Development and Challenges in Animal Tuberculosis Vaccination
Abstract
:1. History and Evolution of Tuberculosis Vaccination
2. Types of Vaccines
2.1. Live Attenuated BCG
2.2. Inactivated Vaccines
3. Dose and Frequency of Vaccination
4. Characteristics of a Good Vaccine
4.1. Vaccine Stability and Safety
4.2. Limited Excretion and Vaccine Survival
4.3. Lack of Interference with Diagnostic Tests
4.4. Delivery of Vaccine with Emphasis on Oral Bait Deployment
5. Efficacy of Vaccination
5.1. Pathology and Microbiologic Examination
5.2. Immune Response
6. Trials in Domestic Animals
6.1. Cattle
6.2. Goat
6.3. Sheep
6.4. Pig
7. Trials in Wildlife
7.1. Cervids
7.2. Wild Boar
7.3. Badger
7.4. Brushtail Possum
7.5. African Buffalo
7.6. Ferrets
8. Conclusions and Future Research Priorities
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg. 2017, 58, E9–E12. [Google Scholar] [PubMed]
- Gherardi, E. The Concept of Immunity. History and Applications. Immunol. Course Med. Sch. Univ. Pavia. 2007. Available online: http://nfs.unipv.it/nfs/minf/dispense/immunology/immun.html (accessed on 1 April 2020).
- Calmette, A.; Guerin, C.; Bouquet, A.; Negre, L. La vaccination préventive contre la tuberculose par le “BCG”. Am. J. Public Health Nations Health 1928, 18, 1075. [Google Scholar]
- Luca, S.; Mihaescu, T. History of BCG Vaccine. Maedica (Buchar) 2013, 8, 53–58. [Google Scholar] [PubMed]
- Abdallah, A.M.; Behr, M.A. Evolution and Strain Variation in BCG. Adv. Exp. Med. Biol 2017, 1019, 155–169. [Google Scholar] [PubMed]
- Domínguez, L.; Bezos, J. Tuberculosis: Una Enfermedad Compartida entre Hombres y Animales; Catarata: Madrid, Spain, 2014. [Google Scholar]
- Good, M.; Bakker, D.; Duignan, A.; Collins, D.M. The history of in vivo tuberculin testing in bovines: Tuberculosis, a “One health” issue. Front. Vet. Sci. 2018, 5, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, G.; Yockney, I.J.; Whitford, J.; Aldwell, F.E.; Buddle, B.M. Efficacy of oral BCG vaccination in protecting free-ranging cattle from natural infection by Mycobacterium bovis. Vet. Microbiol. 2017, 208, 181–189. [Google Scholar] [CrossRef]
- Buddle, B.M.; Vordermeier, H.M.; Chambers, M.A.; de Klerk-Lorist, L.M. Efficacy and safety of BCG vaccine for control of tuberculosis in domestic livestock and wildlife. Front. Vet. Sci. 2018, 5, 259. [Google Scholar] [CrossRef] [Green Version]
- Conlan, A.J.K.; Vordermeier, M.; de Jong, M.C.; Wood, J.L. The intractable challenge of evaluating cattle vaccination as a control for bovine Tuberculosis. Elife 2018, 7, e27694. [Google Scholar] [CrossRef]
- Chambers, M.A.; Carter, S.P.; Wilson, G.J.; Jones, G.; Brown, E.; Hewinson, R.G.; Vordermeier, M. Vaccination against tuberculosis in badgers and cattle: An overview of the challenges, developments and current research priorities in Great Britain. Vet. Rec. 2014, 175, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Vordermeier, H.M.; Pérez de Val, B.; Buddle, B.M.; Villarreal-Ramos, B.; Jones, G.J.; Hewinson, R.G.; Domingo, M. Vaccination of domestic animals against tuberculosis: Review of progress and contributions to the field of the TBSTEP project. Res. Vet. Sci. 2014, 97, S53–S60. [Google Scholar] [CrossRef]
- Jones, G.J.; Steinbach, S.; Sevilla, I.A.; Garrido, J.M.; Juste, R.; Vordermeier, H.M. Oral vaccination of cattle with heat inactivated Mycobacterium bovis does not compromise bovine TB diagnostic tests. Vet. Immunol. Immunopathol. 2016, 182, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Delgado, I.; Sevilla, I.A.; Romero, B.; Tanner, E.; Barasona, J.A.; White, A.R.; Lurz, P.W.W.; Boots, M.; de la Fuente, J.; Domínguez, L.; et al. Impact of piglet oral vaccination against tuberculosis in endemic free-ranging wild boar populations. Prev. Vet. Med. 2018, 155, 11–20. [Google Scholar]
- Garrido, J.M.; Sevilla, I.A.; Beltrán-Beck, B.; Minguijón, E.; Ballesteros, C.; Galindo, R.C.; Boadella, M.; Lyashchenko, K.P.; Romero, B.; Geijo, M.V.; et al. Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis. PLoS ONE 2011, 6, e24905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nol, P.; Wehtje, M.E.; Bowen, R.A.; Robbe-Austerman, S.; Thacker, T.C.; Lantz, K.; Rhyan, J.C.; Baeten, L.A.; Juste, R.A.; Sevilla, I.A.; et al. Effects of Inactivated Mycobacterium bovis Vaccination on Molokai-Origin Wild Pigs Experimentally Infected with Virulent, M. bovis. Pathogens 2020, 9, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Risalde, M.Á.; Serrano, M.; Sevilla, I.; Geijo, M.; Ortíz, J.A.; Fuertes, M.; Ruíz-Fons, J.F.; de la Fuente, J.; Domínguez, L.; et al. The response of red deer to oral administration of heat-inactivated Mycobacterium bovis and challenge with a field strain. Vet. Microbiol. 2017, 208, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Balseiro, A.; Prieto, J.M.; Álvarez, V.; Lesellier, S.; Davé, D.; Salguero, F.J.; Sevilla, I.A.; Infantes-Lorenzo, J.A.; Garrido, J.M.; Adriaensen, H.; et al. Protective effect of oral BCG and inactivated Mycobacterium bovis vaccines in European badgers (Meles meles) experimentally infected with M. bovis. Front. Vet. Sci. 2020, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Aldwell, F.E.; Pfeffer, A.; De Lisle, G.W.; Jowett, G.; Heslop, J.; Keen, D.; Thomson, A.; Buddle, B.M. Effectiveness of BCG vaccination in protecting possums against bovine tuberculosis. Res. Vet. Sci. 1995, 58, 90–95. [Google Scholar] [CrossRef]
- Buddle, B.M.; Pollock, J.M.; Skinner, M.A.; Wedlock, D.N. Development of vaccines to control bovine tuberculosis in cattle and relationship to vaccine development for other intracellular pathogens. Int. J. Parasitol. 2003, 33, 555–566. [Google Scholar] [CrossRef]
- Hope, J.C.; Thom, M.L.; McAulay, M.; Mead, E.; Vordermeier, H.M.; Clifford, D.; Hewinson, R.G.; Villarreal-Ramos, B. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clin. Vacc. Immun. 2011, 18, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Dean, G.S.; Clifford, D.; Whelan, A.O.; Tchilian, E.Z.; Beverley, P.C.; Salguero, F.J.; Xing, Z.; Vordermeier, H.M.; Villarreal-Ramos, B. Protection induced by simultaneous subcutaneous and endobronchial vaccination with BCG/BCG and BCG/Adenovirus expressing antigen 85A against Mycobacterium bovis in cattle. PLoS ONE 2015, 10, e0142270. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; de Lisle, G.W.; Pfeiffer, A.; Aldwell, F.E. Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine 1995, 13, 1123–1130. [Google Scholar] [CrossRef]
- Pérez de Val, B.; Villarreal-Ramos, B.; Nofrarias, M.; López-Soria, S.; Romera, N.; Singh, M.; Abad, F.X.; Xing, Z.; Vordermeier, H.M.; Domingo, M. Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin. Vaccine Immunol. 2012, 19, 1339–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balseiro, A.; Rodríguez, O.; González-Quirós, P.; Merediz, I.; Sevilla, I.A.; Davé, D.; Dalley, D.J.; Lesellier, S.; Chambers, M.A.; Bezos, J. Infection of Eurasian badgers (Meles meles) with Mycobacterium bovis and Mycobacterium avium complex in Spain. Vet. J. 2011, 190, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, C.; Garrido, J.M.; Vicente, J.; Romero, B.; Galindo, R.C.; Minguijón, E.; Villar, M.; Martín-Hernando, M.P.; Sevilla, I.; Juste, R.; et al. First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine 2009, 27, 6662–6668. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R. Vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis bacillus Calmette Guerín. Vaccine 2007, 25, 6589–6597. [Google Scholar] [CrossRef] [Green Version]
- Griffin, J.F.; Hesketh, J.B.; Mackintosh, C.G.; Shi, Y.E.; Buchan, G.S. BCG vaccination in deer: Distinctions between delayed type hypersensitivity and laboratory parameters of immunity. Immunol. Cell Biol. 1993, 71, 559–570. [Google Scholar] [CrossRef]
- Corner, L.A.; Pfeiffer, D.U.; de Lisle, G.W.; Morris, R.S.; Buddle, B.M. Natural transmission of Mycobacterium bovis infection in captive brushtail possums (Trichosurus vulpecula). N. Z. Vet. J. 2002, 50, 154–162. [Google Scholar] [CrossRef]
- Palmer, M.V.; Waters, W.R.; Thacker, T.C. Vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis bacille Calmette-Guérin (BCG) results in positive tuberculin skin test results in a dose-dependent fashion. Res. Vet. Sci. 2020, 129, 70–73. [Google Scholar] [CrossRef]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R.; Robbe-Austerman, S.; Lebepe-Mazur, S.M.; Harris, N.B. Persistence of Mycobacterium bovis Bacillus Calmette-Guérin in white-tailed deer (Odocoileus Virginianus) after oral or parenteral vaccination. Zoonoses Public Health. 2010, 57, e206–e212. [Google Scholar] [CrossRef]
- Griffin, J.F.; Mackintosh, C.G.; Slobbe, L.; Thomson, A.J.; Buchan, G.S. Vaccine protocols to optimise the protective efficacy of BCG. Tuber Lung Dis. 1999, 79, 135–143. [Google Scholar] [CrossRef]
- Buddle, B.M.; Wedlock, D.N.; Denis, M. Progress in the development of tuberculosis vaccines for cattle and wildlife. Vet. Microbiol. 2006, 112, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.D.; Katoch, V.M. Animal models of tuberculosis for vaccine development. Indian J. Med. Res. 2009, 129, 11–18. [Google Scholar] [PubMed]
- Chambers, M.A. Review of the diagnosis of tuberculosis in non-bovid wildlife species using immunological methods--an update of published work since 2009. Transbound Emerg. Dis. 2013, 60, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Beck, B.; de la Fuente, J.; Garrido, J.M.; Aranaz, A.; Sevilla, I.; Villar, M.; Boadella, M.; Galindo, R.C.; Pérez de la Lastra, J.M.; Moreno-Cid, J.A.; et al. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis. PLoS ONE 2014, 9, e98048. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Beck, B.; Romero, B.; Boadella, M.; Casal, C.; Bezos, J.; Mazariegos, M.; Martín, M.; Galindo, R.C.; Pérez de la Lastra, J.M.; Villar, M.; et al. Tonsils of the soft palate do not mediate the response of pigs to oral vaccination with heat-inactivated Mycobacterium bovis. Clin. Vaccine Immunol. 2014, 21, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Díez-Delgado, I.; Rodríguez, O.; Boadella, M.; Garrido, J.M.; Sevilla, I.A.; Bezos, J.; Juste, R.; Domínguez, L.; Gortázar, C. Parenteral vaccination with heat-inactivated Mycobacterium bovis reduces the prevalence of tuberculosis-compatible lesions in farmed wild boar. Transbound Emerg. Dis. 2017, 64, e18–e21. [Google Scholar] [CrossRef]
- Risalde, M.A.; López, V.; Contreras, M.; Mateos-Hernández, L.; Gortázar, C.; de la Fuente, J. Control of mycobacteriosis in zebrafish (Danio rerio) mucosally vaccinated with heat-inactivated Mycobacterium bovis. Vaccine 2018, 36, 4447–4453. [Google Scholar] [CrossRef]
- Roy, Á.; Risalde, M.A.; Bezos, J.; Casal, C.; Romero, B.; Sevilla, I.; Díez-Guerrier, A.; Rodríguez-Bertos, A.; Domínguez, M.; Garrido, J.; et al. Response of goats to intramuscular vaccination with heat-killed Mycobacterium bovis and natural challenge. Comp. Immunol. Microbiol. Infect. Dis. 2018, 60, 28–34. [Google Scholar] [CrossRef]
- Gonzalo-Asensio, J.; Marinova, D.; Martin, C.; Aguilo, N. MTBVAC: Attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front. Immunol. 2017, 8, 1803. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Hatch, G.J.; Clark, S.O.; Gooch, K.E.; Hatch, K.A.; Hall, G.A.; Huygen, K.; Ottenhoff, T.H.; Franken, K.L.; Andersen, P.; et al. Evaluation of vaccines in the EU TB vaccine cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis 2005, 85, 29–38. [Google Scholar] [CrossRef]
- Martin, C.; Williams, A.; Hernández-Pando, R.; Cardona, P.J.; Gormley, E.; Bordat, Y.; Soto, C.Y.; Clark, S.O.; Hatch, G.J.; Aguilar, D.; et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 2006, 24, 3408–3419. [Google Scholar] [CrossRef] [PubMed]
- Solans, L.; Uranga, S.; Aguilo, N.; Arnal, C.; Gómez, A.B.; Monzon, M.; Badiola, J.J.; Gicquel, B.; Martin, C. Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice. Vaccine 2014, 32, 5192–5197. [Google Scholar] [CrossRef] [PubMed]
- Aguilo, N.; Uranga, S.; Marinova, D.; Monzon, M.; Badiola, J.; Martin, C. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis 2016, 96, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verreck, F.A.; Vervenne, R.A.; Kondova, I.; van Kralingen, K.W.; Remarque, E.J.; Braskamp, G.; van der Werff, N.M.; Kersbergen, A.; Ottenhoff, T.H.; Heidt, P.J.; et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE 2009, 4, e5264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezos, J.; Casal, C.; Álvarez, J.; Roy, A.; Romero, B.; Rodríguez-Bertos, A.; Barcena, C.; Diez, A.; Juste, R.; Gortázar, C.; et al. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats. Vet. J. 2017, 223, 60–67. [Google Scholar] [CrossRef]
- Roy, A.; Tomé, I.; Romero, B.; Lorente-Leal, V.; Infantes-Lorenzo, J.A.; Domínguez, M.; Martín, C.; Aguiló, N.; Puentes, E.; Rodríguez, E.; et al. Evaluation of the immunogenicity and efficacy of BCG and MTBVAC vaccines using a natural transmission model of tuberculosis. Vet. Res. 2019, 50, 82. [Google Scholar] [CrossRef] [Green Version]
- Vordermeier, H.M.; Villareal-Ramos, B.; Cockle, P.J.; McAulay, M.; Rhodes, S.G.; Thacker, T.; Gilbert, S.C.; McShane, H.; Hill, A.V.; Xing, Z.; et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun. 2009, 77, 3364–3373. [Google Scholar] [CrossRef] [Green Version]
- Parlane, N.A.; Shu, D.; Subharat, S.; Wedlock, D.N.; Rehm, B.H.; de Lisle, G.W.; Buddle, B.M. Revaccination of cattle with bacille Calmette-Guérin two years after first vaccination when immunity has waned, boosted protection against challenge with Mycobacterium bovis. PLoS ONE 2014, 9, e106519. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; Wedlock, D.N.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G. Update on vaccination of cattle and wildlife populations against tuberculosis. Vet. Microbiol 2011, 151, 14–22. [Google Scholar] [CrossRef]
- Biffar, L.; Blunt, L.; Atkins, W.; Anderson, P.; Holder, T.; Xing, Z.; Vordermeier, M.; McShane, H.; Villarreal-Ramos, B. Evaluating the sensitivity of the bovine BCG challenge model using a prime boost Ad85A vaccine regimen. Vaccine 2020, 38, 1241–1248. [Google Scholar] [CrossRef]
- Nugent, G.; Yockney, I.J.; Cross, M.L.; Buddle, B.M. Low-dose BCG vaccination protects free-ranging cattle against naturally-acquired bovine tuberculosis. Vaccine 2018, 36, 7338–7344. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.A.; Aldwell, F.; Williams, G.A.; Palmer, S.; Gowtage, S.; Ashford, R.; Dalley, D.J.; Davé, D.; Weyer, U.; Salguero, F.J.; et al. The effect of oral vaccination with Mycobacterium bovis BCG on the development of tuberculosis in captive European badgers (Meles meles). Front. Cell. Infect. Microbiol. 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesellier, S.; Palmer, S.; Dalley, D.J.; Davé, D.; Johnson, L.; Hewinson, R.G.; Chambers, M.A. The safety and immunogenicity of Bacillus Calmette-Guérin (BCG) vaccine in European badgers (Meles meles). Vet. Immunol. Immunopathol. 2006, 112, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Denis, M.; Aldwell, F.E.; Martin Vordermeier, H.; Glyn Hewinson, R.; Neil Wedlock, D. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes. Tuberculosis 2008, 88, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Nol, P.; Lyashchenko, K.P.; Greenwald, R.; Esfandiari, J.; Waters, W.R.; Palmer, M.V.; Nonnecke, B.J.; Keefe, T.J.; Thacker, T.C.; Rhyan, J.C.; et al. Humoral immune responses of white-tailed deer (Odocoileus virginianus) to Mycobacterium bovis BCG vaccination and experimental challenge with M. bovis. Clin. Vaccine Immunol. 2009, 16, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, M.A.; Buddle, B.M.; Wedlock, D.N.; Keen, D.; de Lisle, G.W.; Tascon, R.E.; Ferraz, J.C.; Lowrie, D.B.; Cockle, P.J.; Vordermeier, H.M.; et al. A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect. Immun. 2003, 71, 4901–4917. [Google Scholar] [CrossRef] [Green Version]
- Wedlock, D.N.; Denis, M.; Skinner, M.A.; Koach, J.; de Lisle, G.W.; Vordermeier, H.M.; Hewinson, R.G.; Hecker, R.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; et al. Vaccination of cattle with a CpG oligodeoxynucleotide-formulated mycobacterial protein vaccine and Mycobacterium bovis BCG induces levels of protection against bovine tuberculosis superior to those induced by vaccination with BCG alone. Infect. Immun. 2005, 73, 3540–3546. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Yu, D.H.; Hu, X.D.; Li, S.X.; Zhu, Y.X. A combined DNA vaccine-prime, BCG-boost strategy results in better protection against Mycobacterium bovis challenge. Dna Cell Biol. 2006, 25, 438–447. [Google Scholar] [CrossRef]
- Wedlock, D.N.; Aldwell, F.E.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines. Vet. Immunol. Immunopathol. 2011, 144, 220–227. [Google Scholar] [CrossRef]
- Díez-Delgado, I.; Sevilla, I.A.; Garrido, J.M.; Romero, B.; Geijo, M.V.; Domínguez, L.; Juste, R.A.; Aranaz, A.; de la Fuente, J.; Gortázar, C. Tuberculosis vaccination sequence effect on protection in wild boar. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101329. [Google Scholar] [CrossRef]
- Corner, L.A.L.; Buddle, B.M.; Pfeiffer, D.U.; Morris, R.S. Vaccination of the brushtail possum (Trichosurus vulpecula) against Mycobacterium bovis infection with bacille Calmette-Guerin: The response to multiple doses. Vet. Microbiol. 2002, 84, 327–336. [Google Scholar] [CrossRef]
- Gortázar, C.; Beltrán-Beck, B.; Garrido, J.M.; Aranaz, A.; Sevilla, I.A.; Boadella, M.; Lyashchenko, K.P.; Galindo, R.C.; Montoro, V.; Domínguez, L.; et al. Oral re-vaccination of Eurasian wild boar with Mycobacterium bovis BCG yields a strong protective response against challenge with a field strain. BMC Vet. Res. 2014, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormley, E.; Ní Bhuachalla, D.; O’Keeffe, J.; Murphy, D.; Aldwell, F.E.; Fitzsimons, T.; Stanley, P.; Tratalos, J.A.; McGrath, G.; Fogarty, N.; et al. Oral Vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 2017, 12, e0168851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aznar, I.; Frankena, K.; More, S.J.; O’Keeffe, J.; McGrath, G.; de Jong, M.C.M. Quantification of Mycobacterium bovis transmission in a badger vaccine field trial. Prev. Vet. Med. 2018, 149, 29–37. [Google Scholar] [CrossRef]
- Buddle, B.M.; de Lisle, G.W.; Griffin, J.F.; Hutchings, S.A. Epidemiology, diagnostics, and management of tuberculosis in domestic cattle and deer in New Zealand in the face of a wildlife reservoir. N. Z. Vet. J. 2015, 63, 19–27. [Google Scholar] [CrossRef]
- Ballesteros, C.; Vicente, J.; Morriss, G.; Jockney, I.; Rodríguez, O.; Gortázar, C.; de la Fuente, J. Acceptance and palatability for domestic and wildlife hosts of baits designed to deliver a tuberculosis vaccine to wild boar piglets. Prev. Vet. Med. 2011, 98, 198–203. [Google Scholar] [CrossRef]
- Casades-Martí, L.; Martínez-Guijosa, J.; González-Barrio, D.; Gortázar, C.; Royo-Hernández, L.; Ruiz-Santa-Quiteria, J.A.; Aranaz, A.; Ruiz-Fons, F. Development of bait dispensing strategies in managed environments for the treatment of deer (Cervus elaphus): Are they palatable and selective? In Proceedings of the XIII Congress of the Spanish Society for the Conservation and Study of Mammals (SECEM), Guadalajara, Spain, 6–9 December 2017; p. 24. [Google Scholar]
- Ada, G.L. The ideal vaccine. World J. Microbiol. Biotechnol. 1991, 7, 105–109. [Google Scholar] [CrossRef]
- Aldwell, F.E.; Keen, D.L.; Parlane, N.A.; Skinner, M.A.; de Lisle, G.W.; Buddle, B.M. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in brushtail possums. Vaccine 2003, 22, 70–76. [Google Scholar] [CrossRef]
- Cross, M.L.; Henderson, R.J.; Lambeth, M.R.; Buddle, B.M.; Aldwell, F.E. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: Vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand. J. Wildl. Dis. 2009, 45, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, S.Y.; McHugh, K.J.; Behrens, A.M.; Rose, S.; Sugarman, J.L.; Ferber, S.; Langer, R.; Jaklenec, A. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc. Natl. Acad. Sci. USA 2018, 115, E5269–E5278. [Google Scholar] [CrossRef] [Green Version]
- Arrieta-Villegas, C.; Perálvarez, T.; Vidal, E.; Puighibet, Z.; Moll, X.; Canturri, A.; Sevilla, I.A.; Espada, Y.; Juste, R.A.; Domingo, M.; et al. Efficacy of parenteral vaccination against tuberculosis with heatinactivated Mycobacterium bovis in experimentally challenged goats. PLoS ONE 2018, 13, e0196948. [Google Scholar] [CrossRef] [PubMed]
- Balseiro, A.; Altuzarra, R.; Vidal, E.; Moll, X.; Espada, Y.; Sevilla, I.A.; Domingo, M.; Garrido, J.M.; Juste, R.A.; Prieto, M.; et al. Assessment of BCG and inactivated Mycobacterium bovis vaccines in an experimental tuberculosis infection model in sheep. PLoS ONE 2017, 12, e0180546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, D.; Corner, L.A.; Gormley, E. Adverse reactions to Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination against tuberculosis in humans, veterinary animals and wildlife species. Tuberculosis 2008, 88, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Pérez de Val, B.; Vidal, E.; López-Soria, S.; Marco, A.; Cervera, Z.; Martín, M.; Mercader, I.; Singh, M.; Raeber, A.; Domingo, M. Assessment of safety and interferon-gamma responses of Mycobacterium bovis BCG vaccine in goat kids and milking goats. Vaccine 2016, 34, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Perrett, S.; Lesellier, S.; Rogers, F.; Williams, G.A.; Gowtage, S.; Palmer, S.; Dalley, D.; Davé, D.; Weyer, U.; Wood, E.; et al. Assessment of the safety of Bacillus Calmette-Guérin vaccine administered orally to badgers (Meles meles). Vaccine 2018, 36, 1990–1995. [Google Scholar] [CrossRef]
- Nol, P.; Rhyan, J.C.; Robbe-Austerman, S.; McCollum, M.P.; Rigg, T.D.; Saklou, N.T.; Salman, M.D. The potential for transmission of BCG from orally vaccinated white-tailed deer (Odocoileus virginianus) to cattle (Bos taurus) through a contaminated environment: Experimental findings. PLoS ONE 2013, 8, e60257. [Google Scholar] [CrossRef]
- Lesellier, S.; Boschiroli, M.L.; Barrat, J.; Wanke, C.; Salguero, F.J.; Garcia-Jimenez, W.L.; Nunez, A.; Godinho, A.; Spiropoulos, J.; Palmer, S.; et al. Detection of live M. bovis BCG in tissues and IFN-γ responses in European badgers (Meles meles) vaccinated by oropharyngeal instillation or directly in the ileum. BMC Vet. Res. 2019, 15, 445. [Google Scholar] [CrossRef]
- De Lisle, G.W.; Wilson, T.; Collins, D.M.; Buddle, B.M. Vaccination of guinea pigs with nutritionally impaired avirulent mutants of Mycobacterium bovis protects against tuberculosis. Infect. Immun. 1999, 67, 2624–2626. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, E.M.D.L.; Chileshe, J.; Vernooij, J.C.M.; Gortazar, C.; Juste, R.A.; Sevilla, I.; Crafford, J.E.; Rutten, V.P.M.G.; Michel, A.L. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates. PLoS ONE 2017, 12, e0188448. [Google Scholar] [CrossRef] [Green Version]
- Nol, P.; Robbe-Austerman, S.; Rhyan, J.C.; McCollum, M.P.; Triantis, J.M.; Beltrán-Beck, B.; Salman, M.D. Determining the persistence of Mycobacterium bovis bacille Calmette-Guerin Danish in select tissues of orally vaccinated feral swine (Sus scrofa ssp.). Res. Vet. Sci. 2016, 104, 50–52. [Google Scholar] [CrossRef] [Green Version]
- Bezos, J.; Casal, C.; Romero, B.; Schroeder, B.; Hardegger, R.; Raeber, A.J.; López, L.; Rueda, P.; Domínguez, L. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res. Vet. Sci 2014, 97, S44–S52. [Google Scholar]
- USDA. Bovine Tuberculosis Eradication: Uniform Methods and Rules. USDA: Washington, DC, USA, 2005. Available online: https://www.aphis.usda.gov/animal_health/animal_diseases/tuberculosis/downloads/tb-umr.pdf (accessed on 1 May 2020).
- Whelan, A.O.; Coad, M.; Upadhyay, B.L.; Clifford, D.J.; Hewinson, R.G.; Vordermeier, H.M. Lack of correlation between BCG-induced tuberculin skin test sensitisation and protective immunity in cattle. Vaccine 2011, 29, 5453–5458. [Google Scholar] [CrossRef] [PubMed]
- Bezos, J.; Casal, C.; Puentes, E.; Díez-Guerrier, A.; Romero, B.; Aguiló, N.; de Juan, L.; Martín, C.; Domínguez, L. Evaluation of the immunogenicity and diagnostic interference caused by M. tuberculosis SO2 vaccination against tuberculosis in goats. Res. Vet. Sci. 2015, 103, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.F.; Rodgers, C.R.; Liggett, S.; Mackintosh, C.G. Tuberculosis in ruminants: Characteristics of intra-tonsilar Mycobacterium bovis infection models in cattle and deer. Tuberculosis 2006, 86, 404–418. [Google Scholar] [CrossRef]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R. Vaccination with Mycobacterium bovis BCG strains Danish and Pasteur in white-tailed deer (Odocoileus virginianus) experimentally challenged with Mycobacterium bovis. Zoonoses Public Health. 2009, 56, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Nol, P.; Palmer, M.V.; Waters, W.R.; Aldwell, F.E.; Buddle, B.M.; Triantis, J.M.; Linke, L.M.; Phillips, G.E.; Thacker, T.C.; Rhyan, J.C.; et al. Efficacy of oral and parenteral routes of Mycobacterium bovis bacille Calmette-Guerin vaccination against experimental bovine tuberculosis in white-tailed deer (Odocoileus virginianus): A feasibility study. J. Wildl. Dis. 2008, 44, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesellier, S.; Palmer, S.; Gowtage-Sequiera, S.; Ashford, R.; Dalley, D.; Davé, D.; Weyer, U.; Salguero, F.J.; Nunez, A.; Crawshaw, T.; et al. Protection of Eurasian badgers (Meles meles) from tuberculosis after intra-muscular vaccination with different doses of BCG. Vaccine 2011, 29, 3782–3790. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.A.; Rogers, F.; Delahay, R.J.; Lesellier, S.; Ashford, R.; Dalley, D.; Gowtage, S.; Davé, D.; Palmer, S.; Brewer, J.; et al. Bacillus Calmette-Guérin vaccination reduces the severity and progression of tuberculosis in badgers. Proc. Biol. Sci. 2011, 278, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.P.; Chambers, M.A.; Rushton, S.P.; Shirley, M.D.; Schuchert, P.; Pietravalle, S.; Murray, A.; Rogers, F.; Gettinby, G.; Smith, G.C.; et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 2012, 7, e49833. [Google Scholar] [CrossRef]
- Waters, W.R.; Nonnecke, B.J.; Foote, M.R.; Maue, A.C.; Rahner, T.E.; Palmer, M.V.; Whipple, D.L.; Horst, R.L.; Estes, D.M. Mycobacterium bovis bacille Calmette-Guerin vaccination of cattle: Activation of bovine CD4+ and gamma delta TCR+ cells and modulation by 1,25-dihydroxyvitamin D3. Tuberculosis 2003, 83, 287–297. [Google Scholar] [CrossRef]
- Roy, A.; Risalde, M.A.; Casal, C.; Romero, B.; de Juan, L.; Menshawy, A.M.; Díez-Guerrier, A.; Juste, R.A.; Garrido, J.M.; Sevilla, I.A.; et al. Oral Vaccination with heat-inactivated Mycobacterium bovis does not interfere with the antemortem diagnostic techniques for tuberculosis in goats. Front. Vet. Sci. 2017, 4, 124. [Google Scholar] [CrossRef] [Green Version]
- Corner, L.A.L.; Costello, E.; O’Meara, D.; Lesellier, S.; Aldwell, F.E.; Singh, M.; Hewinson, R.G.; Chambers, M.A.; Gormley, E. Oral vaccination of badgers (Meles meles) with BCG and protective immunity against endobronchial challenge with Mycobacterium bovis. Vaccine 2010, 28, 6265–6272. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.; Costello, E.; Aldwell, F.E.; Lesellier, S.; Chambers, M.A.; Fitzsimons, T.; Corner, L.A.; Gormley, E. Oral vaccination of badgers (Meles meles) against tuberculosis: Comparison of the protection generated by BCG vaccine strains Pasteur and Danish. Vet. J. 2014, 200, 362–367. [Google Scholar] [CrossRef] [PubMed]
- López, V.; González-Barrio, D.; Lima-Barbero, J.F.; Ortiz, J.A.; Domínguez, L.; Juste, R.; Garrido, J.M.; Sevilla, I.A.; Alberdi, P.; de la Fuente, J.; et al. Oral administration of heat-inactivated Mycobacterium bovis reduces the response of farmed red deer to avian and bovine tuberculin. Vet. Immunol. Immunopathol. 2016, 172, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.M.; Andersen, P. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J. Infect. Dis. 1997, 175, 1251–1254. [Google Scholar] [CrossRef]
- Vordermeier, H.M.; Whelan, A.; Cockle, P.J.; Farrant, L.; Palmer, N.; Hewinson, R.G. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin. Diagn. Lab. Immunol. 2001, 8, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Sidders, B.; Pirson, C.; Hogarth, P.J.; Hewinson, R.G.; Stoker, N.G.; Vordermeier, H.M.; Ewer, K. Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect. Immun. 2008, 76, 3932–3939. [Google Scholar] [CrossRef] [Green Version]
- Vordermeier, H.M.; Jones, G.J.; Buddle, B.M.; Hewinson, R.G. Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet. Immunol. Immunopathol. 2016, 181, 10–14. [Google Scholar] [CrossRef]
- Whelan, A.O.; Clifford, D.; Upadhyay, B.; Breadon, E.L.; McNair, J.; Hewinson, G.R.; Vordermeier, M.H. Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J. Clin. Microbiol. 2010, 48, 3176–3181. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.J.; Whelan, A.; Clifford, D.; Coad, M.; Vordermeier, H.M. Improved skin test for differential diagnosis of bovine tuberculosis by the addition of Rv3020c-derived peptides. Clin. Vaccine Immunol. 2012, 19, 620–622. [Google Scholar] [CrossRef]
- Vidal, E.; Arrieta-Villegas, C.; Grasa, M.; Mercader, I.; Domingo, M.; Pérez de Val, B. Field evaluation of the efficacy of Mycobacterium bovis BCG vaccine against tuberculosis in goats. BMC Vet. Res. 2017, 13, 252. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.W.; Chad, R.; Blass, W.; Walter, D.; Anderson, C.W.; Lavelle, M.J.; Hall, W.H.; VerCauteren, K.C. Evaluating a strategy to deliver vaccine to white-tailed deer at a landscape level. Wildl. Soc. Bull. 2016, 40, 394–399. [Google Scholar] [CrossRef]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R.; Robbe-Austerman, S. Oral vaccination of white-tailed deer (Odocoileus virginianus) with Mycobacterium bovis Bacillus Calmette-Guerin (BCG). PLoS ONE 2014, 9, e97031. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; Keen, D.L.; Parlane, N.A.; Hamel, K.L.; Yates, G.F.; Buddle, B.M. Improving protective efficacy of BCG vaccination for wildlife against bovine tuberculosis. Res. Vet. Sci. 2005, 78, 231–236. [Google Scholar] [CrossRef]
- Cross, M.L.; Lambeth, M.R.; Aldwell, F.E. An oral Mycobacterium bovis BCG vaccine for wildlife produced in the absence of animal-derived reagents. Clin. Vaccine Immunol. 2009, 16, 1378–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldwell, F.E.; Cross, M.L.; Fitzpatrick, C.E.; Lambeth, M.R.; de Lisle, G.W.; Buddle, B.M. Oral delivery of lipid-encapsulated Mycobacterium bovis BCG extends survival of the bacillus in vivo and induces a long-term protective immune response against tuberculosis. Vaccine 2006, 24, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Cross, M.L.; Lambeth, M.R.; Coughlan, Y.; Aldwell, F.E. Oral vaccination of mice with lipid-encapsulated Mycobacterium bovis BCG: Effect of reducing or eliminating BCG load on cell-mediated immunity. Vaccine 2007, 25, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Cross, M.L.; Nadian, A.; Vipond, J.; Court, P.; Williams, A.; Hewinson, R.G.; Aldwell, F.E.; Chambers, M.A. Oral vaccination of Guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. Bovis. Infect. Immun. 2008, 76, 3771–3776. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; Aldwell, F.E.; Skinner, M.A.; de Lisle, G.W.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G.; Wedlock, D.N. Effect of oral vaccination of cattle with lipidformulated BCG on immune responses and protection against bovine tuberculosis. Vaccine 2005, 23, 3581–3589. [Google Scholar] [CrossRef]
- Cliquet, F.; Müller, T.; Mutinelli, F.; Geronutti, S.; Brochier, B.; Selhorst, T.; Schereffer, J.L.; Krafft, N.; Burow, J.; Schameitat, A.; et al. Standardisation and establishment of a rabies ELISA test in European laboratories for assessing the efficacy of oral fox vaccination campaigns. Vaccine 2003, 21, 2986–2993. [Google Scholar] [CrossRef]
- Knobel, D.L.; Liebenberg, A.; Du Toit, J.T. Seroconversion in captive African wild dogs (Lycaon pictus) following administration of a chicken head bait/SAG-2 oral rabies vaccine combination. Onderstepoort J. Vet. Res. 2003, 70, 73–77. [Google Scholar]
- Ballesteros, C.; Gortázar, C.; Canales, M.; Vicente, J.; Lasagna, A.; Gamarra, J.A.; Carrasco-García, R.; de La Fuente, J. Evaluation of baits for oral vaccination of European wild boar piglets. Res. Vet. Sci. 2009, 86, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, A.; van Beest, F.M.; Brook, R.K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 2014, 113, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Höfle, U.; Garrido, J.M.; Fernández-de-Mera, I.G.; Acevedo, P.; Juste, R.; Barral, M.; Gortazar, C. Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Vet. Res. 2007, 38, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameni, G.; Vordermeier, M.; Aseffa, A.; Young, D.B.; Hewinson, G. Evaluation of the efficacy of Mycobacterium bovis Bacillus Calmette-Guerin against bovine tuberculosis in neonatal calves in Ethiopia. Clin. Vaccine Immunol. 2010, 17, 1533–1538. [Google Scholar] [CrossRef] [Green Version]
- Ameni, G.; Tafess, K.; Zewde, A.; Eguale, T.; Tilahun, M.; Hailu, T.; Sirak, A.; Salguero, F.J.; Berg, S.; Aseffa, A.; et al. Vaccination of calves with Mycobacterium bovis Bacillus Calmette-Guerin reduces the frequency and severity of lesions of bovine tuberculosis under a natural transmission setting in Ethiopia. Transbound. Emerg. Dis. 2018, 65, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Nugent, G.; Yockney, I.J.; Whitford, E.J.; Cross, M.L.; Aldwell, F.E.; Buddle, B.M. Field trial of an aerially-distributed tuberculosis vaccine in a low-density wildlife population of brushtail possums (Trichosurus vulpecula). PLoS ONE 2016, 11, e0167144. [Google Scholar] [CrossRef]
- McShane, H. Vaccine strategies against tuberculosis. Swiss Med. Wkly. 2009, 139, 156–160. [Google Scholar]
- Pérez de la Lastra, J.M.; Kremer, L.; de la Fuente, J. Recent advances in the development of immunoadhesins for immune therapy and as anti-infective agents. Recent Pat. Antiinfect. Drug Discov. 2009, 4, 183–189. [Google Scholar] [CrossRef]
- De La Fuente, J.; Gortázar, C.; Juste, R. Complement component 3: A new paradigm in tuberculosis vaccine. Expert Rev. Vaccines 2016, 15, 275–277. [Google Scholar] [CrossRef] [Green Version]
- López, V.; Risalde, M.A.; Contreras, M.; Mateos-Hernández, L.; Vicente, J.; Gortázar, C.; de la Fuente, J. Heat-inactivated Mycobacterium bovis protects zebrafish against mycobacteriosis. J. Fish. Dis. 2018, 41, 1515–1528. [Google Scholar] [CrossRef]
- Guerra-Maupome, M.; Vang, D.X.; McGill, J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS ONE 2019, 14, e0212751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, T.M.; Stuart, P. Vaccination of cattle with BCG. Br. Vet. J. 1958, 114, 3–10. [Google Scholar] [CrossRef]
- Lopez-Valencia, G.; Renteria-Evangelista, T.; Williams Jde, J.; Licea-Navarro, A.; De la Mora-Valle, A.; Medina-Basulto, G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res. Vet. Sci. 2010, 88, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Hope, J.C.; Thom, M.L.; Villareal-Ramos, B.; Vordermeier, H.M.; Hewinson, R.G.; Howard, C.J. Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. Bovis. Clin. Exp. Immunol. 2005, 139, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedlock, D.N.; Denis, M.; Vordermeier, H.M.; Hewinson, R.G.; Buddle, B.M. Vaccination of cattle with Danish and Pasteur strains of Mycobacterium bovis BCG induce different levels of IFN-gamma post-vaccination, but induce similar levels of protection against bovine tuberculosis. Vet. Immunol. Immunopathol. 2007, 118, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Waters, W.R.; Whelan, A.O.; Lyashchenko, K.P. Immune responses in cattle inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii. Clin. Vaccine Immunol. 2010, 7, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Blanco, F.C.; Bianco, M.V.; Garbaccio, S.; Meikle, V.; Gravisaco, M.J.; Montenegro, V.; Alfonseca, E.; Singh, M.; Barandiaran, S.; Canal, A.; et al. Mycobacterium bovis Δmce2 double deletion mutant protects cattle against challenge with virulent M. bovis. Tuberculosis 2013, 93, 363–372. [Google Scholar] [CrossRef]
- Buddle, B.M.; Hewinson, R.G.; Vordermeier, H.M.; Wedlock, D.N. Subcutaneous administration of a 10-fold-lower dose of a commercial human tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guerin Danish, induced levels of protection against bovine tuberculosis and responses in the tuberculin intradermal test similar to those induced by a standard cattle dose. Clin. Vaccine Immunol. 2013, 20, 1559–1562. [Google Scholar]
- Canto Alarcon, G.J.; Rubio Venegas, Y.; Bojorquez Narvaez, L.; Pizano Martínez, O.E.; García Casanova, L.; Sosa Gallegos, S.; Nava Vargas, A.; Olvera Ramírez, A.M.; Milian Suazo, F. Efficacy of a vaccine formula against tuberculosis in cattle. PLoS ONE 2013, 8, e76418. [Google Scholar] [CrossRef] [Green Version]
- Waddington, F.G.; Elwood, D.C. An experiment to challenge the resistance to tuberculosis in BCG vaccinated cattle in Malawi. Br. Vet. J. 1972, 128, 541–552. [Google Scholar] [CrossRef]
- De Klerk, L.M.; Michel, A.L.; Bengis, R.G.; Kriek, N.P.J.; Godfroid, J. BCG vaccination failed to protect yearling African buffaloes (Syncerus caffer) against experimental intratonsilar challenge with Mycobacterium bovis. Vet. Immunol. Immunopathol. 2010, 137, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; de Juan, L.; Bezos, J.; Romero, B.; Sáez, J.L.; Reviriego Gordejo, F.J.; Briones, V.; Moreno, M.A.; Mateos, A.; Domínguez, L.; et al. Interference of paratuberculosis with the diagnosis of tuberculosis in a goat flock with a natural mixed infection. Vet. Microbiol. 2008, 128, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawshaw, T.; Daniel, R.; Clifton-Hadley, R.; Clark, J.; Evans, H.; Rolfe, S.; de la Rua-Domenech, R. TB in goats caused by Mycobacterium bovis. Vet. Rec. 2008, 163, 127. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, G.; Boniotti, M.B.; Gaffuri, A.; Casto, B.; Zanoni, M.; Pacciarini, M.L. Tuberculosis transmission by Mycobacterium bovis in a mixed cattle and goat herd. Res. Vet. Sci. 2013, 95, 430–433. [Google Scholar] [CrossRef]
- Muñoz-Mendoza, M.; Romero, B.; Del Cerro, A.; Gortázar, C.; García-Marín, J.F.; Menéndez, S.; Mourelo, J.; de Juan, L.; Sáez, J.L.; Delahay, R.J.; et al. Sheep as a potential source of bovine TB: Epidemiology, pathology and evaluation of diagnostic techniques. Transbound. Emerg. Dis. 2016, 63, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, V.; Mazzone, P.; Capucchio, M.T.; Boniotti, M.B.; Aronica, V.; Russo, M.; Fiasconaro, M.; Cifani, N.; Corneli, S.; Biasibetti, E.; et al. Epidemiological significance of the domestic black pig (Sus scrofa) in maintenance of bovine tuberculosis in Sicily. J. Clin. Microbiol. 2012, 50, 1209–1218. [Google Scholar] [CrossRef] [Green Version]
- Cano-Terriza, D.; Risalde, M.A.; Rodríguez-Hernández, P.; Napp, S.; Fernández-Morente, M.; Moreno, I.; Bezos, J.; Fernández-Molera, V.; Sáez, J.L.; García-Bocanegra, I. Epidemiological surveillance of Mycobacterium tuberculosis complex in extensively raised pigs in the south of Spain. Prev. Vet. Med. 2018, 159, 87–91. [Google Scholar] [CrossRef]
- Ramos, L.; Obregon-Henao, A.; Henao-Tamayo, M.; Bowen, R.; Izzo, A.; Lunney, J.K.; González-Juarrero, M. Minipigs as a neonatal animal model for tuberculosis vaccine efficacy testing. Vet. Immunol. Immunopathol. 2019, 215, 109884. [Google Scholar] [CrossRef]
- Mackintosh, C.G.; de Lisle, G.W.; Collins, D.M.; Griffin, J.F. Mycobacterial diseases of deer. N. Z. Vet. J. 2004, 52, 163–174. [Google Scholar] [CrossRef]
- Gortázar, C.; Díez-Delgado, I.; Barasona, J.A.; Vicente, J.; De La Fuente, J.; Boadella, M. The wild side of disease control at the wildlife-livestock-human interface: A review. Front. Vet. Sci. 2015, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Nugent, G. Maintenance, spillover and spillback transmission of bovine tuberculosis in multi-host wildlife complexes: A New Zealand case study. Vet. Microbiol. 2011, 151, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, V.; Gortázar, C.; Vicente, J.; de la Fuente, J. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet. Microbiol. 2008, 127, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gortázar, C.; Fernández-Calle, L.M.; Collazos-Martínez, J.A.; Mínguez-González, O.; Acevedo, P. Animal tuberculosis maintenance at low abundance of suitable wildlife reservoir hosts: A case study in northern Spain. Prev. Vet. Med. 2017, 146, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Ryoo, S.; Lee, H.; Kim, N.; Lee, H.; Park, S.Y.; Song, W.S.; Kim, J.T.; Lee, H.S.; Myung Kim, J. Isolation of Mycobacterium bovis from free-ranging wildlife in South Korea. J. Wildl. Dis. 2017, 53, 181–185. [Google Scholar] [CrossRef] [PubMed]
- El Mrini, M.; Kichou, F.; Kadiri, A.; Berrada, J.; Bouslikhane, M.; Cordonier, N.; Romero, B.; Gortazar, C. Animal tuberculosis due to Mycobacterium bovis in Eurasian wild boar from Morocco. Eur. J. Wildl. Res. 2016, 62, 479–482. [Google Scholar] [CrossRef]
- Maciel, A.L.G.; Loiko, M.R.; Bueno, T.S.; Moreira, J.G.; Coppola, M.; Dalla Costa, E.R.; Schmid, K.B.; Rodrigues, R.O.; Cibulski, S.P.; Bertagnolli, A.C.; et al. Tuberculosis in Southern Brazilian wild boars (Sus scrofa): First epidemiological findings. Transbound. Emerg. Dis. 2018, 65, 518–526. [Google Scholar] [CrossRef]
- Cheeseman, C.L.; Wilesmith, J.W.; Stuart, F.A. Tuberculosis: The disease and its epidemiology in the badger, a review. Epidemiol. Infect. 1989, 103, 113–125. [Google Scholar] [CrossRef]
- Donnelly, C.A.; Woodroffe, R.; Cox, D.R.; Bourne, J.; Gettinby, G.; Le Fevre, A.M.; McInerney, J.P.; Morrison, W.I. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 2003, 426, 834–837. [Google Scholar] [CrossRef]
- Donnelly, C.A.; Woodroffe, R.; Cox, D.R.; Bourne, F.J.; Cheeseman, C.L.; Clifton-Hadley, R.S.; Wei, G.; Gettinby, G.; Gilks, P.; Jenkins, H.; et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 2006, 439, 843–846. [Google Scholar] [CrossRef]
- Bourne, F.J.; Donelly, C.A.; Cox, D.R.; Gettinby, G.; Mclerney, J.P.; Morrison, W.I.; Woodroffe, R. TB policy and the ISG’s findings. Vet. Rec. 2007, 161, 633–635. [Google Scholar] [CrossRef]
- Murphy, D.; Gormley, E.; Costello, E.; O’Meara, D.; Corner, L.A. The prevalence and distribution of Mycobacterium bovis infection in European badgers (Meles meles) as determined by enhanced post mortem examination and bacteriological culture. Res. Vet. Sci. 2010, 88, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Balseiro, A.; González-Quirós, P.; Rodríguez, O.; Copano, M.F.; Merediz, I.; De-Juan, L.; Chambers, M.A.; Delahay, R.J.; Marreros, N.; Royo, L.J.; et al. Spatial relationships between Eurasian badgers (Meles meles) and cattle infected with Mycobacterium bovis in Northern Spain. Vet. J. 2013, 197, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.; Boschiroli, M.L.; Gueneau, E.; Moyen, J.L.; Rambaud, T.; Dufour, B.; Gilot-Fromont, E.; Hars, J. Bovine tuberculosis in “Eurasian” badgers (Meles meles) in France. Eur. J. Wildl. Res. 2012, 59, 331–339. [Google Scholar] [CrossRef]
- Acevedo, P.; Prieto, M.; Quirós, P.; Merediz, I.; Juan, L.; Infantes-Lorenzo, J.A.; Triguero-Ocaña, R.; Balseiro, A. Tuberculosis epidemiology and badger (Meles meles) spatial ecology in a hot-spot area in Atlantic Spain. Pathogens 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Gormley, E.; Costello, E. Tuberculosis and badgers: New approaches to diagnosis and control. J. Appl Microbiol. 2003, 94, 80S–86S. [Google Scholar] [CrossRef]
- Corner, L.A.L. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: How to assess the risk. Vet. Microbiol. 2006, 112, 303–312. [Google Scholar] [CrossRef]
- Nugent, G.; Buddle, B.M.; Knowles, G. Epidemiology and control of Mycobacterium bovis infection in brushtail possums (Trichosurus vulpecula), the primary wildlife host of bovine tuberculosis in New Zealand. N. Z. Vet. J. 2015, 63, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Buddle, B.M.; Aldwell, F.E.; Keen, D.L.; Parlane, N.A.; Yates, G.; de Lisle, G.W. Intraduodenal vaccination of brushtail possums with bacille Calmette-Guérin enhances immune responses and protection against Mycobacterium bovis infection. Int. J. Tuberc. Lung Dis. 1997, 1, 377–383. [Google Scholar]
- Buddle, B.M.; Aldwell, F.E.; Keen, D.L.; Parlane, N.A.; Hamel, K.L.; de Lisle, G.W. Oral vaccination of brushtail possums with BCG: Investigation into factors that may influence vaccine efficacy and determination of duration of protection. N. Z. Vet. J. 2006, 54, 224–230. [Google Scholar] [CrossRef]
- Tompkins, D.M.; Ramsey, D.S.; Cross, M.L.; Aldwell, F.E.; de Lisle, G.W.; Buddle, B.M. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc. Biol. Sci. 2009, 276, 2987–2995. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, D.M.; Buddle, B.M.; Whitford, J.; Cross, M.L.; Yates, G.F.; Lambeth, M.R.; Nugent, G. Sustained protection against tuberculosis conferred to a wildlife host by single dose oral vaccination. Vaccine 2013, 31, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Corner, L.A.L.; Buddle, B.M.; Pfeiffer, D.U.; Morris, R.S. Aerosol vaccination of the brushtail possum (Trichosurus vulpecula) with bacille Calmette-Guerin: The duration of protection. Vet. Microbiol. 2001, 81, 181–191. [Google Scholar] [CrossRef]
- Skinner, M.A.; Keen, D.L.; Parlane, N.A.; Yates, G.F.; Buddle, B.M. Increased protection against bovine tuberculosis in the brushtail possum (Trichosurus vulpecula) when BCG is administered with killed Mycobacterium vaccae. Tuberculosis 2002, 82, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Corner, L.A.; Buddle, B.M. Conjunctival vaccination of the brushtail possum (Trichosurus vulpecula) with bacille Calmette-Guérin. N. Z. Vet. J. 2005, 53, 133–136. [Google Scholar] [CrossRef]
- Bengis, R.G.; Kriek, N.P.J.; Keet, D.F.; Raath, J.P.; De Vos, V.; Huchzermeyer, H.F.A.K. An outbreak of bovine tuberculosis in a free-living buffalo population in the Kruger National Park. Onderstepoort J. Vet. Res. 1996, 63, 15–18. [Google Scholar]
- Arnot, L.F.; Michel, A. Challenges for controlling bovine tuberculosis in South Africa. Onderstepoort J. Vet. Res. 2020, 87, e1–e8. [Google Scholar] [CrossRef]
- Byrom, A.E.; Caley, P.; Paterson, B.M.; Nugent, G. Feral ferrets (Mustela furo) as hosts and sentinels of tuberculosis in New Zealand. N. Z. Vet. J. 2015, 63, 42–53. [Google Scholar] [CrossRef]
- Qureshi, T.; Labes, R.E.; Cross, M.L.; Griffin, J.F.; Mackintosh, C.G. Partial protection against oral challenge with Mycobacterium bovis in ferrets (Mustela furo) following oral vaccination with BCG. Int J. Tuberc. Lung Dis. 1999, 3, 1025–1033. [Google Scholar]
- Cross, M.L.; Labes, R.E.; Griffin, J.F.; Mackintosh, C.G. Systemic but not intra-intestinal vaccination with BCG reduces the severity of tuberculosis infection in ferrets (Mustela furo). Int J. Tuberc. Lung Di.s 2000, 4, 473–480. [Google Scholar]
- Aaby, P.; Roth, A.; Ravn, H.; Napirna, B.M.; Rodrigues, A.; Lisse, I.M.; Stensballe, L.; Diness, B.R.; Lausch, K.R.; Lund, N.; et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: Beneficial nonspecific effects in the neonatal period? J. Infect. Dis. 2011, 204, 245–252. [Google Scholar] [CrossRef]
- Kleinnijenhuis, J.; Quintin, J.; Preijers, F.; Joosten, L.A.; Ifrim, D.C.; Saeed, S.; Jacobs, C.; van Loenhout, J.; de Jong, D.; Stunnenberg, H.G.; et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 2012, 109, 17537–17542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juste, R.A.; Alonso-Hearn, M.; Garrido, J.M.; Abendaño, N.; Sevilla, I.A.; Gortázar, C.; de la Fuente, J.; Domínguez, L. Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria. PLoS ONE 2016, 11, e0165607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.; Donnelly, C.A.; Kao, R.R.; Macdonald, D.W.; McDonald, R.A.; Petrokofsky, G.; Wood, J.L.; Woodroffe, R.; Young, D.B.; McLean, A.R. A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain. Proc. Biol. Sci. 2013, 280, 20131634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.S.; Crawshaw, T.R.; Smith, N.H.; Palgrave, C.J. Mycobacterium bovis infection in domestic pigs in Great Britain. Vet. J. 2013, 198, 391–397. [Google Scholar] [CrossRef]
- Cowie, C.E.; Hutchings, M.R.; Barasona, J.A.; Gortázar, C.; Vicente, J.; White, P.C.L. Interactions between four species in a complex wildlife: Livestock disease community: Implications for Mycobacterium bovis maintenance and transmission. Eur. J. Wildl. Res. 2016, 62, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Gortázar, C.; de la Fuente, J. COVID-19 is likely to impact animal health. Prev. Vet. Med. 2020, 180, 105030. [Google Scholar] [CrossRef]
Species | Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|---|
Cattle | BCG | SC (100 mg/10 mL), 1 dose–several doses | Natural challenge | Skin test | Restricted vaccine efficacy | [127] |
Cattle | BCG (Pasteur) | SC (6 × 104 or 6 × 106 CFU), 1 dose | 800 CFU M. bovis ITC | TBL, culture, IGRA, skin test, antibodies | Vaccine efficacy at both doses | [23] |
Cattle | BCG (Pasteur) | SC (106 CFU), 1 dose at 8 h or 6 weeks of age SC (106 CFU), 2 doses (6 weeks interval) | 1.5 × 103 CFU M. bovis ITC | TBL, culture, IGRA, cytokines, skin test, antibodies | Better vaccine efficacy at birth Non-environmental mycobacteria sensitization Revaccination contraindicated | [20] |
Cattle | BCG (Pasteur) DNA (Hsp 65, Hsp 70) DNA+BCG | DNA: intradermal and IM (1 mg/mL), 1 dose BCG: SC (1 × 106), 1 dose Combined DNA prime + BCG boost | 1.5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, cytokine assay, ELISPOT, skin test | Vaccine efficacy, better combined | [58] |
Cattle | BCG (Pasteur) | Oral (108 CFU), 1 pellet Oral (108 CFU), 10 pellets SC (106 CFU), 1 dose | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, cytokine assay (IL-2), skin test | Similar vaccine efficacy for SC and oral (10 pellets) routes | [113] |
Cattle | BCG (Pasteur) | SC (106 CFU), 1 dose | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, ELISPOT, skin test | Vaccine efficacy | [129] |
Cattle | BCG (Pasteur) CFP BCG + CFP | CFP: SC, 2 doses BCG: SC (106), 1 dose Combined BCG + CFP, 1 dose | 5 × 103 CFU M. bovis ITC | TBL, culture, IGRA, skin test, antibodies | Vaccine efficacy, better combined | [59] |
Cattle | Combined DNA prime M. tuberculosis BCG (Tokyo) boost | Combined DNA prime: IM (1500 μg), 1 dose BCG: IM (1 × 106), 1 dose Combined DNA prime + BCG boost | 1 × 107 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test, antibodies | Vaccine efficacy, better combined | [60] |
Cattle | BCG (Danish/ Pasteur) | BCG Danish (fresh culture): SC (106), 1 dose BCG Pasteur (fresh culture): SC (106), 1 dose BCG Danish (freeze-dried culture): SC (1–4 × 106), 1 dose | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test | Similar vaccine efficacy | [130] |
Cattle | BCG (Pasteur) | Oral (109 CFU), 1 dose each SC (106 CFU), 1 dose Oral + SC | 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test | Similar vaccine efficacy by both routes, not enhanced by co-administration | [56] |
Cattle | BCG + MVA85A | SC (106 CFU), 1 dose | 2 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, ELISPOT | Vaccine efficacy with viral boosting | [49] |
Cattle | BCG (Danish) | SC (106 CFU), 1 dose | Natural challenge | TBL, culture, IGRA, skin test | Vaccine efficacy in field conditions | [119] |
Cattle | BCG (Danish) | SC (106 CFU), 1 dose | Natural challenge | IGRA, skin test | Vaccine efficacy (lower excretion) in field conditions | [128] |
Cattle | BCG (Danish) DeltaRD1 | SC (106 CFU), 1 dose each | 103 CFU M. bovis Aerosol | TBL, histology, culture, lung radiography | Vaccine efficacy | [131] |
Cattle | BCG (Danish) | Oral (106, 107, 108 CFU), 1 dose each SC (106 CFU), 1 dose | 5 × 103 CFU M. bovis ITC | TBL, culture, IGRA, skin test | Vaccine efficacy at high oral dose or SC | [51] |
Cattle | BCG (Danish/Pasteur) | SC (2 × 106 CFU), 1 dose each | 3 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, ELISPOT | Vaccine efficacy | [21] |
Cattle | BCG (Danish) CFP/Chitin/Gel 01 CFP/Emulsigen/ Pam3CSK4 | BCG: Oral (108, 2 × 107 CFU), 1 dose each BCG: SC (1 × 106 CFU), 1 dose CFP/Chitin/Gel 01: IN (0.4 mg), 1 dose CFP/Emulsigen/ Pam3CSK4: SC (0.4 and 0.25 mg), 1 dose Combined BCG (oral) + CFP/Chitin (IN) Combined BCG (oral) + CFP/ Emulsigen (SC) | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test | Vaccine efficacy not enhanced by co-administration of mycobacterial protein vaccines | [61] |
Cattle | M. bovis Δmce2 double deletion mutant BCG (Pasteur) | M. bovis Δmce2: SC (106 CFU), 1 dose BCG (Pasteur): SC (106 CFU), 1 dose | 106 CFU M. bovis ITC | TBL, histology, culture, IGRA, cytokines in PBMC, skin test | Vaccine efficacy. M. bovis Δmce2 conferred better protection than BCG | [132] |
Cattle | BCG (Danish) | SC: High dose 1 × 106 to 4 × 106 CFU, 1 dose SC: low dose 1 × 105 to 4 × 105 CFU, 1 dose | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test | Similar vaccine efficacy at both doses | [133] |
Cattle | BCG (Phipps) | SC (106 CFU), 1 dose | 5 × 105 CFU M. bovis, IN | TBL, histology, IGRA | Vaccine efficacy with CFP boosting | [134] |
Cattle | BCG (Danish) TB BioBead (Ag85A+ESAT-6) CFP | BCG: SC (2–8 × 105 CFU), 1 dose Revaccination: BCG: SC (2–8 × 105 CFU) TB BioBead: SC (200 μg) CFP: SC (400 μg) | 5 × 103 CFU M. bovis ITC | TBL, histology, culture, IGRA, skin test, antibodies | Revaccination with BCG boosts protection | [50] |
Cattle | BCG (Danish) Adenovirus (Ad) 85A | BCG: SC (106 CFU), 1 dose BCG: EB (106 CFU), 1 dose Combined BCG: SC (5 × 105 CFU)+EB (5 × 105 CFU), 1 dose Combined BCG (SC, 106 CFU) + Ad85A (EB, 2 × 109 PFU), 1 dose | 2 × 103 CFU M. bovis EB | TBL, histology, culture, IGRA, ELISPOT | Better vaccine efficacy in BCG/BCG and BCG/Ad85 protocol | [22] |
Cattle | HIMB | Oral/IM (106–107 CFU), 1 dose | No challenge | Skin test, IGRA | Cellular immune response profile not increased by oral route | [13] |
Cattle | BCG (Danish) HIMB M. bovis BCG formalin-inactivated | BCG: SC (2 × 106 CFU), 1 dose HIMB: SC (1 × 107 CFU), 1 dose Formalin-inactivated: SC, 1 dose | 2 × 108 CFU BCG Danish intranodular | Culture, skin test, IGRA, antibodies | HIMB vaccine clearly immunogenic | [82] |
Cattle | BCG (Danish) | Oral (1 × 108 CFU), 1 dose Oral (2 × 107 CFU), 1 dose SC (3 × 105 CFU), 1 dose | Natural challenge | TBL, culture, skin test | Vaccine efficacy at high oral dose or SC in field conditions | [8] |
Cattle | BCG (Danish) | SC (3 × 105 BCG), 1 dose | Natural challenge | TBL, culture | Vaccine efficacy at low dose in field conditions | [53] |
Cattle | BCG (Danish) | SC (1–4 × 106 CFU), 1 dose | Natural challenge | TBL, histology, culture, IGRA, skin test | Vaccine efficacy in field conditions | [120] |
Cattle | BCG (Danish) | In vitro assay (1 × 105 cells/well) In vivo: Aerosol (1 × 108 CFU), 1 dose | No challenge | Antibodies, PBMCs, cytometry | Induction of innate cell-mediated immune response | [126] |
Cattle | BCG (Danish) + MVA85A | SC (BCG: 2 × 106 CFU), 1 dose SC (combined BCG: 2 × 106 CFU + Ad85A: 109 PFU), 1 dose | 2 × 107 CFU BCG Intranodally | TBL, culture, IGRA, ELISPOT, antibodies | Induction of cellular and humoral immune response | [52] |
Zebu (Bos indicus) | BCG | SC (0.1 mg), 2 doses | 1 mg M. bovis, oral | TBL, histology, culture, skin test | Vaccine efficacy | [135] |
African buffalo (Syncerus caffer) | BCG (Pasteur) | SC, 2 doses (first 3.2 × 107, booster 4.4 × 107) | 1 × 103 CFU and 6 × 102 CFU M. bovis, ITC | TBL, histology, culture, IGRA, skin test | No vaccine efficacy | [136] |
Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|
BCG (Danish) MVA85A | SC (BCG: 5 × 105 CFU), 1 dose SC (combined BCG: 5 × 105 CFU + Ad85A: 109 PFU), 1 dose | 1.5 × 103 CFU M. caprae, EB | TBL, culture, skin test, IGRA, serology | Cellular and humoral immune response. BCG-AdAg85A reduced pulmonary TBL compared to BCG | [24] |
BCG (Danish) SO2 | SC (BCG: 1–4 × 105 CFU), 1 dose SC/IN (SO2: 105 CFU), 1 dose | No challenge | Skin test, IGRA | Skin test and IGRA response. DIVA antigens could be used to differentiate BCG and SO2 vaccinated | [87] |
BCG (Danish) | SC (5 × 105 CFU), 1 dose | No challenge | TBL, culture, IGRA | IGRA response. No lack of biological safety, negligible environment and public health and local adverse reactions | [77] |
BCG (Danish) | SC (105 CFU), 1 dose | Natural challenge M. caprae | TBL, culture, histology, PCR, serology | Great reduction of TBL | [105] |
BCG (Danish) SO2 | SC (BCG: 1–4 × 105 CFU), 1 dose SC (SO2: 105 CFU), 1 dose | Natural challenge M. caprae | TBL, culture, skin test, IGRA | SO2 vaccinated had the lowest lesion and culture scores | [47] |
HIMB | Oral/IM (6 × 107 CFU), 2 doses | No challenge | Skin test, IGRA, serology | No positivity to the SIT or IGRA test in orally vaccinated | [95] |
HIMB | IM (107 CFU), 2 doses | Natural challenge M. caprae | TBL, culture, skin test, IGRA, serology | Reduction of TBL, but not significantly | [40] |
BCG (Danish) HIMB | SC (BCG: 5 × 105 CFU), 1 dose SC (HIMB: 107 CFU), 1 dose IM (HIMB: 107 CFU), 1 dose | 2 × 104 CFU M. caprae, EB | TBL, culture, IGRA, serology | Similar protection to BCG in reduction of TB lesions and bacterial load | [74] |
BCG (Danish) MTBVAC | SC (BCG: 2–8 × 105 CFU), 1 dose SC (MTBVAC: 5 × 105 CFU), 1 dose | Natural challenge M. caprae | TBL, culture, skin test, IGRA, serology | Immunogenicity and reduced severity of TB pathology in both vaccines | [48] |
Species | Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|---|
Red deer | BCG Pasteur (live, dead, with or without adjuvant) | SC (5 × 107 CFU), 2 doses | No challenge | Skin test, LST | Immunoprotective response in live BCG group | [28] |
Red deer | BCG Pasteur (live, lyophilized) | SC (5 × 104, 5 × 107, 5 × 108 CFU), 2 doses | 2–5 × 102 CFU M. bovis, IT | Skin test, TBL, histology, culture, LST | Protection in low and medium dose, less at high dose | [32] |
BCG Pasteur (live + DXM, dead) | SC (2.5 × 106 CFU)/ IT (5 × 107 CFU), 2 doses | No vaccine efficacy | ||||
Red deer | BCG (Pasteur) | SC (5 × 106 CFU), 2 doses | 2–5 × 102 CFU M. bovis *, IT | Skin test, TBL, culture, LST, antibodies | Vaccine efficacy | [88] |
Elk | BCG (Pasteur) | SC (107 CFU), 2 doses | No challenge | PBMC proliferation assay, flow cytometry and ELISA | Antibody response, proliferation of lymphocytes and macrophages | [94] |
White-tailed deer | BCG (Pasteur) | SC (107 CFU), 1/2 doses | 300 CFU M. bovis, IT | TBL, histology | Vaccine efficacy, higher with 2 doses | [27] |
White-tailed deer | BCG (Danish) | Bait (109 CFU)/oral (109 CFU)/SC (106 CFU), 1 dose | 228 CFU M. bovis, IT | TBL, culture, histology, lymphocyte proliferation, MAPIA, IGRA | Vaccine efficacy by both administration routes | [90] |
White-tailed deer | BCG (Pasteur/ Danish) | SC (107 CFU), 1 dose | 990 CFU M. bovis, IT | TBL, culture | Vaccine efficacy, more with Danish. Vaccine persistence | [89] |
White-tailed deer | BCG (Danish) | Bait (109 CFU) /oral (1,9 × 108) /SC (3,4 × 106 CFU), 1 dose | 228 CFU M. bovis, IT | MAPIA, Rapid test, IB, antibodies, culture | Vaccine efficacy | [57] |
White-tailed deer | BCG (Danish) | Oral (108 CFU), 1 dose | 300 CFU M. bovis, IT | TBL, histology, culture, IGRA, antibodies | Vaccine efficacy | [107] |
Red deer | HIMB | Oral (6 × 106 CFU), 1 dose | No challenge | Antibodies, C3, IFNγ. IL-1β | C3 response in serum | [98] |
Red deer | HIMB BCG (Danish) | Oral (107 CFU), 2 doses Oral (108 CFU), 2 doses | 106 CFU M. bovis, ITC | TBL, culture, antibodies, IGRA, IFNγ, ILs, C3 | Partial efficacy of both vaccines. Too high dose of M. bovis | [17] |
White-tailed deer | BCG (Danish) | Liquid oral (108 CFU/1010 CFU), 1 dose | No challenge | Skin test | Greater false positives with a higher vaccine dose | [30] |
Species | Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|---|
Wild boar | BCG | Oral bait (15–30 × 105 CFU), 1 dose | 104 CFU M. bovis, OF | TBL, IL-4, C3, IFNγ, MUT | Upregulation of immunomodulatory genes | [26] |
Wild boar | BCG HIMB | Oral/IM (BCG: 108 CFU; HIMB: 6 × 106 CFU), 2 doses | 106 CFU M. bovis, OF | TBL, culture, IGRA, antibodies, C3, MUT | Efficacy with both vaccines by both administration routes | [15] |
Wild boar | HIMB | Oral bait (107 CFU), 2 doses | 105 CFU M. bovis, OF | TBL, culture, antibodies, IGRA, IL-1β, C3, MUT | Vaccine efficacy | [36] |
Wild boar | BCG HIMB | Oral bait (BCG: 5.2–7.6 × 106 CFU; HIMB: 107 CFU) | No challenge | Survival of BCG by culture, excretion of M. bovis by PCR | No adverse reaction, survival or excretion with any vaccine | [37] |
Wild boar | BCG | Oral bait, (106 CFU/bait), 2 doses | 105 CFU M. bovis, OF | TBL, culture, antibodies, IGRA, IL-1β, C3, MUT | Vaccine efficacy | [64] |
Wild boar | HIMB * | IM (6 × 106 CFU), 2 doses | No challenge | TBL, antibodies | Vaccine efficacy | [38] |
Wild boar | BCG HIMB * | Oral bait, (15–30 baits of 105 CFU) | No challenge | TBL, antibodies | Vaccine efficacy | [14] |
Wild boar | Combined BCG + BCG Combined HIMB + HIMB Combined BCG + HIMB Combined HIMB + BCG | Oral (BCG: 106 CFU; HIMB: 107 CFU), 2 doses | 105 CFU M. bovis, OF | TBL, culture, IGRA, antibodies, C3, MUT | Homologous regimes are the best option to vaccination | [62] |
Molokai-origin wild pigs | HIMB | Oral (107 CFU), 2 doses | 106 CFU M. bovis, Oral | TBL, histology, culture | Partial vaccine efficacy | [16] |
Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|
BCG (Danish) | SC/IM (16–22 × 107 CFU/ 4–7 × 105 CFU), 2 doses | No challenge | Culture, LST, ELISPOT | Induction of cell-mediated immune response | [55] |
BCG (Danish) | Oral bait (108 CFU), 1 dose | 104 CFU M. bovis, EB | TBL, histology, culture, IGRA, ELISPOT | Vaccine efficacy | [96] |
BCG (Danish) | IM (3.2–5.4 × 106 CFU), 1 dose | 2.6–4.8 × 103 CFU M. bovis, EB Natural challenge | TBL, histology, culture, IGRA, antibodies | Vaccine efficacy in experimental study, but not in field conditions | [92] |
BCG (Danish) | IM (3.3 × 105–5.4 × 106 CFU), 1 dose | 2.6–4.8 × 103 CFU M. bovis, EB | TBL, histology, culture, ELISPOT | Vaccine efficacy | [91] |
BCG (Danish) | IM (2–8 × 106 CFU), several doses | Natural challenge | Culture, IGRA, antibodies | Reduction of infection risk by M. bovis | [93] |
BCG (Danish/Pasteur) | Oral bait (both, 108 CFU), 1 dose | 6 × 103 CFU M. bovis, EB | TBL, histology, culture, ELISPOT | Vaccine efficacy with both vaccine types | [97] |
BCG (Danish) | Oral bait (9.6 × 106–3.2 × 108 CFU) IT (9.3 × 107 CFU), 1 dose | 0.98–1.85 × 103 CFU M. bovis, EB | TBL, histology, culture, ELISPOT, antibodies | Vaccine efficacy at low and high doses | [54] |
BCG (Danish) | Oral bait (108 CFU), 2 doses | Natural challenge | TBL, histology, culture, antibodies | Vaccine efficacy | [65] |
BCG (Danish) | Oral bait (108 CFU), 2 doses | Natural challenge | TBL, histology, culture, antibodies | Vaccine efficacy | [66] |
BCG (Danish) HIMB | Oral (live BCG: 108 CFU; HIMB: 107 CFU), 1 dose | 103 CFU M. bovis EB | Necropsy, culture, skin test, IGRA, serology, molecular methods, MRI analysis | Protection of HIMB similar to BCG by reducing TBL | [18] |
Type of Vaccine | Route and Dose of Vaccine | Challenge | Method of Evaluation of Protective Efficacy | Result | Reference |
---|---|---|---|---|---|
BCG (Pasteur) | IN aerosol (4 × 106 CFU), 1 dose Oral (3 × 108 CFU), 1 dose SC (1 × 106 CFU), 1 dose | 400 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy IN and SC administered | [19] |
BCG (Pasteur) | SC (1 × 106 CFU), 1 dose Intragastric (1 × 108 CFU), 1 dose Intraduodenal (1 × 108 CFU), 1 dose | 20 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy | [163] |
BCG (Pasteur) | IN aerosol (5–6.5 × 106 CFU), 1 dose | M. bovis, ITC, 2 (28 and 78 CFU), 6 (78 CFU) and 12 (50 CFU) months post-vaccination | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy, better when challenge was performed 2 months post-vaccination | [167] |
BCG (Pasteur) | Conjunctival (5 × 106 CFU) and IN aerosol (5 × 106 CFU), 1 dose Revaccination every 4–5 months | 100 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy | [29] |
BCG (Pasteur) | Conjunctival and IN aerosol, 1, 2 or 12 doses (1 × 108 CFU) | 100 CFU M. bovis, EB | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy, better 12 doses | [63] |
BCG (Pasteur) Heat-killed M. vaccae BCG + heat-killed M. vaccae | Conjunctival and IN aerosol (2 × 106 CFU), 1 dose Heat-killed M. vaccae (3 × 109 mycobacteria), 1 dose | 80 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy, better combined | [168] |
BCG (Pasteur) | Oral (2 × 108 CFU), 1 dose Oral bait (1 × 108 CFU), 1 dose | 10–20 M. bovis bacilli/animal, aerosol | Lymphocyte proliferation assay, TBL, culture | Similar vaccine efficacy | [71] |
BCG (Pasteur) | Conjunctival (2.5 × 105 CFU), 1 dose | 100 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, histology, culture | Vaccine efficacy | [169] |
BCG (Pasteur) | BCG intragastrically (108 CFU) + 75 mg ranitidine, 1 dose Ranitidine, 1 dose BCG, 1 dose | 100 CFU M. bovis, ITC | Lymphocyte proliferation assay, TBL, culture | Vaccine efficacy enhanced with ranitidine | [108] |
BCG (Pasteur) | Oral bait (1 × 108 CFU or 5–10 × 108 CFU), 1 dose | No challenge | Lymphocyte proliferation assay, culture | Vaccine survival in associated lymph nodes and excretion in feces up to 7 days | [59] |
BCG (Danish/Pasteur) | Oral: 10 pellets heat-inactivated BCG Pasteur (108 bacilli) + revaccination 15 weeks later with 1 pellet live BCG Pasteur (107 CFU) 1 pellet live BCG Pasteur (107 CFU), 1 dose 1 pellet live BCG Danish (107 CFU), 1 dose 10 pellets live BCG Pasteur (108 CFU), 1 dose SC live BCG Pasteur (106 CFU), 1 dose | 10–20 M. bovis, aerosol | Lymphocyte proliferation assay, TBL, culture | Similar vaccine efficacy, slightly better SC | [33] |
BCG (Danish) | Oral bait (1 × 108 CFU) | 10–20 M. bovis bacilli/animal, aerosol | TBL, culture | Lipid baits with 10% chocolate are more palatable Vaccine efficacy | [72] |
BCG (Danish) | Oral (1 × 107 CFU), 1 dose Revaccination at 6 months | Natural challenge | Lymphocyte proliferation assay, TBL, culture | Vaccine efficacy in field conditions | [165] |
BCG (Danish) | Oral (1 × 107 CFU), 1 dose | High dose: 100 CFU M. bovis, SC, 2 doses Low dose: 10 CFU M. bovis, SC, 2 doses | TBL, culture | Sustained protection for 12 months in field conditions | [166] |
BCG (Danish) | Oral (1 × 108 CFU), 1 dose | Natural challenge | Lymphocyte proliferation assay, TBL, culture | Vaccine efficacy in field conditions | [121] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balseiro, A.; Thomas, J.; Gortázar, C.; Risalde, M.A. Development and Challenges in Animal Tuberculosis Vaccination. Pathogens 2020, 9, 472. https://doi.org/10.3390/pathogens9060472
Balseiro A, Thomas J, Gortázar C, Risalde MA. Development and Challenges in Animal Tuberculosis Vaccination. Pathogens. 2020; 9(6):472. https://doi.org/10.3390/pathogens9060472
Chicago/Turabian StyleBalseiro, Ana, Jobin Thomas, Christian Gortázar, and María A. Risalde. 2020. "Development and Challenges in Animal Tuberculosis Vaccination" Pathogens 9, no. 6: 472. https://doi.org/10.3390/pathogens9060472