In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures
Abstract
:1. Introduction
2. Results
2.1. Absorption Patterns of the Four TCs
2.2. Intrinsic Bactericidal Activity of the Four TCs Against C. difficile in the Absence of Light Irradiation
2.3. Comparison of the Effect of the Four TCs on C. difficile in the Presence of Chitosan
2.4. Ethidium Bromide Monoazide Quantitative Polymerase Chain Reaction (EMA–qPCR) Analysis for the Evaluation of C. difficile membrane damage
2.5. Evaluation of Membrane Integrity
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain and Culture Condition
4.2. Chemicals and Instruments
4.3. Spectrophotometric Measurement of Absorbance Patterns of the Four TCs
4.4. Antimicrobial Activity Against C. difficile of the Four TCs Alone
4.5. Augmented Photodynamic Anticlostridial Activity of Chitosan and the Four TCs during PDT
4.6. Evaluation of DNA Damage Using EMA-qPCR
4.7. The Evaluation of Membrane Integrity After PDT With Chitosan
4.8. Statistics
Author Contributions
Funding
Conflicts of Interest
References
- Padua, D.; Pothoulakis, C. Novel approaches to treating Clostridium difficile-associated colitis. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazier, J. Clostridium difficile: From obscurity to superbug. Br. J. Biomed. Sci. 2008, 65, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Engevik, M.A.; Yacyshyn, M.B.; Engevik, K.A.; Wang, J.; Darien, B.; Hassett, D.J.; Yacyshyn, B.R.; Worrell, R.T. Human Clostridium difficile infection: Altered mucus production and composition. Am. J. Physiol. Gastrointest Liver Physiol. 2015, 308, G510–G524. [Google Scholar] [CrossRef] [Green Version]
- Mullish, B.H.; Williams, H.R. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin. Med. 2018, 18, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Zilberberg, M.D.; Shorr, A.F. Preventing Clostridium difficile infection in the intensive care unit. Crit. Care Clin. 2013, 29, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Kapoor, S.; Tariq, R.; Schuetz, A.N.; Tosh, P.K.; Pardi, D.S.; Khanna, S. Increasing antibiotic resistance in Clostridioides difficile: A systematic review and meta-analysis. Anaerobe 2019, 58, 35–46. [Google Scholar] [CrossRef]
- De Wolfe, T.J.; Eggers, S.; Barker, A.K.; Kates, A.E.; Dill-McFarland, K.A.; Suen, G.; Safdar, N. Oral probiotic combination of Lactobacillus and Bifidobacterium alters the gastrointestinal microbiota during antibiotic treatment for Clostridium difficile infection. PLoS ONE 2018, 13, e0204253. [Google Scholar] [CrossRef]
- Gorbach, S.L. Antibiotics and Clostridium Difficile; Massachusetts Medical Society: Waltham, MA, USA, 1999. [Google Scholar]
- Dancer, S.J. Controlling hospital-acquired infection: Focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 2014, 27, 665–690. [Google Scholar] [CrossRef] [Green Version]
- Žvab, U.; Štangar, U.L.; Marušič, M.B. Methodologies for the analysis of antimicrobial effects of immobilized photocatalytic materials. Appl. Microbiol. Biotechnol. 2014, 98, 1925–1936. [Google Scholar] [CrossRef]
- Reddy, P.V.L.; Kavitha, B.; Reddy, P.A.K.; Kim, K.-H. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environ. Res. 2017, 154, 296–303. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am. J. Infect. Control 2019, 47, A96–A105. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 2016, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerandzic, M.M.; Cadnum, J.L.; Pultz, M.J.; Donskey, C.J. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect. Dis. 2010, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanafer, N.; Voirin, N.; Barbut, F.; Kuijper, E.; Vanhems, P. Hospital management of Clostridium difficile infection: A review of the literature. J. Hosp. Infect. 2015, 90, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Barbut, F. How to eradicate Clostridium difficile from the environment. J. Hosp. Infect. 2015, 89, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.; Boswell, T.; Mahida, Y.R. Recent advances in Clostridium difficile-associated disease. Postgrad. Med. J. 2009, 85, 152–162. [Google Scholar] [CrossRef]
- Chopra, I. Mode of action of the tetracyclines and the nature of bacterial resistance to them. In The Tetracyclines; Springer: Berlin/Heidelberg, Germany, 1985; pp. 317–392. [Google Scholar]
- Martin, J.; Colina, K.; Logsdon, N. Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B. J. Bacteriol. 1987, 169, 2516–2522. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lee, H.; Yu, J.; Chae, H. In vitro augmented photodynamic bactericidal activity of tetracycline and chitosan against Clostridium difficile KCTC5009 in the planktonic cultures. J. Photochem. Photobiol. B Biol. 2015, 153, 7–12. [Google Scholar] [CrossRef]
- Donskey, C.J. Beyond high-touch surfaces: Portable equipment and floors as potential sources of transmission of health care–associated pathogens. Am. J. Infect. Control 2019, 47, A90–A95. [Google Scholar] [CrossRef]
- Doll, M.; Stevens, M.; Bearman, G. Environmental cleaning and disinfection of patient areas. Int. J. Infect. Dis. 2018, 67, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Barra, F.; Roscetto, E.; Soriano, A.A.; Vollaro, A.; Postiglione, I.; Pierantoni, G.M.; Palumbo, G.; Catania, M.R. Photodynamic and Antibiotic Therapy in Combination to Fight Biofilms and Resistant Surface Bacterial Infections. Int. J. Mol. Sci. 2015, 16, 20417–20430. [Google Scholar] [CrossRef] [PubMed]
- Ilizirov, Y.; Formanovsky, A.; Mikhura, I.; Paitan, Y.; Nakonechny, F.; Nisnevitch, M. Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria. Molecules 2018, 23, E3152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glette, J.; Sandberg, S.; Haneberg, B.; Solberg, C. Effect of tetracyclines and UV light on oxygen consumption by human leukocytes. Antimicrob. Agents Chemother. 1984, 26, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, T.; Kochevar, I.E.; McAuliffe, D.J.; Cooperman, B.S.; Ahdulah, D. Mechanism of tetracycline phototoxicity. J. Investig. Dermatol. 1984, 83, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjellerup, M.; Ljunggren, B. Differences in phototoxic potency should be considered when tetracyclines are prescribed during summer-time. A study on doxycycline and lymecycline in human volunteers, using an objective method for recording erythema. Br. J. Dermatol. 1994, 130, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.; Lee, H.K.; Chae, H.S. Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori. Photodiagnosis Photodyn. Ther. 2014, 11, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Choi, J.H.; Yang, H.J.; Choi, S.S.; Lee, H.K.; Cho, Y.-C.; Kim, H.K.; Kim, S.W.; Chae, H.S. Comparison of high and low molecular weight chitosan as in-vitro boosting agent for photodynamic therapy against Helicobacter pylori using methylene blue and endoscopic light. Photodiagnosis Photodyn. Ther. 2019, 26, 111–115. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef]
- He, Y.; Huang, Y.Y.; Xi, L.; Gelfand, J.A.; Hamblin, M.R. Tetracyclines function as dual-action light-activated antibiotics. PLoS ONE 2018, 13, e0196485. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.T.; Wu, C.Y.; Lee, N.Y.; Cheng, C.W.; Yang, M.J.; Hung, Y.A.; Wong, T.W.; Liang, J.Y. Effects of 462 nm Light-Emitting Diode on the Inactivation of Escherichia coli and a Multidrug-Resistant by Tetracycline Photoreaction. J. Clin. Med. 2018, 7, E278. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.T.; Chang, C.W. Rapid quantification of viable Legionellae in water and biofilm using ethidium monoazide coupled with real-time quantitative PCR. J. Appl. Microbiol. 2010, 109, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Sossa, K.E.; Camper, A.K. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 2007, 70, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Tegos, G.P.; Hamblin, M.R. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob. Agents Chemother. 2006, 50, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time (min) | Log10 CFU/mL (mean ± SD, n = 3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Chi a | UVA | UVA + Chi a | Under UVA irradiation | ||||||||
TC | TC + Chi a | DXY | DXY + Chi a | MIN | MIN + Chi a | TGE | TGE + Chi a | |||||
0 | 8.13 ± 0.43 | 8.13 ± 0.22 | 8.03 ± 0.78 | 8.03 ± 0.56 | 8.03 ± 0.22 | 8.03 ± 0.55 | 8.03 ± 0.51 | 8.03 ± 0.55 | 8.13 ± 0.11 | 8.02 ± 0.44 | 8.12 ± 0.55 | 8.12 ± 0.65 |
10 | 8.24 ± 0.56 | 8.24 ± 0.31 | 8.13 ± 0.45 | 8.13 ± 0.77 | 8.13 ± 0.35 | 8.13 ± 0.32 | 8.13 ± 0.23 | 8.13 ± 0.65 | 8.23 ± 0.15 | 8.26 ± 0.58 | 7.45 ± 0.49 | 6.99 ± 0.33 |
20 | 8.11 ± 0.23 | 8.05 ± 0.33 | 8.12 ± 0.49 | 7.52 ± 0.65 | 8.11 ± 0.44 | 7.11 ± 0.22 | 8.11 ± 0.33 | 7.03 ± 0.33 | 8.12 ± 0.54 | 7.12 ± 0.23 | 7.55 ± 0.41 | 6.79 ± 0.23 |
30 | 8.12 ± 0.32 | 8.12 ± 0.35 | 7.12 ± 0.44 | 7.12 ± 0.15 | 7.12 ± 0.72 | 7.12 ± 0.14 | 7.12 ± 0.34 | 7.03 ± 0.21 | 7.15 ± 0.65 | 6.99 ± 0.47 | 6.89 ± 0.44 | 7.02 ± 0.74 |
Time (min) | Log10 CFU/mL (Mean ± SD, n = 3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Chi a | UVA | UVA + Chi a | Under UVA Irradiation | ||||||||
TC | TC + Chi a | DXY | DXY + Chi a | MIN | MIN + Chi a | TGE | TGE + Chi a | |||||
0 | 8.13 ± 0.43 | 8.13 ± 0.22 | 8.03 ± 0.78 | 8.03 ± 0.56 | 8.03 ± 0.14 | 8.03 ± 0.55 | 8.03 ± 0.23 | 8.03 ± 0.33 | 8.03 ± 0.22 | 8.03 ± 0.24 | 8.03 ± 0.44 | 8.03 ± 0.59 |
10 | 8.24 ± 0.56 | 8.24 ± 0.31 | 8.13 ± 0.45 | 8.13 ± 0.77 | 8.13 ± 0.27 | 5.23 ± 0.23 | 8.13 ± 0.25 | 4.98 ± 0.54 | 8.13 ± 0.34 | 5.23 ± 0.17 | 7.03 ± 0.14 | 4.89 ± 0.57 |
20 | 8.11 ± 0.23 | 8.05 ± 0.33 | 8.12 ± 0.49 | 7.52 ± 0.65 | 8.11 ± 0.57 | 5.12 ± 0.51 | 8.11 ± 0.47 | 5.05 ± 0.14 | 8.11 ± 0.41 | 5.11 ± 0.14 | 7.05 ± 0.22 | 4.88 ± 0.11 |
30 | 8.12 ± 0.32 | 8.12 ± 0.35 | 7.12 ± 0.44 | 7.12 ± 0.15 | 7.12 ± 0.35 | 5.12 ± 0.14 | 7.12 ± 0.56 | 5.12 ± 0.25 | 7.12 ± 0.56 | 5.03 ± 0.23 | 7.23 ± 0.16 | 4.58 ± 0.24 |
DNA Samples | Ct Values (Mean ± SD, n = 3) |
---|---|
Control a | 14.67 ± 0.22 |
UVA b | 15.60 ± 0.00 |
Chitosan c | 17.46 ± 0.12 |
UVA + chitosan d | 19.45 ± 0.05 |
UVA + TC e | 20.46 ± 0.12 |
UVA + TC + chitosan f | 24.17 ± 0.08 |
UVA + DXY e | 21.43 ± 0.01 |
UVA + DXY + chitosan f | 25.28 ± 0.01 |
UVA + MIN e | 20.25 ± 0.03 |
UVA + MIN + chitosan f | 25.31 ± 0.03 |
UVA + TGE e | 21.38 ± 0.10 |
UVA + TGE + chitosan f | 25.54 ± 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.S.; Oh, H.Y.; Kim, E.J.; Lee, H.K.; Kim, H.K.; Choi, H.H.; Kim, S.W.; Chae, H.S. In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures. Pathogens 2020, 9, 279. https://doi.org/10.3390/pathogens9040279
Choi SS, Oh HY, Kim EJ, Lee HK, Kim HK, Choi HH, Kim SW, Chae HS. In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures. Pathogens. 2020; 9(4):279. https://doi.org/10.3390/pathogens9040279
Chicago/Turabian StyleChoi, Sung Sook, Hui Yeong Oh, Eui Jin Kim, Hae Kyung Lee, Hyung Keun Kim, Hyun Ho Choi, Sang Woo Kim, and Hiun Suk Chae. 2020. "In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures" Pathogens 9, no. 4: 279. https://doi.org/10.3390/pathogens9040279
APA StyleChoi, S. S., Oh, H. Y., Kim, E. J., Lee, H. K., Kim, H. K., Choi, H. H., Kim, S. W., & Chae, H. S. (2020). In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures. Pathogens, 9(4), 279. https://doi.org/10.3390/pathogens9040279