res. 2007, 69, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Seifu, E.; Buys, E.M.; Donkin, E.F.; Petzer, I.M. Antibacterial activity of the lactoperoxidase system against food-borne pathogens in Saanen and South African Indigenous goat milk. Food Control 2004, 15, 447–452. [Google Scholar] [CrossRef]
- Al-Hassan, M.J. Antioxidant biomarkers in the milk of early postpartum Aardi goats during winter. Small Rumin. Res. 2018, 162, 8–11. [Google Scholar] [CrossRef]
- Guneser, O.; Yuceer, Y.K. Effect of ultraviolet light on water-and fat-soluble vitamins in cow and goat milk. J. Dairy Sci. 2012, 95, 6230–6241. [Google Scholar] [CrossRef] [Green Version]
- Andrei, S.; Pintea, A.; Bunea, A.; Groza, I.; Bogdan, L.; Ciupe, S.; Matei, S.; Crainic, D. Non-enzymatic antioxidants concentration and lipids peroxidation level in milk from cows with subclinical mastitis. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Vet. Med. 2009, 66, 196–201. [Google Scholar] [CrossRef]
- Kino, K.; Kuratsu, S.; Noguchi, A.; Kokubo, M.; Nakazawa, Y.; Arai, T.; Yagasaki, M.; Kirimura, K. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum. Biochem. Biophys. Res. Commun. 2007, 352, 351–359. [Google Scholar] [CrossRef]
- Beghelli, D.; Lupidi, G.; Damiano, S.; Cavallucci, C.; Bistoni, O.; De Cosmo, A.; Polidori, P. Rapid assay to evaluate the total antioxidant capacity in donkey milk and in more common animal milk for human consumption. Austin Food Sci. 2016, 1, 1003. [Google Scholar]
- Cloetens, L.; Panee, J.; Åkesson, B. The antioxidant capacity of milk-the application of different methods in vitro and in vivo. Cell. Mol. Biol. 2013, 59, 43–57. [Google Scholar] [CrossRef]
- Atakisi, O.; Oral, H.; Atakisi, E.; Merhan, O.; Pancarci, S.M.; Ozcan, A.; Marasli, S.; Polat, B.; Colak, A.; Kaya, S. Subclinical mastitis causes alterations in nitric oxide, total oxidant and antioxidant capacity in cow milk. Res. Vet. Sci. 2010, 89, 10–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novac, C.S.; Andrei, S. The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review. Pathogens 2020, 9, 882. https://doi.org/10.3390/pathogens9110882
Novac CS, Andrei S. The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review. Pathogens. 2020; 9(11):882. https://doi.org/10.3390/pathogens9110882
Chicago/Turabian StyleNovac, Cristiana S., and Sanda Andrei. 2020. "The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review" Pathogens 9, no. 11: 882. https://doi.org/10.3390/pathogens9110882
APA StyleNovac, C. S., & Andrei, S. (2020). The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat’s Milk: A Review. Pathogens, 9(11), 882. https://doi.org/10.3390/pathogens9110882