Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys
Abstract
:1. Introduction
2. Animal Models for Dengue Virus Infection
3. Non-Human Primates
4. Viremia Kinetics in Non-Human Primates
5. Antibody Responses in Non-Human Primates
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- WHO Dengue: Guidelines for diagnosis, treatment, prevention and control. Prev. Control 2009, 1.
- Zompi, S.; Harris, E. Animal models of dengue virus infection. Viruses 2012, 4, 62–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, C.P.; Farrar, J.J.; van Vinh Chau, N.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Satoshi, K.; Yasuyuki, K.; Meng Ling, M.; Akira, K.; Masayuki, O.; Koh, S.; Tetsuro, K.; Kei, Y.; Yoshihiro, F.; Momoko, M.; et al. Autochthonous Dengue Fever, Tokyo, Japan, 2014. Emerg. Infect. Dis. J. 2015, 21, 517. [Google Scholar]
- Gjenero-Margan, I.; Aleraj, B.; Krajcar, D.; Lesnikar, V.; Klobučar, A.; Pem-Novosel, I.; Kurečić-Filipović, S.; Komparak, S.; Martić, R.; Duričić, S.; et al. Autochthonous dengue fever in Croatia, August- September 2010. Eurosurveillance 2011, 16, 19805. [Google Scholar]
- Succo, T.; Leparc-Goffart, I.; Ferre, J.-B.; Roiz, D.; Broche, B.; Maquart, M.; Noel, H.; Catelinois, O.; Entezam, F.; Caire, D.; et al. Autochthonous dengue outbreak in Nimes, South of France, July to September 2015. Eurosurveillance 2016, 21, 30240. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2017, 16, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Twiddy, S.S.; Farrar, J.J.; Vinh Chau, N.; Wills, B.; Gould, E.A.; Gritsun, T.; Lloyd, G.; Holmes, E.C. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002, 298, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Montoya, M.; Gresh, L.; Balmaseda, A.; Harris, E. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc. Natl. Acad. Sci. USA 2016, 113, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Moi, M.L.; Ami, Y.; Muhammad Azami, N.A.; Shirai, K.; Yoksan, S.; Suzaki, Y.; Kitaura, K.; Lim, C.-K.; Saijo, M.; Suzuki, R.; et al. Marmosets (Callithrix jacchus) as a non-human primate model for evaluation of candidate dengue vaccines: Induction and maintenance of specific protective immunity against challenges with clinical isolates. J. Gen. Virol. 2017, 98, 2955–2967. [Google Scholar] [CrossRef] [PubMed]
- Moi, M.L.; Takasaki, T.; Omatsu, T.; Nakamura, S.; Katakai, Y.; Ami, Y.; Suzaki, Y.; Saijo, M.; Akari, H.; Kurane, I.; et al. Demonstration of marmosets (Callithrix jacchus) as a non-human primate model for secondary dengue virus infection: High levels of viraemia and serotype cross-reactive antibody responses consistent with secondary infection of humans. J. Gen. Virol. 2014, 95, 591–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ip, P.-P.; Liao, F. Resistance to Dengue Virus Infection in Mice Is Potentiated by CXCL10 and Is Independent of CXCL10-Mediated Leukocyte Recruitment. J. Immunol. 2010, 184, 5705–5714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuiskunen, A.; Wahlström, M.; Bergström, J.; Buchy, P.; Leparc-Goffart, I.; Lundkvist, Å. Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Virol. J. 2011, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Christofferson, R.C.; McCracken, M.K.; Johnson, A.-M.; Chisenhall, D.M.; Mores, C.N. Development of a transmission model for dengue virus. Virol. J. 2013, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Marchette, N.J.; Halstead, S.B.; Falkler, W.A.; Stenhouse, A.; Nash, D. Studies on the Pathogenesis of Dengue Infection in Monkeys. III. Sequential Distribution of Virus in Primary and Heterologous Infections. J. Infect. Dis. 1973, 128, 23–30. [Google Scholar] [CrossRef]
- Freire, M.S.; Marchevsky, R.S.; Almeida, L.F.C.; Yamamura, A.M.Y.; Caride, E.C.; Brindeiro, P.A.; Motta, M.C.A.; Nogueira, R.M.R.; Kubelka, C.F.; Bonaldo, M.C.; et al. Wild dengue virus types 1, 2 and 3 viremia in rhesus monkeys. Memorias do Instituto Oswaldo Cruz 2007, 102, 203–208. [Google Scholar] [CrossRef]
- Koraka, P.; Benton, S.; van Amerongen, G.; Stittelaar, K.J.; Osterhaus, A.D.M.E. Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect. 2007, 9, 940–946. [Google Scholar] [CrossRef]
- Omatsu, T.; Moi, M.L.; Takasaki, T.; Nakamura, S.; Katakai, Y.; Tajima, S.; Ito, M.; Yoshida, T.; Saito, A.; Akari, H.; et al. Changes in hematological and serum biochemical parameters in common marmosets (Callithrix jacchus) after inoculation with dengue virus. J. Med. Primatol 2012, 41, 289–296. [Google Scholar] [CrossRef]
- Omatsu, T.; Moi, M.L.; Hirayama, T.; Takasaki, T.; Nakamura, S.; Tajima, S.; Ito, M.; Yoshida, T.; Saito, A.; Katakai, Y.; et al. Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: Development of high levels of viraemia and demonstration of protective immunity. J. Gen. Virol. 2011, 92, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.K.; Watanabe, S.; Kavishna, R.; Alonso, S.; Vasudevan, S.G. Animal models for studying dengue pathogenesis and therapy. Antiviral Res. 2015, 123, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Konishi, E. A simple method for evaluating dengue vaccine effectiveness in mice based on levels of viremia caused by intraperitoneal injection of infected culture cells. Vaccine 2009, 27, 3735–3743. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.; de Queiroz Prado, R.; Almeida Xavier, E.; Cristina de Oliveira, N.; da Matta Guedes, P.M.; da Silva, J.S.; Moraes Figueiredo, L.T.; Aquino, V.H. Imunocompetent Mice Model for Dengue Virus Infection. Sci. World J. 2012, 2012, 525947. [Google Scholar] [CrossRef] [Green Version]
- Talarico, L.B.; Batalle, J.P.; Byrne, A.B.; Brahamian, J.M.; Ferretti, A.; García, A.G.; Mauri, A.; Simonetto, C.; Hijano, D.R.; Lawrence, A.; et al. The Role of Heterotypic DENV-specific CD8+T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection. EBioMedicine 2017, 20, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Balsitis, S.J.; Williams, K.L.; Lachica, R.; Flores, D.; Kyle, J.L.; Mehlhop, E.; Johnson, S.; Diamond, M.S.; Beatty, P.R.; Harris, E. Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification. PLOS Pathog. 2010, 6, e1000790. [Google Scholar] [CrossRef] [Green Version]
- Zellweger, R.M.; Prestwood, T.R.; Shresta, S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 2010, 7, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, J.; Chu, H.; O’Day, P.; Pyles, R.; Bourne, N.; Das, S.C.; Milligan, G.N.; Barrett, A.D.T.; Partidos, C.D.; Osorio, J.E. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice. Vaccine 2014, 32, 6537–6543. [Google Scholar] [CrossRef] [Green Version]
- Brewoo, J.N.; Kinney, R.M.; Powell, T.D.; Arguello, J.J.; Silengo, S.J.; Partidos, C.D.; Huang, C.Y.-H.; Stinchcomb, D.T.; Osorio, J.E. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax). Vaccine 2012, 30, 1513–1520. [Google Scholar] [CrossRef] [Green Version]
- Sarathy, V.V.; White, M.; Li, L.; Kaiser, J.A.; Campbell, G.A.; Milligan, G.N.; Bourne, N.; Barrett, A.D.T. Characterization of a murine model of non-lethal, symptomatic dengue virus infection. Sci. Rep. 2018, 8, 4900. [Google Scholar] [CrossRef] [Green Version]
- Yauch, L.E.; Zellweger, R.M.; Kotturi, M.F.; Qutubuddin, A.; Sidney, J.; Peters, B.; Prestwood, T.R.; Sette, A.; Shresta, S. A Protective Role for Dengue Virus-Specific CD8(+) T Cells. J. Immunol. 2009, 182, 4865–4873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yauch, L.E.; Shresta, S. Mouse models of dengue virus infection and disease. Antiviral Res. 2008, 80, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco, S.; Schmid, M.A.; Parameswaran, P.; Lachica, R.; Henn, M.R.; Beatty, R.; Harris, E. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J. Gen. Virol. 2012, 93, 2152–2157. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.; Rico-Hesse, R. Humanized Mice Show Clinical Signs of Dengue Fever according to Infecting Virus Genotype. J. Virol. 2009, 83, 8638–8645. [Google Scholar] [CrossRef] [Green Version]
- Bente, D.A.; Melkus, M.W.; Garcia, J.V.; Rico-Hesse, R. Dengue Fever in Humanized NOD/SCID Mice. J. Virol. 2005, 79, 13797–13799. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Takahashi, T.; Okajima, A.; Shiokawa, M.; Ishii, N.; Katano, I.; Ito, R.; Ito, M.; Minegishi, M.; Minegishi, N.; et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int. Immunol. 2009, 21, 843–858. [Google Scholar] [CrossRef]
- Akkina, R. New generation humanized mice for virus research: Comparative aspects and future prospects. Virology 2013, 435, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mota, J.; Sukupolvi-Petty, S.; Diamond, M.S.; Rico-Hesse, R. Mosquito Bite Delivery of Dengue Virus Enhances Immunogenicity and Pathogenesis in Humanized Mice. J. Virol. 2012, 86, 7637–7649. [Google Scholar] [CrossRef] [Green Version]
- Kuruvilla, J.G.; Troyer, R.M.; Devi, S.; Akkina, R. Dengue virus infection and immune response in humanized RAG2-/-γc -/- (RAG-hu) mice. Virology 2007, 369, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Frias-Staheli, N.; Dorner, M.; Marukian, S.; Billerbeck, E.; Labitt, R.N.; Rice, C.M.; Ploss, A. Utility of Humanized BLT Mice for Analysis of Dengue Virus Infection and Antiviral Drug Testing. J. Virol. 2014, 88, 2205–2218. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Chun, E.; Kim, M.; Kim, S.Y.; Kim, S.-T.; Yoon, K.; Lee, K.-Y.; Kim, S.J. Human T cell development in the liver of humanized NOD/SCID/IL-2Rγnull (NSG) mice generated by intrahepatic injection of CD34+ human (h) cord blood (CB) cells. Clin. Immunol. 2011, 139, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Bente, D.A.; Rico-Hesse, R. Models of dengue virus infection. Drug Discov. Today. Dis. Models 2006, 3, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falzaran, D.; Bente, D.A. Animal models for viral haemorrhagic fever. Clin. Microbiol. Infect. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, K.B.; Onlamoon, N.; Hsiao, H.-M.; Perng, G.C.; Villinger, F.; Adachi, A.; Suzuki, Y. Can non-human primates serve as models for investigating dengue disease pathogenesis? Front. Microbiol. 2013, 4, 305. [Google Scholar] [CrossRef] [Green Version]
- Onlamoon, N.; Noisakran, S.; Hsiao, H.-M.; Duncan, A.; Villinger, F.; Ansari, A.A.; Perng, G.C. Dengue virus–induced hemorrhage in a nonhuman primate model. Blood 2010, 115, 1823–1834. [Google Scholar] [CrossRef] [Green Version]
- Cassetti, M.C.; Durbin, A.; Harris, E.; Rico-Hesse, R.; Roehrig, J.; Rothman, A.; Whitehead, S.; Natarajan, R.; Laughlin, C. Report of an NIAID workshop on dengue animal models. Vaccine 2010, 28, 4229–4234. [Google Scholar] [CrossRef] [Green Version]
- Kato, F.; Ishida, Y.; Kawakami, A.; Takasaki, T.; Saijo, M.; Miura, T.; Hishiki, T. Evaluation of Macaca radiata as a non-human primate model of Dengue virus infection. Sci. Rep. 2018, 8, 3421. [Google Scholar] [CrossRef]
- Valdé, S.I.; Zaro, G.L.; Castro, J.; Odoyo, D.N.; Hitler, R.; Munene, E.; Romero, Y.; Ochola, L.; Cosme, K.; Kariuki, T.; et al. Olive baboons: A non-human primate model for testing dengue virus type 2 replication. Int. J. Infect. Dis. 2013, 17, e1176–e1181. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Ferreira, M.S.; de Castro, P.H.G.; Silva, G.A.; Casseb, S.M.M.; Dias Júnior, A.G.; Rodrigues, S.G.; Azevedo, R.d.S.d.S.; Silva, M.F.C.e.; Zauli, D.A.G.; Araújo, M.S.S.; et al. Callithrix penicillata: A feasible experimental model for dengue virus infection. Immunol. Lett. 2014, 158, 126–133. [Google Scholar] [CrossRef]
- Durbin, A.P.; Whitehead, S.S. The Dengue Human Challenge Model: Has the Time Come to Accept This Challenge? J. Infect. Dis. 2012, 207, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Eckels, K.H.; Putnak, J.R.; Lyons, A.G.; Thomas, S.J.; Vaughn, D.W.; Gibbons, R.V.; Fernandez, S.; Gunther, V.J.; Mammen, M.P., Jr.; et al. Experimental Dengue Virus Challenge of Human Subjects Previously Vaccinated With Live Attenuated Tetravalent Dengue Vaccines. J. Infect. Dis. 2012, 207, 700–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunther, V.J.; Putnak, R.; Eckels, K.H.; Mammen, M.P.; Scherer, J.M.; Lyons, A.; Sztein, M.B.; Sun, W. A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. Vaccine 2011, 29, 3895–3904. [Google Scholar] [CrossRef] [PubMed]
- Cassetti, M.C.; Thomas, S.J. Dengue Human Infection Model: Introduction. J. Infect. Dis. 2014, 209, S37–S39. [Google Scholar] [CrossRef] [Green Version]
- Mammen, M.P.; Lyons, A.; Innis, B.L.; Sun, W.; McKinney, D.; Chung, R.C.Y.; Eckels, K.H.; Putnak, R.; Kanesa-thasan, N.; Scherer, J.M.; et al. Evaluation of Dengue Virus strains for human challenge studies. Vaccine 2014, 32, 1488–1494. [Google Scholar] [CrossRef]
- Whitehorn, J.; Van, V.C.N.; Simmons, C.P. Dengue Human Infection Models Supporting Drug Development. J. Infect. Dis. 2014, 209, S66–S70. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Ethical issues associated with vector-borne diseases. In Proceedings of the WHO scoping meeting, Geneva, switzerland, 23–24 February 2017. [Google Scholar]
- Lin, Y.L.; Liao, C.L.; Chen, L.K.; Yeh, C.T.; Liu, C.I.; Ma, S.H.; Huang, Y.Y.; Huang, Y.L.; Kao, C.L.; King, C.C. Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J. Virol. 1998, 72, 9729–9737. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-S.; Yan, Y.-S.; Weng, Y.-W.; Huang, H.-L.; Li, S.-Q.; He, S.; Zhang, J.-M. High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice. J. Virol. Methods 2007, 143, 125–131. [Google Scholar] [CrossRef]
- Zellweger, R.M.; Shresta, S. Mouse models to study dengue virus immunology and pathogenesis. Front. Immunol. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.-J.; Li, S.-Y.J.; Chen, S.-C.; Liu, H.-S.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Lei, H.-Y. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J. Gen. Virol. 2000, 81, 2177–2182. [Google Scholar] [CrossRef]
- Cui, L.; Hou, J.; Fang, J.; Lee, Y.H.; Costa, V.V.; Wong, L.H.; Chen, Q.; Ooi, E.E.; Tannenbaum, S.R.; Chen, J.; et al. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection. J. Virol. 2017, 91, e00386-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sariol, C.A.; White, L.J. Utility, Limitations, and Future of Non-Human Primates for Dengue Research and Vaccine Development. Front. Immunol. 2014, 5, 452. [Google Scholar] [CrossRef] [Green Version]
- Lavinder, C.H.; Francis, E. The Etiology of Dengue. An Attempt to Produce the Disease in the Rhesus Monkey by the Inoculation of Defibrinated Blood. J. Infect. Dis. 1914, 15, 341–346. [Google Scholar] [CrossRef]
- Widjaja, S.; Winoto, I.; Sturgis, J.; Maroef, C.N.; Listiyaningsih, E.; Tan, R.; Pamungkas, J.; Blair, P.J.; Sajuthi, D.; Porter, K.R. Macaca nemestrina and dengue virus infectivity: A potential model for evaluating dengue vaccine candidates. Microbiol. Indones. 2010, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Omatsu, T.; Saito, A.; Katakai, Y.; Iwasaki, Y.; Kurosawa, T.; Hamano, M.; Higashino, A.; Nakamura, S.; Takasaki, T.; et al. Dynamics of cellular immune responses in the acute phase of dengue virus infection. Arch. Virol. 2013, 158, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, C.P.; Whitehead, S.S.; Durbin, A.P. Dengue human infection models to advance dengue vaccine development. Vaccine 2015, 33, 7075–7082. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, B.D.; Whitehead, S.S.; Pierce, K.K.; Tibery, C.M.; Grier, P.L.; Hynes, N.A.; Larsson, C.J.; Sabundayo, B.P.; Talaat, K.R.; Janiak, A.; et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 2016, 8, 330ra36. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.R.; Guzmán, M.G.; Kouri, G.P. Why dengue haemorrhagic fever in Cuba? I. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 816–820. [Google Scholar] [CrossRef]
- Voevodin, A.F.; Marx, P.A. Classification of Nonhuman Primates. Simian Virol. 2009, 1–38. [Google Scholar] [CrossRef]
- Glazko, G.V.; Nei, M. Estimation of Divergence Times for Major Lineages of Primate Species. Mol. Biol. Evol. 2003, 20, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Disotell, T.R. The phylogeny of Old World monkeys. Evol. Anthropol. Issues News Rev. 1996, 5, 18–24. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Rylands, A.B.; Wilson, D.E. The mammals of the world, part 3: Primates. Barcelona Lynx Edicions 2013. [Google Scholar]
- Liedigk, R.; Kolleck, J.; Böker, K.O.; Meijaard, E.; Md-Zain, B.M.; Abdul-Latiff, M.A.B.; Ampeng, A.; Lakim, M.; Abdul-Patah, P.; Tosi, A.J.; et al. Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics 2015, 16, 222. [Google Scholar] [CrossRef] [Green Version]
- Van Esch, E.; Cline, J.M.; Buse, E.; Wood, C.E.; De Rijk, E.P.C.T.; Weinbauer, G.F. Summary comparison of female reproductive system in human and the cynomolgus monkey (Macaca fascicularis). Toxicol. Pathol. 2008, 36, 171S–172S. [Google Scholar] [CrossRef]
- Drevon-Gaillot, E.; Perron-Lepage, M.-F.; Clément, C.; Burnett, R.; Perron, M.-F.; Drevon-Gaillot, E.; Clément, C.; Porret-Blanc, G.; Burnett, R. A review of background findings in Cynomolgus monkeys (Macaca fascicularis) from three different geographical origins. Toxicol. Lett. 2006, 58, S307. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; Barnett, D.K.; Colman, R.J.; Yamamoto, M.E.; Schultz-Darken, N.J. Aspects of Common Marmoset Basic Biology and Life History Important for Biomedical Research. Comp. Med. 2003, 53, 339–350. [Google Scholar] [PubMed]
- Carrion, R.; Patterson, J.L. An animal model that reflects human disease: The common marmoset (Callithrix jacchus). Curr. Opin. Virol. 2012, 2, 357–362. [Google Scholar] [CrossRef]
- Abbott, D.H.; Hearn, J.P. Physical, hormonal and behavioural aspects of sexual development in the marmoset monkey, Callithrix jacchus. J. Reprod. Fertil. 1978, 53, 155–166. [Google Scholar] [CrossRef]
- Mansfield, K. Marmoset Models Commonly Used in Biomedical Research. Comp. Med. 2003, 53, 383–392. [Google Scholar]
- Fujii, Y.; Kitaura, K.; Matsutani, T.; Shirai, K.; Suzuki, S.; Takasaki, T.; Kumagai, K.; Kametani, Y.; Shiina, T.; Takabayashi, S.; et al. Immune-Related Gene Expression Profile in Laboratory Common Marmosets Assessed by an Accurate Quantitative Real-Time PCR Using Selected Reference Genes. PLoS ONE 2013, 8, e56296. [Google Scholar] [CrossRef]
- Ando, K.; Maeda, J.; Inaji, M.; Okauchi, T.; Obayashi, S.; Higuchi, M.; Suhara, T.; Tanioka, Y. Neurobehavioral protection by single dose l-deprenyl against MPTP-induced parkinsonism in common marmosets. Psychopharmacology 2008, 195, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Bright, H.; Carroll, A.R.; Watts, P.A.; Fenton, R.J. Development of a GB virus B marmoset model and its validation with a novel series of hepatitis C virus NS3 protease inhibitors. J. Virol. 2004, 78, 2062–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, A.P.; Aronson, J.F.; Tardif, S.D.; Patterson, J.L.; Brasky, K.M.; Geiger, R.; de la Garza, M.; Carrion, R.; Weaver, S.C. Common marmosets (Callithrix jacchus) as a nonhuman primate model to assess the virulence of eastern equine encephalitis virus strains. J. Virol. 2008, 82, 9035–9042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sussman, R.W.; Kinzey, W.G. The ecological role of the callitrichidae: A review. Am. J. Phys. Anthropol. 1984, 64, 419–449. [Google Scholar] [CrossRef]
- Takikawa, S.; Engle, R.E.; Faulk, K.N.; Emerson, S.U.; Purcell, R.H.; Bukh, J. Molecular evolution of GB virus B hepatitis virus during acute resolving and persistent infections in experimentally infected tamarins. J. Gen. Virol. 2010, 91, 727–733. [Google Scholar] [CrossRef]
- Wood, J.D.; Peck, O.C.; Tefend, K.S.; Stonerook, M.J.; Caniano, D.A.; Mutabagani, K.H.; Lhotak, S.; Sharma, H.M. Evidence that colitis is initiated by environmental stress and sustained by fecal factors in the cotton-top tamarin (Saguinus oedipus). Dig. Dis. Sci. 2000, 45, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Lackner, A.A.; Carville, A.; Xia, D.; MacKey, J.; Lin, K.-C.; Mansfield, K.G.; Schauer, D.B.; Newman, J. V Enteropathogenic Escherichia coli and Ulcerative Colitis in Cotton-Top Tamarins (Saguinus oedipus). J. Infect. Dis. 2001, 184, 803–807. [Google Scholar]
- Hofmann, P.; Kahnt, K.; Matz-Rensing, K.; Brack, M.; Kaup, F.J. Three spontaneous lymphomas in a colony of cotton-top tamarins (Saguinus oedipus). J. Med. Primatol. 2001, 30, 322–327. [Google Scholar] [CrossRef]
- Lushbaugh, C.C.; Humason, G.L.; Swartzendruber, D.C.; Richter, C.B.; Gengozian, N. Spontaneous colonic adenocarcinoma in marmosets. Primates Med. 1978, 10, 119–134. [Google Scholar]
- Tobi, M.; Kim, M.; Zimmer, R.; Hatfield, J.; Kam, M.; Khoury, N.; Carville, A.; Lawson, M.J.; Schiemann, W.P.; Thomas, P. Colorectal cancer in the cotton top tamarin (Saguinus oedipus): How do they evade liver metastasis? Dig. Dis. Sci. 2011, 56, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Yang, C.; Hsieh, S.; Juan, C.; Chang, S.; Yu, C.; Lin, L.; Huang, J.; King, C. Slower Rates of Clearance of Viral Load and Virus-Containing Immune Complexes in Patients with Dengue Hemorrhagic Fever. Clin. Infect. Dis. 2006, 43, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Endy, T.P.; Nisalak, A.; Chunsuttitwat, S.; Vaughn, D.W.; Green, S.; Ennis, F.A.; Rothman, A.L.; Libraty, D.H. Relationship of Preexisting Dengue Virus (DV) Neutralizing Antibody Levels to Viremia and Severity of Disease in a Prospective Cohort Study of DV Infection in Thailand. J. Infect. Dis. 2004, 189, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilarde, A.O.; Turchi, M.D.; Jr, J.B.S.; Feres, V.C.R.; Rocha, B.; Levi, J.E.; Souza, V.A.U.F.; Boas, L.S.V.; Pannuti, C.S.; Martelli, C.M.T. Dengue and Dengue Hemorrhagic Fever among Adults: Clinical Outcomes Related to Viremia, Serotypes, and Antibody Response. J. Infect. Dis. 2008, 197, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.J.; Endy, T.P. Critical issues in dengue vaccine development. Curr. Opin. Infect. Dis. 2011, 24, 442–450. [Google Scholar] [CrossRef]
- Ito, M.; Katakai, Y.; Ono, F.; Akari, H.; Mukai, R.; Takasaki, T.; Kotaki, A.; Kurane, I. Serotype-specific and cross-reactive neutralizing antibody responses in cynomolgus monkeys after infection with multiple dengue virus serotypes. Arch. Virol. 2011, 156, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Takasaki, T.; Yamada, K.; Nerome, R.; Tajima, S.; Kurane, I. Development and evaluation of fluorogenic TaqMan reverse transcriptase PCR assays for detection of dengue virus types 1 to 4. J. Clin. Microbiol 2004, 42, 5935–5937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Omatsu, T.; Saito, A.; Katakai, Y.; Iwasaki, Y.; Iijima, S.; Kurosawa, T.; Hamano, M.; Nakamura, S.; Takasaki, T.; et al. CD16+ natural killer cells play a limited role against primary dengue virus infection in tamarins. Arch. Virol. 2012, 157, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Koraka, P.; Benton, S.; van Amerongen, G.; Stittelaar, K.J.; Osterhaus, A.D.M.E. Efficacy of a live attenuated tetravalent candidate dengue vaccine in naïve and previously infected cynomolgus macaques. Vaccine 2007, 25, 5409–5416. [Google Scholar] [CrossRef]
- Bernardo, L.; Izquierdo, A.; Prado, I.; Rosario, D.; Alvarez, M.; Santana, E.; Castro, J.; Martínez, R.; Rodríguez, R.; Morier, L.; et al. Primary and Secondary Infections of Macaca fascicularis Monkeys with Asian and American Genotypes of Dengue Virus 2. Clin. Vaccine Immunol. 2008, 15, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Moi, M.L.; Omatsu, T.; Hirayama, T.; Nakamura, S.; Katakai, Y.; Yoshida, T.; Saito, A.; Tajima, S.; Ito, M.; Takasaki, T. Presence of viral genome in urine and development of hematuria and pathological changes in kidneys in common marmoset (Callithrix jacchus) after inoculation with dengue virus. Pathogens 2013, 2, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Siler, J.F.; Hall, M.W.; Hitchens, A.P. Dengue: Its History, Epidemiology, Mechanism of Transmission, Etiology, Clinical Manifestations, Immunity, and Prevention. Philipp. J. Sci 1926, 29, 1–304. [Google Scholar]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Rothman, A.L.; Ennis, F.A.; Nisalak, A. Dengue in the early febrile phase: Viremia and antibody responses. J. Infect. Dis. 1997, 176, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Rosen, L. A Simple Technique for Demonstrating Transmission of Dengue Virus by Mosquitoes without the Use of Vertebrate Hosts*. Am. J. Trop. Med. Hyg. 1976, 25, 146–150. [Google Scholar] [CrossRef]
- Osorio, J.E.; Brewoo, J.N.; Silengo, S.J.; Arguello, J.; Moldovan, I.R.; Tary-Lehmann, M.; Powell, T.D.; Livengood, J.A.; Kinney, R.M.; Huang, C.Y.-H.; et al. Efficacy of a Tetravalent Chimeric Dengue Vaccine (DENVax) in Cynomolgus Macaques. Am. J. Trop. Med. Hyg. 2011, 84, 978–987. [Google Scholar] [CrossRef]
- Ito, M.; Mukai, R.; Takasaki, T.; Kotaki, A.; Kurane, I. Antibody-dependent enhancement of dengue virus infection in vitro by undiluted sera from monkeys infected with heterotypic dengue virus. Arch. Virol. 2010, 155, 1617–1624. [Google Scholar] [CrossRef]
- Moi, M.L.; Takasaki, T.; Kurane, I. Human antibody response to dengue virus: Implications for dengue vaccine design. Trop. Med. Health 2016, 44, 1. [Google Scholar] [CrossRef] [Green Version]
- Azami, N.A.M.; Moi, M.L.; Ami, Y.; Suzaki, Y.; Lim, C.-K.; Taniguchi, S.; Saijo, M.; Takasaki, T.; Kurane, I. Genotype-specific and cross-reactive neutralizing antibodies induced by dengue virus infection: Detection of antibodies with different levels of neutralizing activities against homologous and heterologous genotypes of dengue virus type 2 in common marmose. Virol. J. 2018, 15, 51. [Google Scholar] [CrossRef]
- Imrie, A.; Meeks, J.; Gurary, A.; Sukhbaatar, M.; Truong, T.T.; Cropp, C.B.; Effler, P. Antibody to dengue 1 detected more than 60 years after infection. Viral. Immunol. 2007, 20, 672–675. [Google Scholar] [CrossRef] [Green Version]
Type of Animal Model | Benefits of Use This Model | Limitations | References |
---|---|---|---|
Immunocompetent mice (C57BL/6 mice, BALB/c mice) |
|
| [22,23,24,25] |
Interferon alpha/beta/gamma receptor knock-out mice) (AG129 mice) |
|
| [26,27,28,29,30] |
IFN -/- mice (IFNAR-/- mice) |
|
| [31,32,33] |
Humanized mice (hu-NSG mice, NOD/SCID mice, NOD-scidIL2Rγnull mice, RAG2-/-γc-/-mice, BLT-NOD/SCID mice) |
|
| [34,35,36,37,38,39,40,41] |
Non-human primates (rhesus macaque, bonnet monkey, olive baboons, African green monkey) |
|
| [42,43,44,45,46,47,48,49,50] |
Dengue human infection model (DHIM) |
|
| [51,52,53,54,55,56,57] |
Type of Infection | Animal ID | Inoculated Virus | Dengue Viral RNA Copy Numbers (log10 Genome copies/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days after Inoculation | |||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 7 | 10 | 14 | |||
Primary | (A) Cynomolgus macaques | ||||||||||
Group 1 | |||||||||||
CM1 | DENV1 01-27 | NT | NT | NT | 2.8 | NT | - | - | - | - | |
CM2 | NT | NT | NT | - | NT | - | - | - | - | ||
Group 2 | |||||||||||
CM3 | DENV2 DHF0663 | NT | NT | NT | 6.5 | NT | - | - | - | - | |
CM4 | NT | NT | NT | 3.1 | NT | - | - | - | - | ||
CM5 | NT | NT | NT | 4.1 | NT | - | - | - | - | ||
CM6 | NT | NT | NT | 7.2 | NT | - | - | - | - | ||
Group 3 | |||||||||||
CM7 | DENV3 DSS1403 | NT | NT | NT | 2.5 | NT | - | - | - | - | |
CM8 | NT | NT | NT | 3.6 | NT | - | - | - | - | ||
(B) Marmosets 1 | |||||||||||
Group 4 | |||||||||||
M1 | DENV1 02-17 | - | NT | NT | 5.6 | NT | 5.7 | - | - | - | |
M2 | - | NT | 7.0 | NT | NT | 6.5 | 7.7 | 6.0 | - | ||
Group 5 | |||||||||||
M3 | DENV2 DHF0663 | - | NT | NT | 7.2 | NT | 5.0 | - | NT | - | |
M4 | - | NT | NT | 7.5 | NT | 6.8 | 5.4 | NT | - | ||
M5 | - | NT | 4.5 | NT | 6.0 | NT | 4.0 | NT | - | ||
M6 | - | NT | 5.0 | NT | 6.3 | NT | 4.2 | NT | - | ||
Group 6 | |||||||||||
M7 | DENV3 DSS1403 | - | NT | NT | - | NT | 4.7 | - | - | - | |
M8 | - | NT | 4.9 | NT | 5.6 | NT | - | NT | - | ||
(C) Tamarins 1 | |||||||||||
Group 7 | |||||||||||
T1 | DENV2 DHF0663 | - | 6.4 | NT | 6.1 | NT | 4.2 | - | NT | NT | |
T2 | - | 7.3 | NT | 7.5 | NT | 6.3 | 4.2 | NT | NT | ||
Group 8 | |||||||||||
T3 | DENV2 DHF0663 | - | 5.3 | NT | 6.2 | NT | NT | 4.5 | - | - | |
T4 | - | 4.7 | NT | 4.6 | NT | NT | 5.4 | - | - | ||
T5 | - | 5.3 | NT | 6.3 | NT | NT | 6.2 | - | - | ||
Secondary | (D) Cynomolgus macaques | ||||||||||
Group 9 | |||||||||||
CM1 | DENV2 DHF0663 | NT | NT | NT | 6.2 | NT | - | - | - | - | |
CM2 | NT | NT | NT | 6.2 | NT | - | - | - | - | ||
Group 10 | |||||||||||
CM3 | DENV3 DSS1403 | NT | NT | NT | 3.0 | NT | - | - | - | - | |
CM4 | NT | NT | NT | 2.8 | NT | - | - | - | - | ||
(E) Marmoset 2 | |||||||||||
Group 11 | |||||||||||
M9 | DENV2 DHF0663 | - | - | NT | 6.7 | NT | NT | 4.5 | NT | - | |
M10 | - | - | NT | 6.2 | NT | NT | - | NT | - | ||
M11 | - | - | NT | 6.4 | NT | NT | 3.9 | NT | - | ||
Group 12 | |||||||||||
M12 | DENV3 DSS1403 | - | - | 7.0 | NT | NT | 6.5 | 5.2 | 4.7 | - | |
M13 | - | - | 7.5 | NT | NT | 7.7 | 6.0 | 4.2 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad Azami, N.A.; Takasaki, T.; Kurane, I.; Moi, M.L. Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys. Pathogens 2020, 9, 247. https://doi.org/10.3390/pathogens9040247
Muhammad Azami NA, Takasaki T, Kurane I, Moi ML. Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys. Pathogens. 2020; 9(4):247. https://doi.org/10.3390/pathogens9040247
Chicago/Turabian StyleMuhammad Azami, Nor Azila, Tomohiko Takasaki, Ichiro Kurane, and Meng Ling Moi. 2020. "Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys" Pathogens 9, no. 4: 247. https://doi.org/10.3390/pathogens9040247
APA StyleMuhammad Azami, N. A., Takasaki, T., Kurane, I., & Moi, M. L. (2020). Non-Human Primate Models of Dengue Virus Infection: A Comparison of Viremia Levels and Antibody Responses during Primary and Secondary Infection among Old World and New World Monkeys. Pathogens, 9(4), 247. https://doi.org/10.3390/pathogens9040247