Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of Acid Solutions
4.2. Selection and Preparation of Mastitis Pathogens
4.3. Agar Well Diffusion Method
4.4. Determination of MIC and MBC
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halasa, T.; Huijps, K.; Osteras, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef]
- Gleeson, D.; Flynn, J.; Brien, B.O. Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. Ir. Vet. J. 2018, 71, 11. [Google Scholar] [CrossRef]
- Parker, K.I.; Compton, C.W.R.; Anniss, F.M.; Heuer, C.; McDougall, S. Quarter-level analysis of subclinical and clinical mastitis in primiparous heifers following the use of a teat sealant or an injectable antibiotic, or both, precalving. J. Dairy Sci. 2008, 91, 169–181. [Google Scholar] [CrossRef]
- Østerås, O.; Whist, A.C.; Sølverød, L. The influence of iodine teat dipping and an external teat sealant in heifers on bacterial isolation from quarter milk culture obtained post-calving. Livest Sci. 2008, 119, 129–136. [Google Scholar] [CrossRef]
- Boddie, R.L.; Nickerson, S.C. Efficacy of a fatty acid-lactic acid post-milking teat germicide in reducing incidence of bovine mastitis. J. Food Prot. 1988, 51, 799–801. [Google Scholar] [CrossRef]
- Ryssel, H.; Kloeters, O.; Germann, G.; Schafer, T.; Wiedemann, G.; Oehlbauer, M. The antimicrobial effect of acetic acid-an alternative to common local antiseptics? Burns 2009, 35, 695–700. [Google Scholar] [CrossRef]
- Phillips, I.; Lobo, A.Z.; Fernandes, R.; Gundara, N.S. Acetic acid in the treatment of superficial wounds infected by Pseudomonas aeruginosa. Lancet 1968, 1, 11–14. [Google Scholar] [CrossRef]
- Pyörälä, S.; Taponen, S. Coagulase-negative staphylococci—Emerging mastitis pathogens. Vet. Microbiol. 2009, 134, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Qu, W.; Barkema, H.W.; Nobrega, D.B.; Gao, J.; Liu, G.; De Buck, J.; Kastelic, J.P.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.M.; Deighton, M.A.; Capstick, J.A.; Gerraty, N. Epidemiological typing of bovine streptococci by pulsed-field gel electrophoresis. Epidemiol. Infect. 1999, 123, 317–324. [Google Scholar] [CrossRef]
- Pankey, J.W.; Wildman, E.E.; Drechsler, P.A.; Hogan, J.S. Field trial evaluation of pre-milking teat disinfection. J. Dairy Sci. 1987, 70, 867–872. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, S.R.; Garvey, M.; Jordan, K.; Flynn, J.; O’Brien, B.; Gleeson, D. Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion. Vet. World 2019, 12, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Matsue, M.; Mori, Y.; Nagase, S.; Sugiyama, Y.; Hirano, R.; Ogai, K.; Ogura, K.; Kurihara, S.; Okamoto, S. Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant. 2019, 28, 1528–1541. [Google Scholar] [CrossRef]
- Kabara, J.; Swieczkowski, M.; Conley, J.; Truant, P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [Green Version]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Fraise, A.P.; Wilkinson, M.A.; Bradley, C.R.; Oppenheim, B.; Moiemen, N. The antibacterial activity and stability of acetic acid. J. Hosp. Infect. 2013, 84, 329–331. [Google Scholar] [CrossRef]
- Chaisri, W.; Pangprasit, N.; Srithanasuwan, A.; Intanon, M.; Suriyasathaporn, W. Screening antimicrobial properties against mastitis pathogens of turmeric extract after combination with various antiseptics. Thai J. Vet. Med. 2019, 49, 243–248. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Rhee, M.S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157: H7. Appl. Environ. Microbiol. 2013, 79, 6552–6560. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. M100-S24: Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
Acetic | Lactic | Lauric | Caprylic | |
---|---|---|---|---|
S. agalactiae | 36.0 + 5.42 | 34.0 + 2.17 | 27.8 + 3.59 | 30.2 + 5.29 |
S. aureus | 24.6 + 3.40 | 21.2 + 0.49 | 17.6 + 1.86 | 16.4 + 1.75 |
S. uberis | 33.4 + 1.08 a | 28.2 + 1.98 a | 21.8 + 1.98 b | 17.6 + 0.68 b |
E. coli2 | 19.55 + 2.90 a | 24.0 + 1.91 a | 12.2 + 0.25 b | 12.5 + 0.29 b |
Klebsiella spp. | 31.7 + 3.84 a | 25.0 + 1.08 ab | 11.0 + 0.00 b | 13.0 + 0.00 ab |
S. simulans1 | 33.3 + 0.88 a | 30.0 + 1.15 a | 19.7 + 1.45 b | 18.0 + 0.00 b |
S. epidermidis1 | 28.3 + 2.03 a | 26.0 + 1.15 a | 16.7 + 0.88 b | 16.3 + 0.33 b |
S. xylosus1 | 43.6 + 0.60 a | 34.8 + 0.86 b | 18.0 + 1.82 c | 20.0 + 0.55 c |
S. chromogenes1,2 | 40.0 + 2.77 a | 30.6 + 1.47 b | 16.0 + 1.09 c | 15.4 + 0.40 c |
S. hyicus1,2 | 42.8 + 1.49 a | 31.2 + 1.83 ab | 22.6 + 3.56 b | 23.2 + 4.86 b |
S. haemolyticus1 | 37.2 + 0.86 a | 24.4 + 1.17 b | 17.8 + 1.74 c | 19.4 + 2.06 bc |
Minimum Inhibitory Concentration (MIC) | Minimum Bactericidal Concentration (MBC) | |||||||
---|---|---|---|---|---|---|---|---|
Acetic | Lactic | Lauric | Caprylic | Acetic | Lactic | Lauric | Caprylic | |
S. agalactiae | 0.125 + 0.00 c | 0.25 + 0.00 b | 0.88 + 0.12 a | 0.22 + 0.03 b | 0.25 + 0.00 c | 0.25 + 0.00 c | 4.00 + 0.00 a | 0.56 + 0.16 b |
S. aureus | 0.125 + 0.00 c | 0.42 + 0.05 b | 4.00 + 0.00 a | 0.50 + 0.00 b | 0.45 + 0.04 c | 0.50 + 0.00 c | 4.00 + 0.00 a | 1.00 + 0.00 b |
S. uberis | 0.125 + 0.00 d | 0.50 + 0.00 b | 1.00 + 0.00 a | 0.25 + 0.00 c | 0.25 + 0.00 c | 0.50 + 0.00 b | 2.00 + 0.00 a | 0.50 + 0.00 b |
E. coli | 0.125 + 0.00 d | 0.30 + 0.05 c | 2.00 + 0.00 a | 1.00 + 0.00 b | 0.65 + 0.15 b | 0.60 + 0.10 b | 4.00 + 0.00 a | 2.40 + 0.40 a |
Klebsiella spp. | 0.125 + 0.00 c | 0.29 + 0.04 b | 1.00 + 0.00 a | 1.00 + 0.00 a | 0.50 + 0.00 b | 0.50 + 0.00 b | 4.00 + 0.00 a | 4.00 + 0.00 a |
S. simulans1 | 0.225 + 0.02 c | 0.45 + 0.05 b | 2.00 + 0.00 a | 0.50 + 0.00 b | 1.00 + 0.00 b | 0.50 + 0.00 c | 4.00 + 0.00 a | 1.40 + 0.24 b |
S. epidermidis1 | 0.125 + 0.00 d | 0.25 + 0.00 c | 2.00 + 0.00 a | 0.50 + 0.00 b | 0.50 + 0.00 c | 0.50 + 0.00 c | 4.00 + 0.00 a | 1.80 + 0.20 b |
S. xylosus1 | 0.15 + 0.02 d | 0.25 + 0.00 c | 2.00 + 0.00 a | 0.50 + 0.00 b | 0.25 + 0.00 d | 0.50 + 0.00 c | 4.00 + 0.00 a | 2.00 + 0.00 b |
S. chromogenes1 | 0.25 + 0.12 b | 0.25 + 0.00 b | 1.50 + 0.29 a | 0.28 + 0.12 b | 0.44 + 0.06 b | 0.44 + 0.06 b | 3.50 + 0.50 a | 0.41 + 0.09 b |
S. hyicus1 | 0.125 + 0.00 c | 0.40 + 0.06 b | 2.00 + 0.00 a | 0.60 + 0.10 b | 0.50 + 0.00 c | 0.45 + 0.05 c | 4.00 + 0.00 a | 1.20 + 0.20 b |
S. haemolyticus1 | 0.125 + 0.00 c | 0.25 + 0.00 b | 2.00 + 0.00 a | 0.30 + 0.05 b | 0.25 + 0.00 c | 0.25 + 0.00 c | 4.00 + 0.00 a | 0.70 + 0.12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pangprasit, N.; Srithanasuwan, A.; Suriyasathaporn, W.; Pikulkaew, S.; Bernard, J.K.; Chaisri, W. Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens 2020, 9, 961. https://doi.org/10.3390/pathogens9110961
Pangprasit N, Srithanasuwan A, Suriyasathaporn W, Pikulkaew S, Bernard JK, Chaisri W. Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens. 2020; 9(11):961. https://doi.org/10.3390/pathogens9110961
Chicago/Turabian StylePangprasit, Noppason, Anyaphat Srithanasuwan, Witaya Suriyasathaporn, Surachai Pikulkaew, John K. Bernard, and Wasana Chaisri. 2020. "Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows" Pathogens 9, no. 11: 961. https://doi.org/10.3390/pathogens9110961
APA StylePangprasit, N., Srithanasuwan, A., Suriyasathaporn, W., Pikulkaew, S., Bernard, J. K., & Chaisri, W. (2020). Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens, 9(11), 961. https://doi.org/10.3390/pathogens9110961