Pathogenomics and Management of Fusarium Diseases in Plants
Abstract
:1. Introduction
2. Fusarium as Plant Pathogens
3. The Urgency to Develop Non-chemical Control Strategies
4. Fusarium Genomics
5. Host-induced Gene Silencing (HIGS)
6. Selection of Gene Targets
6.1. Pathogen Effectors
6.2. Pathogenicity Genes
6.2.1. Basic Pathogenicity Genes
6.2.2. Specialized Effectors and Pathogenicity Genes in Fusarium
6.2.3. Pathogenicity Chromosomes
6.3. Trichothecene Mycotoxins as Specialized Virulence Factors
6.4. CYP51 Paralogues in Fusarium
7. Redundancy of Function
8. Broad Spectrum Activity and Off-target Effects
9. Loss of RNAi Gene Silencing in Fungi
10. Future Challenges
Funding
Acknowledgments
Conflicts of Interest
References
- Schwarze, K.; Buchanan, J.; Taylor, J.C.; Wordsworth, S. Are Whole-Exome and Whole-Genome Sequencing Approaches Cost-Effective? A Systematic Review of the Literature. Genet. Med. 2018, 20, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, R.M.; Salzberg, S.L. Pan-Genomics in the Human Genome Era. Nat. Rev. Genet. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ahnert, S.E. Structural Properties of Genotype–Phenotype Maps. J. R. Soc. Interface 2017, 14, 20170275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.M.; Panstruga, R. Pathogenomics of Fungal Plant Parasites: What Have We Learnt about Pathogenesis? Curr. Opin. Plant Biol. 2011, 14, 392–399. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology: Top 10 Fungal Pathogens. Mol. Plant. Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, K.; Ward, T.J.; Robert, V.A.R.G.; Crous, P.W.; Geiser, D.M.; Kang, S. DNA Sequence-Based Identification of Fusarium: Current Status and Future Directions. Phytoparasitica 2015, 43, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Fernando, W.G.D.; Miller, J.D.; Seaman, W.L.; Seifert, K.; Paulitz, T.C. Daily and Seasonal Dynamics of Airborne Spores of Fusarium graminearum and Other Fusarium Species Sampled over Wheat Plots. Can. J. Bot. 2000, 78, 497–505. [Google Scholar] [CrossRef]
- Smith, S.N. An Overview of Ecological and Habitat Aspects in the Genus Fusarium with Special Emphasis on the Soil-Borne Pathogenic Forms. Plant. Pathol. Bull. 2007, 16, 97–120. [Google Scholar]
- Schmale, D.G.; Ross, S.D.; Fetters, T.L.; Tallapragada, P.; Wood-Jones, A.K.; Dingus, B. Isolates of Fusarium graminearum Collected 40–320 Meters above Ground Level Cause Fusarium Head Blight in Wheat and Produce Trichothecene Mycotoxins. Aerobiologia 2012, 28, 1–11. [Google Scholar] [CrossRef]
- Lin, B.; Bozorgmagham, A.; Ross, S.D.; Schmale, D.G., III. Small Fluctuations in the Recovery of Fusaria across Consecutive Sampling Intervals with Unmanned Aircraft 100 m above Ground Level. Aerobiologia 2013, 29, 45–54. [Google Scholar] [CrossRef]
- Munkvold, G.P. Epidemiology of Fusarium Diseases and Their Mycotoxins in Maize Ears. Eur. J. Plant Pathol. 2003, 109, 705–713. [Google Scholar] [CrossRef]
- Opoku, J.; Kleczewski, N.M.; Hamby, K.A.; Herbert, D.A.; Malone, S.; Mehl, H.L. Relationship Between Invasive Brown Marmorated Stink Bug (Halyomorpha halys) and Fumonisin Contamination of Field Corn in the Mid-Atlantic US. Plant Dis. 2019, 103, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Perfect, S.E.; Green, J.R. Infection Structures of Biotrophic and Hemibiotrophic Fungal Plant Pathogens. Mol. Plant. Pathol. 2001, 2, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Nganje, W.E.; Bangsund, D.A.; Leistritz, F.L.; Wilson, W.W.; Tiapo, N.M. Regional Economic Impacts of Fusarium Head Blight in Wheat and Barley. Appl. Econ. Perspect. Policy 2004, 26, 332–347. [Google Scholar] [CrossRef]
- Salgado, J.D.; Madden, L.V.; Paul, P.A. Quantifying the Effects of Fusarium Head Blight on Grain Yield and Test Weight in Soft Red Winter Wheat. Phytopathology 2015, 105, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, R.; Schaafsma, A.W.; Wu, F.; Hooker, D.C. Impact of the Improvements in Fusarium Head Blight and Agronomic Management on Economics of Winter Wheat. World Mycotoxin J. 2020, 1–18. [Google Scholar] [CrossRef]
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; APS Press, American Phytopathological Society: St. Paul, MN, USA, 2006. [Google Scholar]
- Guarro, J. Fusariosis, a Complex Infection Caused by a High Diversity of Fungal Species Refractory to Treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1491–1500. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; van den Bosch, F.; Oliver, R.P.; Heick, T.M.; Paveley, N.D. Targeting Fungicide Inputs According to Need. Annu. Rev. Phytopathol. 2017, 55, 181–203. [Google Scholar] [CrossRef]
- Spadaro, D.; Gullino, M.L. State of the Art and Future Prospects of the Biological Control of Postharvest Fruit Diseases. Int. J. Food Microbiol. 2004, 91, 185–194. [Google Scholar] [CrossRef]
- Russell, P.E. The Development of Commercial Disease Control. Plant Pathol. 2006, 55, 585–594. [Google Scholar] [CrossRef]
- The FRAC Pathogen Risk List®. 2019. Available online: https://www.frac.info/home/news/2019/09/09/the-frac-pathogen-risk-list-was-reviewed-and-updated-in-2019 (accessed on 15 March 2020).
- FRAC. Available online: https://www.frac.info/ (accessed on 15 March 2020).
- Cools, H.J.; Hawkins, N.J.; Fraaije, B.A. Constraints on the Evolution of Azole Resistance in Plant Pathogenic Fungi. Plant Pathol. 2013, 62, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Robbins, N.; Caplan, T.; Cowen, L.E. Molecular Evolution of Antifungal Drug Resistance. Annu. Rev. Microbiol. 2017, 71, 753–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 90, pp. 29–92. [Google Scholar]
- MacLean, R.C.; Hall, A.R.; Perron, G.G.; Buckling, A. The Population Genetics of Antibiotic Resistance: Integrating Molecular Mechanisms and Treatment Contexts. Nat. Rev. Genet. 2010, 11, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Hermisson, J.; Pennings, P.S. Soft Sweeps: Molecular Population Genetics of Adaptation from Standing Genetic Variation. Genetics 2005, 169, 2335–2352. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, N.J.; Cools, H.J.; Sierotzki, H.; Shaw, M.W.; Knogge, W.; Kelly, S.L.; Kelly, D.E.; Fraaije, B.A. Paralog Re-Emergence: A Novel, Historically Contingent Mechanism in the Evolution of Antimicrobial Resistance. Mol. Biol. Evol. 2014, 31, 1793–1802. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, N.J.; Fraaije, B.A. Fitness Penalties in the Evolution of Fungicide Resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Liu, X.; Li, B.; Ma, Z. Characterization of Sterol Demethylation Inhibitor-Resistant Isolates of Fusarium asiaticum and F. graminearum Collected from Wheat in China. Phytopathology 2009, 99, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, F.; Schnabel, G.; Wu, J.; Wang, Z.; Ma, Z. Paralogous Cyp51 Genes in Fusarium graminearum Mediate Differential Sensitivity to Sterol Demethylation Inhibitors. Fungal Genet. Biol. 2011, 48, 113–123. [Google Scholar] [CrossRef]
- Fan, J.; Urban, M.; Parker, J.E.; Brewer, H.C.; Kelly, S.L.; Hammond-Kosack, K.E.; Fraaije, B.A.; Liu, X.; Cools, H.J. Characterization of the Sterol 14α-Demethylases of Fusarium graminearum Identifies a Novel Genus-Specific CYP51 Function. New Phytol. 2013, 198, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Villafana, R.T.; Rampersad, S.N. Three-Locus Sequence Identification and Differential Tebuconazole Sensitivity Suggest Novel Fusarium equiseti Haplotype from Trinidad. Pathogens 2020, 9, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, A.B.; Brost, R.L.; Ding, H.; Li, Z.; Zhang, C.; Sheikh, B.; Brown, G.W.; Kane, P.M.; Hughes, T.R.; Boone, C. Integration of Chemical-Genetic and Genetic Interaction Data Links Bioactive Compounds to Cellular Target Pathways. Nat. Biotechnol. 2004, 22, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Wuster, A.; Madan Babu, M. Chemogenomics and Biotechnology. Trend. Biotechnol. 2008, 26, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Diao, Y.; Wang, J.; Chen, C.; Ni, J.; Zhou, M. JS399-19, a New Fungicide against Wheat Scab. J. Crop Prot. 2008, 27, 90–95. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.-G. Characterization of Fusarium graminearum Isolates Resistant to Both Carbendazim and a New Fungicide JS399-19. Phytopathology 2009, 99, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Chen, C.J.; Zhou, M.G.; Wang, J.X.; Zhang, W.Z. Monogenic Resistance to a New Fungicide, JS399-19, in Gibberella zeae. Plant Pathol. 2009, 58, 565–570. [Google Scholar] [CrossRef]
- Wollenberg, R.D.; Taft, M.H.; Giese, S.; Thiel, C.; Balázs, Z.; Giese, H.; Manstein, D.J.; Sondergaard, T.E. Phenamacril Is a Reversible and Noncompetitive Inhibitor of Fusarium Class I Myosin. J. Biol. Chem. 2019, 294, 1328–1337. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Hou, Y.; Cai, Y.; Zhang, Y.; Li, Y.; Zhou, M. Whole-Genome Sequencing Reveals That Mutations in Myosin-5 Confer Resistance to the Fungicide Phenamacril in Fusarium graminearum. Sci. Rep. 2015, 5, 8248. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, X.E.; Gong, Y.; Zhu, Y.; Cao, X.; Brunzelle, J.S.; Xu, H.E.; Zhou, M.; Melcher, K.; Zhang, F. Structural Basis of Fusarium Myosin I Inhibition by Phenamacril. PLoS Pathog. 2020, 16, e1008323. [Google Scholar] [CrossRef]
- Aylward, J.; Steenkamp, E.T.; Dreyer, L.L.; Roets, F.; Wingfield, B.D.; Wingfield, M.J. A Plant Pathology Perspective of Fungal Genome Sequencing. IMA Fungus 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Carris, L.M.; Little, C.R.; Stiles, C.M. Introduction to Fungi. The Plant Health Instructor. 2012. Available online: https://pdfs.semanticscholar.org/a84c/3b059d7964f4f169120e095375b8da041755.pdf?_ga=2.141742960.333574752.1588303658-1550432755.1582723921 (accessed on 1 April 2020).
- Food and Agriculture Organization of the United Nations. World Food and Agriculture: Statistical Pocketbook; FAO: Rome, Italy, 2018. [Google Scholar]
- McTaggart, A.R.; van der Nest, M.A.; Steenkamp, E.T.; Roux, J.; Slippers, B.; Shuey, L.S.; Wingfield, M.J.; Drenth, A. Fungal Genomics Challenges the Dogma of Name-Based Biosecurity. PLoS Pathog. 2016, 12, e1005475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plissonneau, C.; Benevenuto, J.; Mohd-Assaad, N.; Fouché, S.; Hartmann, F.E.; Croll, D. Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, C.A.; Guldener, U.; Xu, J.-R.; Trail, F.; Turgeon, B.G.; Di Pietro, A.; Walton, J.D.; Ma, L.-J.; Baker, S.E.; Rep, M.; et al. The Fusarium graminearum Genome Reveals a Link between Localized Polymorphism and Pathogen Specialization. Science 2007, 317, 1400–1402. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Kazan, K.; Praud, S.; Torney, F.J.; Rusu, A.; Manners, J.M. Early Activation of Wheat Polyamine Biosynthesis during Fusarium Head Blight Implicates Putrescine as an Inducer of Trichothecene Mycotoxin Production. BMC Plant Biol. 2010, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- Sperschneider, J.; Gardiner, D.M.; Thatcher, L.F.; Lyons, R.; Singh, K.B.; Manners, J.M.; Taylor, J.M. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity. Genome Biol. Evol. 2015, 7, 1613–1627. [Google Scholar] [CrossRef]
- Taylor, A.; Vágány, V.; Jackson, A.C.; Harrison, R.J.; Rainoni, A.; Clarkson, J.P. Identification of Pathogenicity-Related Genes in Fusarium oxysporum f. sp. cepae: Pathogenicity in Fusarium oxysporum f. sp. cepae. Mol. Plant. Pathol. 2016, 17, 1032–1047. [Google Scholar] [CrossRef] [Green Version]
- van Dam, P.; de Sain, M.; ter Horst, A.; van der Gragt, M.; Rep, M. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum. Appl. Environ. Microbiol. 2017, 84, e01868-17. [Google Scholar] [CrossRef] [Green Version]
- van Dam, P.; Fokkens, L.; Ayukawa, Y.; van der Gragt, M.; ter Horst, A.; Brankovics, B.; Houterman, P.M.; Arie, T.; Rep, M. A Mobile Pathogenicity Chromosome in Fusarium oxysporum for Infection of Multiple Cucurbit Species. Sci. Rep. 2017, 7, 9042. [Google Scholar] [CrossRef]
- van De Wouw, A.P.; Howlett, B.J. Fungal Pathogenicity Genes in the Age of ‘Omics’. Mol. Plant Pathol. 2011, 12, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Pant, R.; Raghunath, A.; Irvine, A.G.; Pedro, H.; Hammond-Kosack, K.E. The Pathogen-Host Interactions Database (PHI-Base): Additions and Future Developments. Nuc. Acids Res. 2015, 43, D645–D655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.; Irvine, A.G.; Cuzick, A.; Hammond-Kosack, K.E. Using the Pathogen-Host Interactions Database (PHI-Base) to Investigate Plant Pathogen Genomes and Genes Implicated in Virulence. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, T.; Yao, B.; Zhang, C. DFVF: Database of Fungal Virulence Factors. Database 2012, bas032. [Google Scholar] [CrossRef] [PubMed]
- Kersey, P.J.; Lawson, D.; Birney, E.; Derwent, P.S.; Haimel, M.; Herrero, J.; Keenan, S.; Kerhornou, A.; Koscielny, G.; Kähäri, A.; et al. Ensembl Genomes: Extending Ensembl Across the Taxonomic Space. Nucl. Acid Res 2010, 38, D563–D569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stajich, J.E.; Harris, T.; Brunk, B.P.; Brestelli, J.; Fischer, S.; Harb, O.S.; Kissinger, J.C.; Li, W.; Nayak, V.; Pinney, D.F.; et al. FungiDB: An Integrated Functional Genomics Database for Fungi. Nucl. Acids Res. 2012, 40, D675–D681. [Google Scholar] [CrossRef]
- Basenko, E.; Pulman, J.; Shanmugasundram, A.; Harb, O.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.; Kissinger, J.; et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. JoF 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nuc. Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Cullen, D.; Goodwin, S.B.; Hibbett, D.; Jeffries, T.W.; Kubicek, C.P.; Kuske, C.; Magnuson, J.K.; Martin, F.; Spatafora, J.W.; et al. Fueling the Future with Fungal Genomics. Mycology 2011, 2, 192–209. [Google Scholar] [CrossRef]
- Mukherjee, S.; Stamatis, D.; Bertsch, J.; Ovchinnikova, G.; Verezemska, O.; Isbandi, M.; Thomas, A.D.; Ali, R.; Sharma, K.; Kyrpides, N.C.; et al. Genomes OnLine Database (GOLD) v.6: Data Updates and Feature Enhancements. Nucl. Acids Res. 2017, 45, D446–D456. [Google Scholar] [CrossRef]
- Choi, J.; Cheong, K.; Jung, K.; Jeon, J.; Lee, G.-W.; Kang, S.; Kim, S.; Lee, Y.-W.; Lee, Y.-H. CFGP 2.0: A Versatile Web-Based Platform for Supporting Comparative and Evolutionary Genomics of Fungi and Oomycetes. Nuc. Acids Res. 2013, 41, D714–D719. [Google Scholar] [CrossRef] [PubMed]
- Nurnberger, T.; Brunner, F.; Kemmerling, B.; Piater, L. Innate Immunity in Plants and Animals: Striking Similarities and Obvious Differences. Immunol. Rev. 2004, 198, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kars, I.; Essenstam, B.; Liebrand, T.W.H.; Wagemakers, L.; Elberse, J.; Tagkalaki, P.; Tjoitang, D.; van den Ackerveken, G.; van Kan, J.A.L. Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein Responsiveness to Botrytis polygalacturonase 1. Plant Physiol. 2014, 164, 352–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Feng, B.; He, P.; Shan, L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annu. Rev. Phytopathol. 2017, 55, 109–137. [Google Scholar] [CrossRef]
- Zipfel, C. Early Molecular Events in PAMP-Triggered Immunity. Curr. Opin. Plant Biol. 2009, 12, 414–420. [Google Scholar] [CrossRef]
- Stergiopoulos, I.; de Wit, P.J.G.M. Fungal Effector Proteins. Annu. Rev. Phytopathol. 2009, 47, 233–263. [Google Scholar] [CrossRef] [Green Version]
- De Wit, P.J.G.M.; Mehrabi, R.; Van Den Burg, H.A.; Stergiopoulos, I. Fungal Effector Proteins: Past, Present and Future. Mol. Plant. Pathol. 2009, 10, 735–747. [Google Scholar] [CrossRef]
- de Jonge, R.; Bolton, M.D.; Kombrink, A.; van den Berg, G.C.M.; Yadeta, K.A.; Thomma, B.P.H.J. Extensive Chromosomal Reshuffling Drives Evolution of Virulence in an Asexual Pathogen. Genome Res. 2013, 23, 1271–1282. [Google Scholar] [CrossRef] [Green Version]
- Thomma, B.P.H.J.; Nürnberger, T.; Joosten, M.H.A.J. Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell 2011, 23, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Rafiqi, M.; Ellis, J.G.; Ludowici, V.A.; Hardham, A.R.; Dodds, P.N. Challenges and Progress towards Understanding the Role of Effectors in Plant–Fungal Interactions. Curr. Opin. Plant Biol. 2012, 15, 477–482. [Google Scholar] [CrossRef]
- Fouché, S.; Plissonneau, C.; Croll, D. The Birth and Death of Effectors in Rapidly Evolving Filamentous Pathogen Genomes. Curr. Opin. Microbiol. 2018, 46, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Weiberg, A.; Wang, M.; Lin, F.-M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H.-D.; Jin, H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science 2013, 342, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Qi, Y. RNAi in Plants: An Argonaute-Centered View. Plant Cell 2016, 28, 272–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Liu, T.; Chang, Y.-N.; Duan, C.-G. Small RNA Functions as a Trafficking Effector in Plant Immunity. IJMS 2019, 20, 2816. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Kogel, K.-H. New Wind in the Sails: Improving the Agronomic Value of Crop Plants through RNAi-Mediated Gene Silencing. Plant Biotechnol. J. 2014, 12, 821–831. [Google Scholar] [CrossRef]
- Castel, S.E.; Martienssen, R.A. RNA Interference in the Nucleus: Roles for Small RNAs in Transcription, Epigenetics and Beyond. Nat. Rev. Genet. 2013, 14, 100–112. [Google Scholar] [CrossRef]
- Liu, X.; Tang, W.-H.; Zhao, X.-M.; Chen, L. A Network Approach to Predict Pathogenic Genes for Fusarium graminearum. PLoS ONE 2010, 5, e13021. [Google Scholar] [CrossRef]
- Kawamata, T.; Tomari, Y. Making RISC. Trend. Biochem. Sci. 2010, 35, 368–376. [Google Scholar] [CrossRef]
- Meister, G. Argonaute Proteins: Functional Insights and Emerging Roles. Nat. Rev. Genet. 2013, 14, 447–459. [Google Scholar] [CrossRef]
- Chang, S.-S.; Zhang, Z.; Liu, Y. RNA Interference Pathways in Fungi: Mechanisms and Functions. Annu. Rev. Microbiol. 2012, 66, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gao, Q.; Huang, M.; Liu, Y.; Liu, Z.; Liu, X.; Ma, Z. Characterization of RNA Silencing Components in the Plant Pathogenic Fungus Fusarium graminearum. Sci. Rep. 2015, 5, 12500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, C.; Zhao, J.-H.; Guo, H.-S. Trans-Kingdom RNA Silencing in Plant–Fungal Pathogen Interactions. Mol. Plant Pathol. 2018, 11, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, T.; Islamovic, E.; Klos, K.; Schwartz, P.; Gillespie, J.; Hunter, S.; Bregitzer, P. Silencing Efficiency of dsRNA Fragments Targeting Fusarium graminearum TRI6 and Patterns of Small Interfering RNA Associated with Reduced Virulence and Mycotoxin Production. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jin, H. Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection. Trend. Microbiol. 2017, 25, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.H.J.; Huang, H.-D.; Jin, H. Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kastner, C.; Nowara, D.; Oliveira-Garcia, E.; Rutten, T.; Zhao, Y.; Deising, H.B.; Kumlehn, J.; Schweizer, P. Host-Induced Silencing of Fusarium culmorum Genes Protects Wheat from Infection. J. Exp. Bot. 2016, 67, 4979–4991. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.-H. Host-Induced Gene Silencing of Cytochrome P450 Lanosterol C14 -Demethylase-Encoding Genes Confers Strong Resistance to Fusarium Species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; et al. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef]
- Cheng, W.; Song, X.-S.; Li, H.-P.; Cao, L.-H.; Sun, K.; Qiu, X.-L.; Xu, Y.-B.; Yang, P.; Huang, T.; Zhang, J.-B.; et al. Host-Induced Gene Silencing of an Essential Chitin Synthase Gene Confers Durable Resistance to Fusarium Head Blight and Seedling Blight in Wheat. Plant Biotechnol. J. 2015, 13, 1335–1345. [Google Scholar] [CrossRef]
- Werner, B.; Gaffar, F.Y.; Biedenkopf, D.; Koch, A. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance. bioRxiv 2019, 821868. [Google Scholar] [CrossRef]
- Jiao, J.; Peng, D. Wheat MicroRNA1023 Suppresses Invasion of Fusarium graminearum via Targeting and Silencing FGSG_03101. J. Plant Interact 2018, 13, 514–521. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Zhang, R.; Zhao, J.; Qi, T.; Kang, Z.; Guo, J. Host-Induced Silencing of Fusarium graminearum Genes Enhances the Resistance of Brachypodium distachyon to Fusarium Head Blight. Front. Plant Sci. 2019, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Höfle, L.; Biedenkopf, D.; Werner, B.T.; Shrestha, A.; Jelonek, L.; Koch, A. Study on the Efficiency of dsRNAs with Increasing Length in RNA-Based Silencing of the Fusarium CYP51 Genes. RNA. Biol. 2020, 17, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Gaffar, F.Y.; Imani, J.; Karlovsky, P.; Koch, A.; Kogel, K.-H. Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen Fusarium graminearum. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Host-Induced Post-Transcriptional Hairpin RNA-Mediated Gene Silencing of Vital Fungal Genes Confers Efficient Resistance against Fusarium Wilt in Banana. Plant Biotechnol. J. 2014, 12, 541–553. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Angelo, P.C.S.; Cruz, J.C.; Santos, J.M.M.; Sousa, N.R.; Silva, G.F. Post-Transcriptional Silencing of the SGE1 Gene Induced by a dsRNA Hairpin in Fusarium oxysporum f. sp. cubense, the Causal Agent of Panama Disease. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Hu, Z.; Parekh, U.; Maruta, N.; Trusov, Y.; Botella, J.R. Down-Regulation of Fusarium oxysporum Endogenous Genes by Host-Delivered RNA Interference Enhances Disease Resistance. Front. Chem. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Dou, T.; Shao, X.; Hu, C.; Liu, S.; Sheng, O.; Bi, F.; Deng, G.; Ding, L.; Li, C.; Dong, T.; et al. Host-Induced Gene Silencing of Foc TR4 ERG6/11 Genes Exhibits Superior Resistance to Fusarium Wilt of Banana. Plant Biotechnol. J. 2020, 18, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Bharti, P.; Jyoti, P.; Kapoor, P.; Sharma, V.; Shanmugam, V.; Yadav, S.K. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato. Mol. Biotechnol. 2017, 59, 343–352. [Google Scholar] [CrossRef]
- Singh, N.; Mukherjee, S.K.; Rajam, M.V. Silencing of the Ornithine Decarboxylase Gene of Fusarium oxysporum f. sp. lycopersici by Host-Induced RNAi Confers Resistance to Fusarium Wilt in Tomato. Plant Mol. Biol. Rep. 2020. [Google Scholar] [CrossRef]
- Tinoco, M.; Dias, B.B.; Dall’Astta, R.C.; Pamphile, J.A.; Aragão, F.J. In Vivo Trans-Specific Gene Silencing in Fungal Cells by in Planta Expression of a Double-Stranded RNA. BMC Biol. 2010, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, MA, USA, 2005. [Google Scholar]
- Rauwane, M.E.; Ogugua, U.V.; Kalu, C.M.; Ledwaba, L.K.; Woldesemayat, A.A.; Ntushelo, K. Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020, 8, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.C.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhou, S.; et al. The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genet. 2009, 5, e1000618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazan, K.; Gardiner, D.M.; Manners, J.M. On the Trail of a Cereal Killer: Recent Advances in Fusarium graminearum Pathogenomics and Host Resistance. Mol. Plant. Pathol. 2012, 13, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, M.C.; Valent, B. Filamentous Plant Pathogen Effectors in Action. Nat. Rev. Microbiol. 2013, 11, 800–814. [Google Scholar] [CrossRef]
- Rovenich, H.; Boshoven, J.C.; Thomma, B.P. Filamentous Pathogen Effector Functions: Of Pathogens, Hosts and Microbiomes. Curr. Opin. Plant Biol. 2014, 20, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Koeck, M.; Hardham, A.R.; Dodds, P.N. The Role of Effectors of Biotrophic and Hemibiotrophic Fungi in Infection: Effectors of Biotrophic Fungi. Cell. Microbiol. 2011, 13, 1849–1857. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium Pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Dong, S.; Raffaele, S.; Kamoun, S. The Two-Speed Genomes of Filamentous Pathogens: Waltz with Plants. Curr. Opin. Genet. Devel. 2015, 35, 57–65. [Google Scholar] [CrossRef]
- Lysenko, A.; Urban, M.; Bennett, L.; Tsoka, S.; Janowska-Sejda, E.; Rawlings, C.J.; Hammond-Kosack, K.E.; Saqi, M. Network-Based Data Integration for Selecting Candidate Virulence Associated Proteins in the Cereal Infecting Fungus Fusarium graminearum. PLoS ONE 2013, 8, e67926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idnurm, A.; Howlett, B.J. Pathogenicity Genes of Phytopathogenic Fungi. Mol. Plant. Pathol. 2001, 2, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Möbius, N.; Hertweck, C. Fungal Phytotoxins as Mediators of Virulence. Curr. Opin. Plant Biol. 2009, 12, 390–398. [Google Scholar] [CrossRef] [PubMed]
- de Wit, P.J.G.M. How Plants Recognize Pathogens and Defend Themselves. Cell. Mol. Life Sci. 2007, 64, 2726–2732. [Google Scholar] [CrossRef] [PubMed]
- Michielse, C.B.; van Wijk, R.; Reijnen, L.; Cornelissen, B.J.; Rep, M. Insight into the Molecular Requirements for Pathogenicity of Fusarium oxysporum f. sp. lycopersici through Large-Scale Insertional Mutagenesis. Genome Biol. 2009, 10, R4. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, A.; García-Maceira, F.I.; Méglecz, E.; Roncero, M.I.G. A MAP Kinase of the Vascular Wilt Fungus Fusarium oxysporum Is Essential for Root Penetration and Pathogenesis: Fusarium MAPK Is Essential for Pathogenesis. Mol. Microbiol. 2004, 39, 1140–1152. [Google Scholar] [CrossRef]
- Jain, S.; Akiyama, K.; Mae, K.; Ohguchi, T.; Takata, R. Targeted Disruption of a G Protein α Subunit Gene Results in Reduced Pathogenicity in Fusarium oxysporum. Curr. Genet. 2002, 41, 407–413. [Google Scholar] [CrossRef]
- Jain, S.; Akiyama, K.; Kan, T.; Ohguchi, T.; Takata, R. The G Protein β Subunit FGB1 Regulates Development and Pathogenicity in Fusarium oxysporum. Curr. Genet. 2003, 43, 79–86. [Google Scholar] [CrossRef]
- Jain, S.; Akiyama, K.; Takata, R.; Ohguchi, T. Signaling via the G Protein α Subunit FGA2 Is Necessary for Pathogenesis in Fusarium oxysporum. FEMS Microbiol. Lett. 2005, 243, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.; Sahgal, M.; Johri, B.N. Fusarium oxysporum: Genomics, Diversity and Plant–Host Interaction. In Developments in Fungal Biology and Applied Mycology; Satyanarayana, T., Deshmukh, S.K., Johri, B.N., Eds.; Springer: Singapore, 2017; pp. 159–199. [Google Scholar] [CrossRef]
- Shang, Y.; Xiao, G.; Zheng, P.; Cen, K.; Zhan, S.; Wang, C. Divergent and Convergent Evolution of Fungal Pathogenicity. Genome Biol. Evol. 2016, 8, 1374–1387. [Google Scholar] [CrossRef] [Green Version]
- Ilgen, P.; Maier, F.; Schäfer, W. Trichothecenes and Lipases Are Host-Induced and Secreted Virulence Factors of Fusarium graminearum. Cereal Res. Comm. 2008, 36, 421–428. [Google Scholar] [CrossRef]
- Voigt, C.A.; Schäfer, W.; Salomon, S. A Secreted Lipase of Fusarium graminearum is a Virulence Factor Required for Infection of Cereals: Lipase as a Virulence Factor. Plant J. 2005, 42, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Salomon, S.; Gácser, A.; Frerichmann, S.; Kröger, C.; Schäfer, W.; Voigt, C.A. The Secreted Lipase FGL1 Is Sufficient to Restore the Initial Infection Step to the Apathogenic Fusarium graminearum MAP Kinase Disruption Mutant Δgpmk1. Eur. J. Plant Pathol. 2012, 134, 23–37. [Google Scholar] [CrossRef]
- van der Does, H.C.; Fokkens, L.; Yang, A.; Schmidt, S.M.; Langereis, L.; Lukasiewicz, J.M.; Hughes, T.R.; Rep, M. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes. PLoS Genet. 2016, 12, e1006401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño-Sánchez, J.; Casado-Del Castillo, V.; Tello, V.; De Vega-Bartol, J.J.; Ramos, B.; Sukno, S.A.; Díaz Mínguez, J.M. The FTF Gene Family Regulates Virulence and Expression of SIX Effectors in Fusarium oxysporum. Mol. Plant. Pathol. 2016, 17, 1124–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M. Exchange of Core Chromosomes and Horizontal Transfer of Lineage-Specific Chromosomes in Fusarium oxysporum: Chromosome Transfer and Exchange in F. oxysporum. Environ. Microbiol. 2016, 18, 3702–3713. [Google Scholar] [CrossRef]
- Covert, S.F. Supernumerary Chromosomes in Filamentous Fungi. Curr. Genet. 1998, 33, 311–319. [Google Scholar] [CrossRef]
- Temporini, E.; van Etten, D.; Hans, D. An Analysis of the Phylogenetic Distribution of the Pea Pathogenicity Genes of Nectria haematococca MPVI Supports the Hypothesis of Their Origin by Horizontal Transfer and Uncovers a Potentially New Pathogen of Garden Pea: Neocosmospora boniensis. Curr. Genet. 2004, 46. [Google Scholar] [CrossRef]
- Croll, D.; McDonald, B.A. The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens. PLoS Pathog. 2012, 8, e1002608. [Google Scholar] [CrossRef] [Green Version]
- Proctor, R.H.; Hohn, T.M.; McCormick, S.P. Reduced Virulence of Gibberella zeae Caused by Disruption of a Trichothecene Toxin Biosynthetic Gene. Mol. Plant Microbe Interact. 1995, 8, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.-H.; Desjardins, A.E.; Plattner, R.D. Deoxynivalenol-Nonproducing Fusarium graminearum Causes Initial Infection, but Does Not Cause Disease Spread in Wheat Spikes. Mycopathologia 2002, 153, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.S.; Kistler, H.C. Pathogenicity and In Planta Mycotoxin Accumulation among Members of the Fusarium graminearum Species Complex on Wheat and Rice. Phytopathology 2005, 95, 1397–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmond, O.J.; Manners, J.M.; Stephens, A.E.; Maclean, D.J.; Schenk, P.M.; Gardiner, D.M.; Munn, A.L.; Kazan, K. The Fusarium Mycotoxin Deoxynivalenol Elicits Hydrogen Peroxide Production, Programmed Cell Death and Defence Responses in Wheat. Mol. Plant. Pathol. 2008, 9, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, A.; Proctor, R.H.; Kim, H.-S.; Brown, D.W.; Logrieco, A.F.; Amatulli, M.T.; Moretti, A.; Susca, A. Variation in Secondary Metabolite Production Potential in the Fusarium Incarnatum-Equiseti Species Complex Revealed by Comparative Analysis of 13 Genomes. BMC Genomics 2019, 20, 314. [Google Scholar] [CrossRef]
- Hoogendoorn, K.; Barra, L.; Waalwijk, C.; Dickschat, J.S.; van der Lee, T.A.J.; Medema, M.H. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium. Front. Microbiol. 2018, 9, 1158. [Google Scholar] [CrossRef] [Green Version]
- Amarasinghe, C.C.; Fernando, W.G.D. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Jansen, C.; von Wettstein, D.; Schafer, W.; Kogel, K.-H.; Felk, A.; Maier, F.J. Infection Patterns in Barley and Wheat Spikes Inoculated with Wild-Type and Trichodiene Synthase Gene Disrupted Fusarium graminearum. Proc. Nat. Acad. Sci. USA 2005, 102, 16892–16897. [Google Scholar] [CrossRef] [Green Version]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 CYP51, a P450 in all biological kingdoms. BBA Gen. Subj. 2007, 177, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Sun, Y.; Chen, W.; Liu, W.; Wan, Z.; Bu, D.; Li, R. The T788G Mutation in the Cyp51C Gene Confers Voriconazole Resistance in Aspergillus flavus Causing Aspergillosis. Antimicrob. Agents Chemother. 2012, 56, 2598–2603. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Kumar, R.; Kumar, N.; Masih, A.; Gupta, D.; Chowdhary, A. Investigation of Multiple Resistance Mechanisms in Voriconazole-Resistant Aspergillus flavus Clinical Isolates from a Chest Hospital Surveillance in Delhi, India. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, A.K.; Brown, N.A.; Urban, M.; Kanyuka, K.; Hammond-Kosack, K.E. RNAi as an Emerging Approach to Control Fusarium Head Blight Disease and Mycotoxin Contamination in Cereals. Pest. Manag. Sci. 2018, 74, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paper, J.M.; Scott-Craig, J.S.; Adhikari, N.D.; Cuomo, C.A.; Walton, J.D. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 2007, 17, 3171–3183. [Google Scholar] [CrossRef] [PubMed]
- Panwar, V. RNA Silencing Approaches for Identifying Pathogenicity and Virulence Elements towards Engineering Crop Resistance to Plant Pathogenic Fungi. CAB Rev. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Cangelosi, B.; Curir, P.; Beruto, M.; Monroy, F.; Borriello, R.; Beruto, M. Protective Effects of Arbuscular Mycorrhizae against Fusarium oxysporum f. sp. ranunculi in Ranunculus asiaticus Cultivations for Flower Crop. J. Hort. Sci. Res. 2017, 1. [Google Scholar]
- Haque, S.I.; Matsubara, Y. Arbuscular-Mycorrhiza-Induced Salt Tolerance and Resistance to Fusarium Root Rot in Asparagus Plants. Acta Hortic. 2018, 1227, 365–372. [Google Scholar] [CrossRef]
- Meddich, A.; Ait El Mokhtar, M.; Bourzik, W.; Mitsui, T.; Baslam, M.; Hafidi, M. Optimizing Growth and Tolerance of Date Palm (Phoenix Dactylifera L.) to Drought, Salinity, and Vascular Fusarium-Induced Wilt (Fusarium oxysporum) by Application of Arbuscular Mycorrhizal Fungi (AMF). In Root Biology; Giri, B., Prasad, R., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2018; pp. 239–258. [Google Scholar] [CrossRef]
- Olowe, O.M.; Olawuyi, O.J.; Sobowale, A.A.; Odebode, A.C. Role of Arbuscular Mycorrhizal Fungi as Biocontrol Agents against Fusarium verticillioides Causing Ear Rot of Zea mays L. (Maize). Curr. Plant Biol. 2018, 15, 30–37. [Google Scholar] [CrossRef]
- Dehariya, K.; Shukla, A.; Sheikh, I.A.; Vyas, D. Trichoderma and Arbuscular Mycorrhizal Fungi Based Biocontrol of Fusarium udum Butler and Their Growth Promotion Effects on Pigeon Pea. J. Agric. Sci. Tech. 2015, 17, 505–517. [Google Scholar]
- Peek, A.S.; Behlke, M.A. Design of Active Small Interfering RNAs. Curr. Opin. Mol. Ther. 2007, 9, 110–118. [Google Scholar]
- Shabalina, S.; Koonin, E. Origins and Evolution of Eukaryotic RNA Interference. Trend. Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Pumplin, N.; Voinnet, O. RNA Silencing Suppression by Plant Pathogens: Defence, Counter-Defence and Counter-Counter-Defence. Nat. Rev. Microbiol. 2013, 11, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Nicolás, F.E.; Torres-Martínez, S.; Ruiz-Vázquez, R.M. Loss and Retention of RNA Interference in Fungi and Parasites. PLoS Pathog. 2013, 9, e1003089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.; Hulbert, S. Host Induced Gene Silencing (HIGS), A Promising Strategy for Developing Disease Resistant Crops. Gene Technol. 2015, 4, 130. [Google Scholar] [CrossRef] [Green Version]
Database and Website | Usage | Reference |
---|---|---|
PHI-base - Pathogen-Host Interaction database http://www.phi-base.org/ | PHI-base is a web-accessible database that catalogues experimentally verified pathogenicity, virulence, and effector genes from fungal, oomycete, and bacterial pathogens. PHI-base is invaluable to the discovery of genes of pathogens, which may be potential targets for chemical and/or other intervention. In collaboration with the FRAC (Fungicide Resistance Action Committee) team, PHI-base also includes antifungal compounds and their target genes. | [57,58] |
DFVF—Database of virulence factors in fungal pathogens http://sysbio.unl.edu/DFVF/ | Experimental biologists and computational biologists can use the database and/or the predicted virulence factors to guide their search for new virulence factors and/or discovery of new pathogen–host interaction mechanisms in fungi. | [59] |
EnsemblFungi https://fungi.ensembl.org/index.html | Ensembl Fungi is a browser for fungal genomes. A majority of these are taken from the databases of the International Nucleotide Sequence Database Collaboration. Data can be visualised through the Ensembl genome browser. | [60] |
FungiDB: Fungi Database https://fungidb.org/fungidb/ | FungiDB belongs to the EuPathDB family of databases and integrates whole-genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining. | [61,62] |
JGI—MycoCosm https://mycocosm.jgi.doe.gov/mycocosm/home | MycoCosm enables users to navigate across sequenced fungal genomes and to conduct comparative and genome-centric analyses of fungi and community annotation “The 1000 fungal genomes project”. | [63,64] |
JGI—GOLD—Genomes Online Database https://gold.jgi.doe.gov/ | A manually curated data-management system that catalogues sequencing projects with associated metadata from around the world. GOLD provides a seamless interface with the Integrated Microbial Genomes (IMG) system and supports and promotes the Genomic Standards Consortium (GSC) minimum information standards. | [65] |
CFGP—Comparative Fungal Genomics Platform http://cfgp.riceblast.snu.ac.kr/main.php | The CFGP 2.0 (Comparative Fungal Genomics Platform): The CFGP interactive informatics workbench has an archive of 283 genomes corresponding to 152 fungal and oomycete species; 27 bioinformatics tools are available for users. | [66] |
Fungal Pathogen Genomics https://coursesandconferences.wellcomegenomecampus.org/our-events/fungal-pathogen-genomics | Hands-on training in web-based, data-mining resources for fungal genomes. Comparative genomics, gene trees, whole-genome alignment; identification of orthologs and orthology-based inference; genome browsers and gene pages; RNA-Seq analysis and visualization in VEuPathDB Galaxy; variant calling analysis; development of advanced biologically relevant queries using FungiDB; and introduction to annotation and curation of fungal genomes. | Wellcome Genome Campus, Cambridge, UK |
Species | Gene Target | Gene Function | Host | Year Reported | Reference |
---|---|---|---|---|---|
F. culmorum | FcFgl1a | Secreted lipase | Wheat | 2016 | [91] |
FcFmk1a | Mitogen-activated protein (MAP) kinase | Wheat | 2016 | [91] | |
FcGls1a | Beta-1,3-glucan synthase | Wheat | 2016 | [91] | |
FcChsVa | Chitin synthase | Wheat | 2016 | [91] | |
FcChsVa | Chitin synthase V, myosin-motor domain | Wheat | 2016 | [91] | |
F. graminearum | CYP51a | Cytochrome P459 lanosterol C-14-alpha demethylase | Arabidopsis thaliana; Barley | 2013 | [92] |
FgCYP51A; FgCYP51; FgCYP51C1 | Cytochrome P459 lanosterol C-14-alpha demethylase | Barley | 2016 | [93] | |
Chs3bb | Chitin synthase | Wheat | 2015 | [94] | |
F. graminearum | AGO; DCL1 | ARGONAUTE; DICER | Barley | 2019 | [95] |
F. graminearum | FGSG_03101a | alpha/beta hydrolase | Wheat | 2018 | [96] |
F. graminearum | Fg00677; Fg08731 | Protein kinase | Brachypodium distachyon | 2019 | [97] |
FgCYP51A; FgCYP51; FgCYP51C | Cytochrome P450 lanosterol C-14-alpha demethylase | Brachypodium distachyon | 2019 | [97] | |
F. graminearum | FgCYP51A; FgCYP51; FgCYP51C | Cytochrome P459 lanosterol C-14-alpha demethylase | Arabidopsis thaliana | 2019 | [98] |
F. graminearum | FgDCL1, FgDCL2 | Dicer-like proteins | Wheat | 2019 | [99] |
FgAGO1, FgAGO2 | ARGONAUTE 1 and 2 | Wheat | 2019 | [99] | |
FgQDE3 | RecQ helicase | Wheat | 2019 | [99] | |
FgQIP | AGO-interacting protein | Wheat | 2019 | [99] | |
FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4 | RNA-dependent RNA polymerases | Wheat | 2019 | [99] | |
F. oxysporum f. sp. cubense | Velvet | Transcription factor | Banana | 2014 | [100] |
ftf1 | Fusarium transcription factor 1 | Banana | 2014 | [100] | |
F. oxysporum f. sp. cubense | SGE1 | SIX (Secreted In Xylem) Gene Expression 1 | Banana | 2016 | [101] |
F. oxysporum f. sp. conglutinan | FRP1 | F-box protein | Arabidopsis thaliana | 2015 | [102] |
F. oxysporum f. sp. conglutinans | ERG6/11 | Ergosterol biosynthetic genes | Banana | 2020 | [103] |
F. oxysporum | FOW2 | Zn(II)2Cys6 family putative transcription regulator | Tomato | 2017 | [104] |
ChsV | Chitin synthase V, myosin-motor domain | Tomato | 2017 | [104] | |
F. oxysporum f. sp. lycopersici | ODC | Ornithine decarboxylase; Polyamine (PA) biosynthesis | Tomato | 2020 | [105] |
F. verticilloides | GUSa | Reporter gene—proof of concept | Tobacco | 2010 | [106] |
Gene | Gene Function | Species | Host Species (Common Name) |
---|---|---|---|
FcRav2 | Regulator—trichothecene type B biosynthesis | F. culmorum | Triticum aestivum (bread wheat) |
FSR1 | Putative signaling scaffold protein | F. fujikuroi | Zea mays (maize) |
FgGT2 | Glycosyltransferase | F. graminearum | T. aestivum (bread wheat) |
MGV1 | Mitogen-activated protein kinase (MAPK) | F. graminearum | Triticum (wheat); Solanum lycopersicum (tomato) |
MAP1 (GPMK1) | Mitogen-activated protein kinase (MAPK) | F. graminearum | Triticum (wheat); T. aestivum (bread wheat); Glycine max (soybean); A. thaliana; S. lycopersicum (tomato) |
STE7 | Mitogen-activated protein kinase (MAPK) | F. graminearum | Triticum (wheat); S. lycopersicum (tomato) |
STE11 | Mitogen-activated protein kinase (MAPK) | F. graminearum | Triticum (wheat); S. lycopersicum (tomato) |
Fgrab6; Fgrab7; Fgrab8; Fgrab51; Fgrab52 | Rab GTPases | F. graminearum | T. aestivum (bread wheat) |
ACL1 | Adenosine triphosphate (ATP) citrate lyase | F. graminearum | Triticum (wheat) |
ACL2 | Adenosine triphosphate (ATP) citrate lyase | F. graminearum | Triticum (wheat) |
CPK1 | cAMP-dependent protein kinase A (PKA) | F. graminearum | T. aestivum (bread wheat); Z. mays (maize) |
CPK2 | cAMP-dependent protein kinase A (PKA) | F. graminearum | T. aestivum (bread wheat); Z. mays (maize) |
FgSte50 | Mitogen-activated protein kinase (MAPK) | F. graminearum | T. aestivum (bread wheat) |
Fgk3 | Glycogen synthase kinase | F. graminearum | T. aestivum (bread wheat) |
cdc2A | Cell cycle progression | F. graminearum | T. aestivum (bread wheat) |
ScOrtholog_YVH1 | Uncharacterized protein | F. graminearum | T. aestivum (bread wheat) |
FgVam7 | Regulator in cellular differentiation and virulence | F. graminearum | T. aestivum (bread wheat); S. lycopersicum (tomato) |
Fg02025 (FgArb1) | ATP-binding cassette (ABC) transporter | F. graminearum | T. aestivum (bread wheat); Z. mays (maize) |
FGA2 | G alpha protein subunit | F. oxysporum | S. lycopersicum (tomato) |
FRP1 | F-box protein | F. oxysporum | S. lycopersicum (tomato) |
FOW2 | Putative Zn finger transcription factor | F. oxysporum | Cucumis melo (muskmelon); S. lycopersicum (tomato) |
Fgb1 | G-protein subunit | F. oxysporum | S. lycopersicum (tomato) |
fmk1 | Mitogen-activated protein kinase (MAPK) | F. oxysporum | S. lycopersicum (tomato); Malus domestica (apple) |
chsV | Class V chitin synthase | F. oxysporum | S. lycopersicum (tomato) |
FolCzf1 | C2H2 transcription factor in fusaric acid biosynthesis | F. oxysporum | S. lycopersicum (tomato) |
Msb2 | Transmembrane protein | F. oxysporum | S. lycopersicum (tomato); M. domestica (apple) |
CMLE | 3-carboxy- cis, cis-muconate lactonizing enzyme | F. oxysporum | S. lycopersicum (tomato) |
con7-1 | Transcription factor | F. oxysporum | S. lycopersicum (tomato) |
FvVE1 | Biosynthesis of mycotoxins and other secondary metabolites | F. verticillioides | Z. mays (maize) |
FSR1 | Fungal virulence and sexual mating | F. verticillioides | Z. mays (maize) |
FvSO | WW domain protein required for growth | F. verticillioides | Z. mays (maize) |
FvSTR1 | Mitogen-activated protein kinase (MAPK) | F. virguliforme | G. max (soybean) |
Gene | Gene Function | Species | Host Species (Common Name) |
---|---|---|---|
FaTuA1 | alpha-tubulin | F. asiaticum | Triticum aestivum ( bread wheat) |
FaCdc3; FaCdc12 | Septin | F. asiaticum | T. aestivum ( bread wheat) |
Famfs1 | Phenamacril-resistance related gene | F. asiaticum | T. aestivum ( bread wheat) |
Myo5 | Myosin | F. asiaticum | T. aestivum ( bread wheat) |
FaDHDPS1 | Dihydrodipicolinate synthase— deoxynivalenol synthesis | F. asiaticum | T. aestivum ( bread wheat) |
FcABC1 | ABC transporter | F. culmorum | Triticum ( wheat) |
SET1 (FFUJ_02475) | H3K4-specific histone methyltransferase | F. fujikuroi | Oryza sativa (rice) |
ARG1 | Argininosuccinate lyase | F. oxysporum | Solanum lycopersicum (tomato) |
FGB1 | G beta protein subunit | F. oxysporum | S. lycopersicum (tomato) |
CHS2 | Chitin Synthase | F. oxysporum | S. lycopersicum (tomato) |
CHS7 | Chitin Synthase | F. oxysporum | S. lycopersicum (tomato) |
SGE1 | Transcriptional regulator—morphological switching | F. oxysporum | S. lycopersicum (tomato) |
FGA1 | G alpha protein subunit | F. oxysporum | S. lycopersicum (tomato) |
FOW1 | Mitochondrial carrier protein | F. oxysporum | S. lycopersicum (tomato) |
foSNF1 | Protein kinase | F. oxysporum | Brassica oleracea |
GAS1 | Beta-1,3-glucanosyltransferase | F. oxysporum | S. lycopersicum (tomato) |
FOXG_00016 | Homology to Velvet family | F. oxysporum | Solanum peruvianum (peruvian tomato) |
tom1 | Tomatinase | F. oxysporum | S. lycopersicum (tomato) |
Snt2 | BAH/PHD-containing transcription factor | F. oxysporum | Cucumis melo (muskmelon) |
Ctf1; Ctf2 | Transcriptional activator – cutinase/lipase | F. oxysporum | S. lycopersicum (tomato) |
FoEBR1 | putative transcription factor | F. oxysporum | S. lycopersicum (tomato) |
FVS1 | WCMC-4_G03-encoding gene | F. oxysporum | C. melo (muskmelon) |
FoOCH1 | putative a-1,6-mannosyltransferase | F. oxysporum | Musa x paradisiaca (banana) |
AreA | Global nitrogen regulator | F. oxysporum | S. lycopersicum (tomato) |
Sho1 | Tetraspan transmembrane protein | F. oxysporum | S. lycopersicum (tomato) |
Msb2 | mucin-like membrane protein | F. oxysporum | S. lycopersicum (tomato) |
Fbp1 | F-box protein | F. oxysporum | S. lycopersicum (tomato) |
FoMkk2 | Mitogen-activated protein kinase (MAPK) | F. oxysporum | Musa acuminata (dwarf banana) |
FoBck1 | Mitogen-activated protein kinase (MAPK) | F. oxysporum | M. acuminata (dwarf banana) |
pg1 | Endopolygalacturonase | F. oxysporum | S. lycopersicum (tomato) |
pgx6 | Exopolygalacturonase | F. oxysporum | S. lycopersicum (tomato) |
GLX | CWP2 antigen | F. oxysporum | Triticum aestivum (bread wheat) |
fmk1 | Mitogen-activated protein kinase (MAPK) | F. oxysporum | S. lycopersicum (tomato) |
mpk1 | Mitogen-activated protein kinase (MAPK) | F. oxysporum | S. lycopersicum (tomato) |
GPABC1 | ABC transporter | F. sambucinum | Solanum tuberosum (potato) |
CSN1 | Chitosanase | F. solani | Pisum sativum (pea) |
TRI Gene | Protein Encoded | Species | Host Species |
---|---|---|---|
TRI5 | Trichodiene synthase | F. graminearum | Secale cereale (rye); Triticum (wheat); Triticum aestivum; (bread wheat); Glycine max (soybean) |
TRI5 | Trichodiene synthase | F. pseudograminearum | Triticum aestivum (bread wheat) |
TRI6 | Transcription regulator - Zinc finger C2H2 superfamily | F. graminearum | Triticum aestivum (bread wheat) |
TRI10 | Transcription regulator - Zinc finger C2H2 superfamily | F. graminearum | Triticum (wheat) |
TRI12 | Trichothecene efflux pump, transmembrane transporter | F. graminearum | T. aestivum (bread wheat) |
TRI14 | Putative trichothecene biosynthesis protein | F. graminearum | T. aestivum (bread wheat) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rampersad, S.N. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020, 9, 340. https://doi.org/10.3390/pathogens9050340
Rampersad SN. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. 2020; 9(5):340. https://doi.org/10.3390/pathogens9050340
Chicago/Turabian StyleRampersad, Sephra N. 2020. "Pathogenomics and Management of Fusarium Diseases in Plants" Pathogens 9, no. 5: 340. https://doi.org/10.3390/pathogens9050340
APA StyleRampersad, S. N. (2020). Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens, 9(5), 340. https://doi.org/10.3390/pathogens9050340