Development of a Parallel Dual-Stage Compliant Nanopositioning System
Abstract
:1. Introduction
2. Design of PDCNS
3. Analytical Modelling
4. Simulation Analysis
5. Experimental Analysis
5.1. Kinematic Investigation
5.2. Stroke and Hysteresis Investigation
5.3. Motion Resolution Investigation
5.4. Closed-Loop Motion Investigation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikooienejad, N.; Maroufi, M.; Moheimani, S.O.R. Iterative Learning Control for Video-Rate Atomic Force Microscopy. IEEE/ASME Trans. Mechatron. 2021, 26, 2127–2138. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, X.; Duan, F.; Zhu, Z.; Ju, B. Design and Adaptive Terminal Sliding Mode Control of a Fast Tool Servo System for Diamond Machining of Freeform Surfaces. IEEE Trans. Ind. Electron. 2019, 66, 4912–4922. [Google Scholar] [CrossRef]
- Wan, N.; Wen, J.; Hu, Y.; Kan, J.; Li, J. A Parasitic Type Piezoelectric Actuator with an Asymmetrical Flexure Hinge Mechanism. Microsyst. Technol. 2020, 26, 917–924. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Q. A Survey of Force-Assisted Robotic Cell Microinjection Technologies. IEEE Trans. Automat. Sci. Eng. 2019, 16, 931–945. [Google Scholar] [CrossRef]
- Chen, X.; Deng, Z.; Hu, S.; Gao, J.; Gao, X. Designing a Novel Model of 2-DOF Large Displacement with a Stepwise Piezoelectric-Actuated Microgripper. Microsyst. Technol. 2020, 26, 2809–2816. [Google Scholar] [CrossRef]
- Eleftheriou, E. Nanopositioning for Storage Applications. Annu. Rev. Control 2012, 36, 244–254. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, W.; Zhu, Z.; Zhu, L. Design, Assessment, and Trajectory Control of a Novel Decoupled Robotic Nanomanipulator. IEEE/ASME Trans. Mechatron. 2022, 1–12. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, W.; Zhu, Z.; Zhu, L. Development of a New Compliant Active-Force Support System. IEEE/ASME Trans. Mechatron. 2022, 27, 372–382. [Google Scholar] [CrossRef]
- Tao, Y.; Li, H.; Zhu, L. Time/Space-Separation-Based Gaussian Process Modeling for the Cross-Coupling Effect of a 2-DOF Nanopositioning Stage. IEEE/ASME Trans. Mechatron. 2021, 26, 2186–2194. [Google Scholar] [CrossRef]
- Fleming, A.J.; Aphale, S.; Moheimani, S.O.R. A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages. IEEE Trans. Nanotechnol. 2010, 9, 438–448. [Google Scholar] [CrossRef]
- Yong, Y.K.; Moheimani, S.O.R.; Kenton, B.J.; Leang, K.K. Invited review article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues. Rev. Sci. Instrum. 2012, 83, 121101. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.K.; Lee, T.H.; Zhou, H.X. Micro-Positioning of Linear-Piezoelectric Motors Based on a Learning Nonlinear PID Controller. IEEE/ASME Trans. Mechatron. 2001, 6, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.T.; Jan, S.J. A Piezoelectric Motor for Precision Positioning Applications. Precis. Eng. 2016, 43, 285–293. [Google Scholar] [CrossRef]
- Li, J.P.; Huang, H.; Morita, T. Stepping Piezoelectric Actuators with Large Working Stroke for Nano-positioning Systems: A Review. Sens. Actuators A Phys. 2019, 292, 39–51. [Google Scholar] [CrossRef]
- Delibas, B.; Koc, B. A Method to Realize Low Velocity Movability and Eliminate Friction Induced Noise in Piezoelectric Ultrasonic Motors. IEEE/ASME Trans. Mechatron. 2020, 25, 2677–2687. [Google Scholar] [CrossRef]
- Mamun, A.A.; Mareels, I.; Lee, T.H.; Tay, A. Dual Stage Actuator Control in Hard Disk Drive—A review. In Proceedings of the Industrial Electronics Conference, Roanoke, VA, USA, 2–6 November 2003. [Google Scholar]
- Zhu, Z.; Du, H.; Zhou, R.; Huang, P.; Zhu, W.; Guo, P. Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo. IEEE Trans. Ind. Electron. 2020, 67, 432–441. [Google Scholar] [CrossRef]
- Gutierrez, H.M.; Ro, P.I. Sliding-Mode Control of a Nonlinear-Input System: Application to a Magnetically Levitated Fast-Tool Servo. IEEE Trans. Ind. Electron. 1998, 45, 921–927. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, W. Design, Analysis and Test of a Novel Self-Sensing Fast Tool Servo. IEEE Trans. Ind. Informat. 2020, 16, 4447–4455. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Q. Design and Precision Position/Force Control of a Piezo-Driven Microinjection System. IEEE/ASME Trans. Mechatron. 2017, 22, 1744–1754. [Google Scholar] [CrossRef]
- Permana, S.; Grant, E.; Walker, G.M.; Yoder, J.A. A Review of Automated Microinjection Systems for Single Cells in the Embryogenesis Stage. IEEE/ASME Trans. Mechatron. 2016, 21, 2391–2404. [Google Scholar] [CrossRef]
- Xu, Q. Design and Development of Flexure-Based Dual-Stage Nanopositioning System with Minimum Interference Behavior. IEEE Trans. Autom. Sci. Eng. 2012, 9, 554–563. [Google Scholar] [CrossRef]
- Michellod, Y.; Mullhaupt, P.; Gillet, D. Strategy for the Control of a Dual-Stage Nano-Positioning System with a Single Metrology. In Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 1–3 June 2006; pp. 1–8. [Google Scholar]
- Dong, W.; Tang, J.; ElDeeb, Y. Design of a Linear-Motion Dual-Stage Actuation System for Precision Control. Smart Mater. Struct. 2009, 18, 095035. [Google Scholar] [CrossRef]
- Zhu, H.; Pang, C.K.; Teo, T.J. Integrated Servo-Mechanical Design of a Fine Stage for a Coarse/Fine Dual-Stage Positioning System. IEEE/ASME Trans. Mechatron. 2016, 21, 329–338. [Google Scholar] [CrossRef]
- Long, Y.Q.; Bao, S.H.; Yuan, S. Structural Mechanics, 3rd ed.; The Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Zhu, W.; Zhu, Z.; Shi, Y.; Wang, X.; Guan, K.; Ju, B. Design, Modeling, Analysis and Testing of a Novel Piezo-Actuated XY Compliant Mechanism for Large Workspace Nano-Positioning. Smart Mater. Struct. 2016, 25, 115033. [Google Scholar] [CrossRef]
- Koseki, Y.; Tanikawa, T.; Koyachi, N.; Arai, T. Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 31 October–5 November 2000; pp. 786–792. [Google Scholar]
- Ling, M.; Cao, J.; Li, Q.; Zhuang, J. Design, Pseudo-Static Model and PVDF-Based Motion Sensing of a Piezo-Actuated XYZ Flexure Manipulator. IEEE/ASME Trans. Mechatron. 2018, 23, 2837–2848. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, Z.; To, S.; Liu, Q.; Ju, B.; Zhou, X. Redundantly Piezo-Actuated XYθz Compliant Mechanism for Nano-Positioning Featuring Simple Kinematics, Bi-Directional Motion and Enlarged Workspace. Smart Mater. Struct. 2016, 25, 125002. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, Y.; Liu, C.; Wang, F.; Liu, X.; Shirinzadeh, B.; Zhang, D. Design and Control Methodology of a 3-DOF Flexure-Basedmechanism for Micro/Nano Positioning. Robot. Comput-Integr. Manuf. 2015, 32, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Chen, M. Research on Mechanical Properties Test and Dynamic Material Model of TC4 Titanium Alloy. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2012. [Google Scholar]
- Wang, D.; Yang, Q.; Dong, H. A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing. IEEE/ASME Trans. Mechatron. 2013, 18, 138–147. [Google Scholar] [CrossRef]
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm |
43.98 | 10 | 22.75 | 1.5 | 25 | 0.5 | 5 | 0.5 | 55.13 | 1 | 35 |
mm | mm | mm | mm | mm | r ° | mm | E ×1011 Pa | μ | ρ kg/m3 | |
0.5 | 15 | 3.5 | 10 | 10 | 45° | 10 | 1.167 | 0.36 | 4414 |
Amplification Ratio |
Input Stiffness (N/μm) |
Stress Coefficient (Mpa/μm) | ||||
---|---|---|---|---|---|---|
anal. | 0.514 | 0.997 | 2.41 | 0.0249 | 3.49 | 0.279 |
ANSYS | 0.524 | 0.993 | 2.02 | 0.0256 | 3.11 | 0.287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Ji, L.; Shang, Y.; Zhu, W.; Li, S. Development of a Parallel Dual-Stage Compliant Nanopositioning System. Actuators 2022, 11, 136. https://doi.org/10.3390/act11050136
Yang X, Ji L, Shang Y, Zhu W, Li S. Development of a Parallel Dual-Stage Compliant Nanopositioning System. Actuators. 2022; 11(5):136. https://doi.org/10.3390/act11050136
Chicago/Turabian StyleYang, Xu, Lichao Ji, Ying Shang, Wule Zhu, and Shizhen Li. 2022. "Development of a Parallel Dual-Stage Compliant Nanopositioning System" Actuators 11, no. 5: 136. https://doi.org/10.3390/act11050136
APA StyleYang, X., Ji, L., Shang, Y., Zhu, W., & Li, S. (2022). Development of a Parallel Dual-Stage Compliant Nanopositioning System. Actuators, 11(5), 136. https://doi.org/10.3390/act11050136