Handbike for Daily Use, Sport, and Rehabilitation Purposes: A Literature Review of Actuation and Technical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Selection
2.2. Taxonomy
- Clinical tests. To be included in this class, documents shall include results regarding main physiological parameters in handcycling (e.g., maximal oxygen uptake VO2, Blood lactate BLa, energy expenditure EE, and power output PO), or involve patients to produce results. Papers in this category can therefore be clinical studies, but this characteristic is not mandatory.
- Device. This category collects documents focusing on the analysis of the devices for the experimental setup of handbike testing. For instance, papers describing the use of ergometers or treadmills during data acquisition, as well as focusing on the design process of the whole handbike, or the study of parts of it, are included in this class.
- Forces. This section includes documents investigating the forces exerted by the user during a handcycle. The analysis can include the assessment of forces generated in the subject at different anatomical areas (like the shoulder or all the upper limb), as well as at the interface with the device (i.e., handle).
- Geometry. This category collects the documents that study mechanical adjustments of the handbike that alter the biomechanics of athletes or patients. For instance, works referring to modifications at crank inclination, height, and length, as well as distance between cranks, or backrest inclination, and wheels dimensions or pressure, are classified within this class.
- Sensors. This class gathers the works dealing with sensors and measurement systems used to access the performance of the subject and/or the handbike, both in laboratory and outdoor environments, for tests, sport practice, and race conditions. No distinction in the inclusion was made between papers presenting custom-made systems and works using commercial sensors.
- Actuation. This category collects the documents which study the propulsion of the handbike, both in terms of biomechanical models of the handcycling and technical solutions, like different crank modes.
- Other. This class gathers the studies focusing on topics not expressly falling into one or more of the previous categories, such as literature reviews.
- VO2, Maximal Oxygen Uptake [mL/min]: this quantity corresponds to the maximum rate of oxygen consumption measured during incremental exercise;
- HR, Heart Rate [Bpm]: this parameter represents the frequency of the heartbeat measured by the number of beats of the heart per minute;
- Pmax, Power Peak [W]: this index describes the maximal power exerted during specific tasks, like incremental, exhaustion, or sprint tests;
- W/kg, Power per Kilogram [W/kg]: this index computes the power produced by the subject, per kilogram;
- RPE, Rating of Perceived Exertion: this quantity is evaluated according to the RPE Borg Scale, i.e., a clinical scale used to assess an individual’s perception of their own exertion or effort during physical activity or exercise [16].
- RER, Respiratory Exchange Ratio: this index measures the ratio between the produced volumes of carbon dioxide (VCO2) and oxygen (VO2);
- GE, Gross Efficiency: this parameter computes the ratio between the power measured on the handbike, and the estimation of the power generated by the user;
- FEF, Fraction Effective Force: this quantity accesses the component of force that actively contributes to the motion of the crank;
- Vla, Lactate Production [mmol/(L·s)]: this index estimates the maximal lactate accumulation rate produced by the subject;
- Bla, Blood Lactate Concentration [mmol/L]: this index assesses the lactate concentration in the subject’s blood.
- Ergometer. This sub-class gathers papers including the use of ergometers for handbike-related applications;
- Handbike. This sub-category collects the works providing some technical details of the used handbike, for instance describing the device model;
- Treadmill. This sub-class includes papers presenting treadmills in the experimental setup of the handbike;
- Wheelchair. This sub-category collects the works that include comparisons between handbike and wheelchair perfomances;
- Prototypes. This sub-class includes papers describing prototypes of innovative solutions, such as new methods of propulsion with respect to handcycling, or re-designs of classic devices.
- Shoulder. The shoulder sub-category includes all the papers that are related to the study of the forces and torques acting on the whole shoulder complex in general, or on parts of it, like the glenohumeral joint, when using a handbike or a wheelchair.
- Upper Limb. This sub-class collects all the documents involving the investigation of forces exerted during handbike activities by muscles of the upper body.
- Handle. The Handle sub-category collects all the papers that study the force exchanged between the subject and the handle grip when handcycling.
- 3D Forces. This sub-class includes the papers in which force is analyzed in space, therefore evaluating the three components of the force vector.
- Backrest. This sub-class gathers the works dealing with the investigation of the backrest of handbikes, analyzing its effects on the handbike performance.
- Crank. This sub-class includes the documents proposing and comparing different settings regarding the handbike crank, with particular attention to crank length and height.
- Handle Angle. The Handle Angle sub-category collects the papers focusing on the analysis of the handle grip’s angle, for instance evaluating the effect of modifications in its value.
- Electromyography. This sub-class collects all the papers describing the use of electromyographic (EMG) sensors during tests performed with a handbike.
- Heart Rate Variability [HRV]: This sub-category gathers the works presenting sensors of different kinds, that record heartbeats fluctuations.
- Blood Analysis. This sub-class gathers the works that include sensors for the analysis of the user’s blood, i.e., sensors that enable the assessment of chemical or physical properties of blood samples taken during or after a test.
- Vision System. The vision system sub-class collects all the documents related to the acquisition of real-time movements of the subjects, through vision capture systems.
- Spirometer. This sub-category collects the papers involving the use of systems to measure the volume of air expired or inspired by the subject’s lungs, for instance to identify ventilation patterns.
- Force Transducer. The force transducer sub-class collects the documents related to instruments placed on the handle that provide information about the forces exerted by subjects, for instance, in terms of amplitude and direction.
- Encoder. This sub-category gathers documents in which encoders are used or investigated.
- Biomechanical models. This sub-class gathers all the works describing the handcycling task with biomechanical models, for instance presenting the design of new models, investigating solutions for the identification of related parameters, or optimization strategies for handbike propulsion.
- Crank mode. This sub-category collects all the documents that investigate the propulsion of the device from a mechanical perspective. This includes for instance the analysis of the different crank modes, as well as the comparison of the two main types of possible propulsion, namely synchronous and asynchronous, which depict the conditions of shift-phase between left and right handles at 0° or 180°, respectively.
- Steering. The steering sub-class collects those papers presenting studies in which the handbike used for tests or outdoor activities has the capacity to turn the crank around an axis in the sagittal plane of the subject in order to change the direction of motion.
- -
- The distribution of the documents in time, by type;
- -
- An analysis of the documents by sub-class;
- -
- A discussion of main characteristics and results of the category, with particular attention to sub-classes.
3. Results and Discussion
3.1. Clinical Tests
Clinical Test Sub-Classes
3.2. Device
Device Sub-Classes
Ergometer
Handbike
Treadmill
Wheelchair
Prototype
3.3. Forces
Forces Sub-Classes
Shoulder
Upper Limb
Handle
3.4. Geometry
Geometry Sub-Classes
Backrest
Crank
- The distance between left and right extremes of the crank is to be set equal to the distance between the shoulders;
- The crank height should remain below the axis passing through the acromions;
- The crank should be positioned so as to avoid complete elbow extension.
Handle angle
3.5. Sensors
Sensors Sub-Classes
3.6. Actuation
Actuation Sub-Classes
Biomechanical Models
Crank mode
Steering
3.7. Final Remarks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | Arm propulsion |
ATP | Arm trunk propulsion |
Bla | Blood lactate concentration |
EE | Energy expenditure |
EMG | Electromyography |
EMS | Electromyostimulation |
FEF | Fraction effective force |
FES | Functional electrical stimulation |
GE | Gross efficiency |
HITT | High intensity interval training |
HR | Heart rate |
HRR | Heart rate reserve |
HRV | Heart rate variability |
ME | Mechanical efficiency |
MICT | Moderate intensity continuous training |
Pmax | Power peak |
PO | Power output |
RER | Respiratory exchange ratio |
ROM | Range of motion |
RPE | Rating of perceived exertion |
RSI | Repetitive strain injuries |
SCI | Spinal cord injury |
UCI | Union Cycliste Internationale |
VCO2 | Volume of produced carbon dioxide |
Vla | Lactate production |
VO2 | Maximal oxygen uptake |
W/kg | Power per kilogram |
Appendix A
Document ID | Type | OA | Clinical Tests | Subjects | Device | Prototype | Forces | 3D | Sensors | Geometry | Actuation | BioM | Crank Mode | Sync | Async | CM | Steering | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schwandt 1984 * [90] | CP | x | x | x | (x) | |||||||||||||
Maki 1995 [94] | Ar | x | x | x | x | |||||||||||||
Van Der Woude 2000 [7] | Ar | x | x | x | x | x | x | x | x | x | ||||||||
Janssen 2001 [92] | Ar | x | x | x | x | |||||||||||||
Abel 2003 [17] | Ar | x | x | x | x | x | x | x | x | x | ||||||||
Abel 2003a [95] | Ar | x | x | x | x | |||||||||||||
Faupin 2003 [96] | CP | x | x | x | ||||||||||||||
Dallmeijer 2004 [5] | Ar | x | x | x | x | |||||||||||||
Knechtle 2004 [97] | Ar | x | x | x | x | |||||||||||||
Postma 2005 [98] | Ar | x | x | x | (x) | x | ||||||||||||
Abel 2006 [1] | Ar | x | x | x | x | x | ||||||||||||
Faupin 2006 [99] | Ar | x | x | x | x | (x) | x | x | ||||||||||
Faupin 2006a [100] | CP | x | x | (x) | x | x | x | |||||||||||
Faupin 2008 [58] | Ar | x | x | x | x | x | x | x | x | |||||||||
Faupin 2008a [56] | Ar | x | x | x | x | x | x | x | x | x | x | x | ||||||
Verellen 2008 [101] | Ar | x | x | x | x | x | x | |||||||||||
Krämer 2009 [52] | Ar | x | x | x | x | x | x | x | x | x | ||||||||
Meyer 2009 [102] | Ar | x | x | x | (x) | x | ||||||||||||
Abel 2010 [103] | Ar | x | x | x | x | x | x | |||||||||||
Bollini 2010 [104] | CP | x | x | x | ||||||||||||||
Faupin 2010 [46] | Ar | x | x | x | x | x | x | x | ||||||||||
Goosey-Tolfrey 2010 [105] | Ar | x | x | x | x | x | ||||||||||||
Groen 2010 * [72] | Ar | x | x | x | x | x | x | |||||||||||
Groen 2010a [73] | CP | x | x | x | x | x | x | |||||||||||
Rice 2010 [106] | BC | x | ||||||||||||||||
Siebert 2010 [40] | CP | x | x | x | (x) | |||||||||||||
Van Drongelen 2010 [107] | CP | x | x | x | x | x | x | x | x | |||||||||
Hettinga 2011 [108] | CP | x | x | x | x | |||||||||||||
Van Drongelen 2011 [51] | Ar | x | x | x | (x) | x | x | x | ||||||||||
Allgrove 2012 [109] | Ar | x | x | x | x | x | ||||||||||||
Arnet 2012 [6] | Ar | x | x | x | x | x | (x) | x | x | x | x | |||||||
Arnet 2012a [42] | Ar | x | x | x | x | x | x | x | x | x | x | x | ||||||
Arnet 2012b [70] | Ar | x | x | x | x | x | x | x | x | |||||||||
Lovell 2012 [18] | Ar | x | x | x | x | x | ||||||||||||
Mazzola 2012 [67] | BC | x | x | x | x | x | x | x | x | x | ||||||||
Verellen 2012 [86] | Ar | x | x | x | x | x | x | x | ||||||||||
Verellen 2012a [19] | Ar | x | x | x | x | |||||||||||||
Arnet 2013 [43] | Ar | x | x | x | x | x | x | x | x | |||||||||
Hettinga 2013 [20] | Ar | x | x | x | x | x | x | x | x | |||||||||
Jacquier-Bret 2013 [53] | Ar | x | x | x | x | x | x | |||||||||||
Koopman 2013 [110] | Ar | x | x | x | x | x | ||||||||||||
Van Der Woude 2013 [11] | Ar | x | x | x | ||||||||||||||
Van Drongelen 2013 [71] | Ar | x | x | x | x | x | x | x | x | x | x | x | ||||||
Arnet 2014 [47] | Ar | x | x | x | x | x | x | x | x | x | ||||||||
Bakkum 2014 [41] | Ar | x | x | x | x | x | x | |||||||||||
Belloli 2014 [79] | CP | x | x | x | x | x | x | x | ||||||||||
de Groot 2014 [36] | Ar | x | x | x | x | x | x | x | ||||||||||
Fischer 2014 [111] | Ar | x | x | x | x | |||||||||||||
Meyns 2014 [82] | Ar | x | x | x | x | x | x | (x) | x | |||||||||
Abel 2015 [21] | Ar | x | x | x | x | x | x | x | x | |||||||||
Bakkum 2015 [22] | Ar | x | x | x | x | x | ||||||||||||
Bakkum 2015a * [83] | Ar | x | x | x | x | |||||||||||||
Fischer 2015 [23] | Ar | x | x | x | x | x | ||||||||||||
Jeang 2015 [80] | CP | x | (x) | (x) | x | |||||||||||||
Litzenberger 2015 [60] | CP | x | x | x | x | x | x | x | x | |||||||||
Nooijen 2015 [10] | Ar | x | x | x | x | x | x | |||||||||||
Nooijen 2015a [112] | Ar | x | x | x | ||||||||||||||
Simmelink 2015 [113] | Ar | x | x | x | x | x | ||||||||||||
Abreu 2016 [114] | Ar | x | x | x | x | x | ||||||||||||
Arnet 2016 [115] | Ar | x | x | x | x | |||||||||||||
Felsner 2016 [66] | CP | x | x | (x) | x | x | ||||||||||||
Hettinga 2016 [24] | Ar | x | x | x | x | x | ||||||||||||
Litzenberger 2016 [57] | Ar | x | x | x | x | x | x | x | ||||||||||
Rice 2016 [4] | Re | x | ||||||||||||||||
Schoenmakers 2016 [25] | Ar | x | x | x | x | x | ||||||||||||
Azizpour 2017 [116] | CP | x | x | x | (x) | x | x | x | ||||||||||
Fuglsang 2017 [91] | Ar | x | x | |||||||||||||||
Hoekstra 2017 * [117] | Ar | x | x | x | x | |||||||||||||
Hutchinson 2017 [26] | Ar | x | x | x | x | x | ||||||||||||
Kraaijenbrink 2017 [27] | Ar | x | x | x | x | x | x | x | x | x | x | x | ||||||
Zeller 2017 [118] | Ar | x | x | x | ||||||||||||||
Azizpour 2018 [119] | Ar | (x) | x | x | x | x | x | x | x | |||||||||
Chong 2018 [45] | CP | x | x | (x) | x | |||||||||||||
de Groot 2018 [38] | Ar | x | x | x | x | x | ||||||||||||
de Groot 2018a [38] | Ar | x | x | x | x | x | ||||||||||||
Kouwijzer 2018 [120] | Ar | x | x | x | x | x | x | x | ||||||||||
Legnani 2018 [121] | CP | x | x | x | x | x | x | x | ||||||||||
Morse 2018 [122] | Ar | x | x | x | x | x | x | |||||||||||
Quittmann 2018 [28] | Ar | x | x | x | (x) | (x) | x | x | x | |||||||||
Quittmann 2018a [123] | Ar | x | x | x | x | |||||||||||||
Cudicio 2019 [124] | CP | x | x | x | x | x | ||||||||||||
Quaglia 2019 [39] | Ar | x | x | x | x | x | ||||||||||||
Stangier 2019 [125] | Ar | x | x | x | x | |||||||||||||
Stone 2019 [126] | Ar | x | x | x | x | (x) | x | x | x | x | ||||||||
Stone 2019a [59] | Ar | x | x | x | ||||||||||||||
Stone 2019b [127] | Ar | x | x | x | x | x | x | x | x | |||||||||
Vegter 2019 [54] | Ar | x | x | x | x | x | x | x | x | x | x | x | ||||||
Chaikhot 2020 [128] | Ar | x | x | x | ||||||||||||||
Fischer 2020 [81] | Ar | x | x | x | x | x | ||||||||||||
Himarosa 2020 [129] | CP | x | x | x | (x) | x | x | x | ||||||||||
Kouwijzer 2020 [130] | Ar | x | x | x | ||||||||||||||
Kouwijzer 2020a [74] | Ar | x | x | x | x | x | x | x | ||||||||||
Kraaijenbrink 2020 [8] | Ar | x | x | x | x | x | x | x | (x) | x | x | x | x | x | x | x | ||
Quittmann 2020 [61] | Ar | x | x | x | x | x | x | x | x | |||||||||
Quittmann 2020a [69] | Ar | x | x | x | (x) | x | x | x | x | |||||||||
Stone 2020 [64] | Ar | x | x | x | x | x | x | x | x | |||||||||
Turoń-Skrzypińska 2020 [131] | Ar | x | x | |||||||||||||||
Abonie 2021 [31] | Ar | x | x | x | x | x | x | x | x | |||||||||
Hutchinson 2021 [32] | Ar | x | x | x | x | x | (x) | |||||||||||
Koontz 2021 [65] | Ar | x | x | x | x | x | ||||||||||||
Kouwijzer 2021 [33] | Ar | x | x | x | ||||||||||||||
Kraaijenbrink 2021 [55] | Ar | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||
Kraaijenbrink 2021a [9] | Ar | x | x | |||||||||||||||
Mason 2021 [62] | Ar | x | x | x | x | x | x | x | x | |||||||||
Muchaxo 2021 [76] | Ar | x | x | x | x | x | x | x | x | |||||||||
Nevin 2021 [132] | Ar | x | x | x | x | (x) | x | |||||||||||
Nevin 2021a [48] | Ar | x | x | x | x | |||||||||||||
Nevin 2021b [49] | Ar | x | x | x | x | x | x | |||||||||||
Nooijen 2021 [37] | Ar | x | x | x | x | x | x | |||||||||||
Oviedo 2021 [77] | Ar | x | x | x | x | x | x | x | x | x | x | |||||||
Quittmann 2021 [133] | Ar | x | x | x | ||||||||||||||
Quittmann 2021a [68] | Ar | x | x | x | x | x | x | x | ||||||||||
Stephenson 2021 [134] | Ar | x | x | |||||||||||||||
Abonie 2022 [135] | Ar | x | x | x | x | x | ||||||||||||
Antunes 2022 [63] | Ar | x | x | x | x | |||||||||||||
Antunes 2022a [75] | Ar | (x) | (x) | (x) | x | (x) | ||||||||||||
Digo 2022 [50] | CP | x | (x) | (x) | x | x | x | x | ||||||||||
Hall 2022 [34] | Ar | x | x | x | x | x | ||||||||||||
Hutchinson 2022 [136] | Ar | x | x | x | x | x | ||||||||||||
Kouwijzer 2022 [30] | Ar | x | x | x | x | |||||||||||||
Muchaxo 2022 [35] | Ar | x | x | x | x | x | x | x | x | x | x | |||||||
Nevin 2022 [3] | Re | x | x | |||||||||||||||
Pasko 2022 [137] | CP | (x) | (x) | x | ||||||||||||||
Quittmann 2022 [138] | Ar | x | x | x | x | x | x | x | x | |||||||||
Rappelt 2022 [29] | Ar | x | x | x | x | |||||||||||||
Rayes 2022 [14] | Re | x | x | |||||||||||||||
Solazzi 2022 [88] | CP | x | x | (x) | ||||||||||||||
Soo Hoo 2022 [139] | Ar | x | x | x | x |
References
- Abel, T.; Schneider, S.; Platen, P.; Strüder, H. Performance diagnostics in handbiking during competition. Spinal Cord 2006, 44, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Bucco-Lechat, C. Wikimedia Commons. 2014. Available online: https://commons.wikimedia.org/wiki/File:Salon_de_l%27auto_de_Gen%C3%A8ve_2014_-_20140305_-_Skoda_Vision_C.jpg (accessed on 15 January 2024).
- Nevin, J.; Kouwijzer, I.; Stone, B.; Quittmann, O.; Hettinga, F.; Abel, T.; Smith, P. The Science of Handcycling: A Narrative Review. Int. J. Sport. Physiol. Perform. 2022, 17, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Rice, I. Recent Salient Literature Pertaining to the Use of Technology in Wheelchair Sports. Curr. Phys. Med. Rehabil. Rep. 2016, 4, 329–335. [Google Scholar] [CrossRef]
- Dallmeijer, A.; Zentgraaff, I.; Zijp, N.; Van Der Woude, L. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion. Spinal Cord 2004, 42, 91–98. [Google Scholar] [CrossRef]
- Arnet, U.; Van Drongelen, S.; Scheel-Sailer, A.; Van Der Woude, L.; Veeger, D. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. J. Rehabil. Med. 2012, 44, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Van Der Woude, L.; Bosmans, I.; Bervoets, B.; Veeger, H. Handcycling: Different modes and gear ratios. J. Med. Eng. Technol. 2000, 24, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenbrink, C.; Vegter, R.; Hensen, A.; Wagner, H.; Van Der Woude, L. Biomechanical and physiological differences between synchronous and asynchronous low intensity handcycling during practice-based learning in able-bodied men. J. NeuroEng. Rehabil. 2020, 17, 29. [Google Scholar] [CrossRef]
- Kraaijenbrink, C.; Vegter, R.; Ostertag, N.; Janssens, L.; Vanlandewijck, Y.; van der Woude, L.; Wagner, H. Steering Does Affect Biophysical Responses in Asynchronous, but Not Synchronous Submaximal Handcycle Ergometry in Able-Bodied Men. Front. Sport. Act. Living 2021, 3, 741258. [Google Scholar] [CrossRef]
- Nooijen, C.; Van Den Brand, I.; Ter Horst, P.; Wynants, M.; Valent, L.; Stam, H.; Van Den Berg-Emons, R. Feasibility of Handcycle Training during Inpatient Rehabilitation in Persons with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2015, 96, 1654–1657. [Google Scholar] [CrossRef]
- Van Der Woude, L.; de Groot, S.; Postema, K.; Bussmann, J.; Janssen, T.; Post, M. Active LifestyLe Rehabilitation Interventions in aging Spinal Cord injury (ALLRISC): A multicentre research program. Disabil. Rehabil. 2013, 35, 1097–1103. [Google Scholar] [CrossRef]
- Flueck, J. Nutritional considerations for para-cycling athletes: A narrative review. Sports 2021, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Goodlin, G.; Steinbeck, L.; Bergfeld, D.; Haselhorst, A. Adaptive Cycling: Classification, Adaptations, and Biomechanics. Phys. Med. Rehabil. Clin. N. Am. 2022, 33, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Rayes, R.; Ball, C.; Lee, K.; White, C. Adaptive Sports in Spinal Cord Injury: A Systematic Review. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S. Human Body Composition; Human kinetics: Champaign, IL, USA, 2005; Volume 918. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Abel, T.; Kröner, M.; Rojas, V.; Peters, C.; Klose, C.; Platen, P. Energy expenditure in wheelchair racing and handbiking —A basis for prevention of cardiovascular diseases in those with disabilities. Eur. J. Prev. Cardiol. 2003, 10, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Lovell, D.; Shields, D.; Beck, B.; Cuneo, R.; McLellan, C. The aerobic performance of trained and untrained handcyclists with spinal cord injury. Eur. J. Appl. Physiol. 2012, 112, 3431–3437. [Google Scholar] [CrossRef] [PubMed]
- Verellen, J.; Meyer, C.; Janssens, L.; Vanlandewijck, Y.; Lacour, J.R. Peak and submaximal steady-state metabolic and cardiorespiratory responses during arm-powered and arm-trunk-powered handbike ergometry in able-bodied participants. Eur. J. Appl. Physiol. 2012, 112, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, F.; de Groot, S.; Van Dijk, F.; Kerkhof, F.; Woldring, F.; Van Der Woude, L. Physical strain of handcycling: An evaluation using training guidelines for a healthy lifestyle as defined by the American College of Sports Medicine. J. Spinal Cord Med. 2013, 36, 376–382. [Google Scholar] [CrossRef]
- Abel, T.; Burkett, B.; Thees, B.; Schneider, S.; Askew, C.; Strüder, H. Effect of three different grip angles on physiological parameters during laboratory handcycling test in able-bodied participants. Front. Physiol. 2015, 6, 331. [Google Scholar] [CrossRef]
- Bakkum, A.; de Groot, S.; Stolwijk-Swüste, J.; Van Kuppevelt, D.; Van Der Woude, L.; Janssen, T. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: A 16-week randomized controlled trial. Spinal Cord 2015, 53, 395–401. [Google Scholar] [CrossRef]
- Fischer, G.; Figueiredo, P.; Ardigò, L. Physiological performance determinants of a 22-km handbiking time trial. Int. J. Sport. Physiol. Perform. 2015, 10, 965–971. [Google Scholar] [CrossRef]
- Hettinga, F.; Hoogwerf, M.; van der Woude, L. Handcycling: Training effects of a specific dose of upper body endurance training in females. Eur. J. Appl. Physiol. 2016, 116, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, P.; Reed, K.; Woude, V.; Hettinga, F. High intensity interval training in handcycling: The effects of a 7 week training intervention in able-bodied men. Front. Physiol. 2016, 7, 638. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.; Paulson, T.; Eston, R.; Tolfrey, V. Assessment of peak oxygen uptake during handcycling: Test-retest reliability and comparison of a ramp-incremented and perceptually-regulated exercise test. PLoS ONE 2017, 12, e0181008. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenbrink, C.; Vegter, R.; Hensen, A.; Wagner, H.; Van Der Woude, L. Different cadences and resistances in submaximal synchronous handcycling in able-bodied men: Effects on efficiency and force application. PLoS ONE 2017, 12, e0183502. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.; Abel, T.; Zeller, S.; Foitschik, T.; Strüder, H. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants. Eur. J. Appl. Physiol. 2018, 118, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Rappelt, L.; Held, S.; Donath, L. Handcycling with concurrent lower body low-frequency electromyostimulation significantly increases acute oxygen uptake: Implications for rehabilitation and prevention. PeerJ 2022, 10, e13333. [Google Scholar] [CrossRef] [PubMed]
- Kouwijzer, I.; Valent, L.; van Bennekom, C.; Post, M.; van der Woude, L.; de Groot, S. Training for the HandbikeBattle: An explorative analysis of training load and handcycling physical capacity in recreationally active wheelchair users. Disabil. Rehabil. 2022, 44, 2723–2732. [Google Scholar] [CrossRef]
- Abonie, U.; Monden, P.; van der Woude, L.; Hettinga, F. Effect of a 7-week low intensity synchronous handcycling training programme on physical capacity in abled-bodied women. J. Sport. Sci. 2021, 39, 1472–1480. [Google Scholar] [CrossRef]
- Hutchinson, M.; Kouwijzer, I.; de Groot, S.; Goosey-Tolfrey, V. Comparison of two Borg exertion scales for monitoring exercise intensity in able-bodied participants, and those with paraplegia and tetraplegia. Spinal Cord 2021, 59, 1162–1169. [Google Scholar] [CrossRef]
- Kouwijzer, I.; Valent, L.; Post, M.; Wilders, L.; Grootoonk, A.; Van Der Woude, L.; de Groot, S. The Course of Physical Capacity in Wheelchair Users during Training for the HandbikeBattle and at 1-Yr Follow-up. Am. J. Phys. Med. Rehabil. 2021, 100, 858–865. [Google Scholar] [CrossRef]
- Hall, B.; Sikora, M.; Jonas, D.; Matthews, E.; Zebrowska, A. Handcycling Training in Men with Spinal Cord Injury Increases Tolerance to High Intensity Exercise. J. Hum. Kinet. 2022, 82, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Muchaxo, R.; de Groot, S.; Kouwijzer, I.; van der Woude, L.; Nooijen, C.; Janssen, T. Association between upper-limb isometric strength and handcycling performance in elite athletes. Sport. Biomech. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- de Groot, S.; Postma, K.; Van Vliet, L.; Timmermans, R.; Valent, L. Mountain time trial in handcycling: Exercise intensity and predictors of race time in people with spinal cord injury. Spinal Cord 2014, 52, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Nooijen, C.; Muchaxo, R.; Liljedahl, J.; Bjerkefors, A.; Janssen, T.; van der Woude, L.; Arndt, A.; de Groot, S. The relation between sprint power and road time trial performance in elite para-cyclists. J. Sci. Med. Sport 2021, 24, 1193–1198. [Google Scholar] [CrossRef]
- de Groot, S.; Kouwijzer, I.; Baauw, M.; Broeksteeg, R.; Valent, L. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser. Cases 2018, 4, 79. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, G.; Bonisoli, E.; Cavallone, P. The design of a new manual wheelchair for sport. Machines 2019, 7, 31. [Google Scholar] [CrossRef]
- Siebert, M. Adjustable handbike-chassis for offroad-use (“mountain handbike”). Procedia Eng. 2010, 2, 3157–3162. [Google Scholar] [CrossRef]
- Bakkum, A.; de Groot, S.; Onderwater, M.; De Jong, J.; Janssen, T. Metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury. J. Spinal Cord Med. 2014, 37, 758–764. [Google Scholar] [CrossRef]
- Arnet, U.; Van Drongelen, S.; Van Der Woude, L.; Veeger, D. Shoulder load during handcycling at different incline and speed conditions. Clin. Biomech. 2012, 27, 1–6. [Google Scholar] [CrossRef]
- Arnet, U.; Van Drongelen, S.; Veeger, D.; Van Der Woude, L. Force application during handcycling and handrim wheelchair propulsion: An initial comparison. J. Appl. Biomech. 2013, 29, 687–695. [Google Scholar] [CrossRef]
- Amici, C.; Ragni, F.; Ghidoni, M.; Fausti, D.; Bissolotti, L.; Tiboni, M. Multi-Sensor Validation Approach of an End-Effector-Based Robot for the Rehabilitation of the Upper and Lower Limb. Electronics 2020, 9, 1751. [Google Scholar] [CrossRef]
- Chong, Y.; Yang, T. Development of portable hand cycle for children with cerebral palsy—The Malaysian scenario: Wheelchair propulsion motion. In Proceedings of the 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC, Dhaka, Bangladesh, 21–23 December 2017; Volume 2018, pp. 873–877. [Google Scholar] [CrossRef]
- Faupin, A.; Gorce, P.; Watelain, E.; Meyer, C.; Thevenon, A. A biomechanical analysis of handcycling: A case study. J. Appl. Biomech. 2010, 26, 240–245. [Google Scholar] [CrossRef]
- Arnet, U.; van Drongelen, S.; Schlüssel, M.; Lay, V.; van der Woude, L.; Veeger, H. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Scand. J. Med. Sci. Sport. 2014, 24, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Nevin, J.; Smith, P. The Relationship between Absolute and Relative Upper-Body Strength and Handcycling Performance Capabilities. Int. J. Sport. Physiol. Perform. 2021, 16, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Nevin, J.; Smith, P. The anthropometric, physiological, and strength-related determinants of handcycling 15-km time-trial performance. Int. J. Sport. Physiol. Perform. 2021, 16, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Digo, E.; Gastaldi, L.; Antonelli, M.; Cornagliotto, V.; Pastorelli, S. Estimation of Force Effectiveness and Symmetry During Kranking Training. In Proceedings of the I4SDG Workshop 2021. I4SDG 2021. Mechanisms and Machine Science, Online, 25–26 November 2021; Quaglia, G., Gasparetto, A., Petuya, V., Carbone, G., Eds.; Springer: Berlin, Germany, 2022; Volume 108, pp. 201–208. [Google Scholar] [CrossRef]
- Van Drongelen, S.; van den Berg, J.; Arnet, U.; Veeger, D.; van der Woude, L. Development and validity of an instrumented handbike: Initial results of propulsion kinetics. Med. Eng. Phys. 2011, 33, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Krämer, C.; Schneider, G.; Böhm, H.; Klöpfer-Krämer, I.; Senner, V. Effect of different handgrip angles on work distribution during hand cycling at submaximal power levels. Ergonomics 2009, 52, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- Jacquier-Bret, J.; Faupin, A.; Rezzoug, N.; Gorce, P. A new postural force production index to assess propulsion effectiveness during handcycling. J. Appl. Biomech. 2013, 29, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Vegter, R.; Mason, B.; Sporrel, B.; Stone, B.; van der Woude, L.; Goosey-Tolfrey, V. Crank fore-aft position alters the distribution of work over the push and pull phase during synchronous recumbent handcycling of able-bodied participants. PLoS ONE 2019, 14, e0220943. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenbrink, C.; Vegter, R.; de Groot, S.; Arnet, U.; Valent, L.; Verellen, J.; van Breukelen, K.; Hettinga, F.; Perret, C.; Abel, T.; et al. Biophysical aspects of handcycling performance in rehabilitation, daily life and recreational sports; a narrative review. Disabil. Rehabil. 2021, 43, 3461–3475. [Google Scholar] [CrossRef]
- Faupin, A.; Gorce, P.; Meyer, C.; Thevenon, A. Effects of backrest positioning and gear ratio on nondisabled subjects’ handcycling sprinting performance and kinematics. J. Rehabil. Res. Dev. 2008, 45, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Litzenberger, S.; Mally, F.; Sabo, A. Biomechanics of elite recumbent handcycling: A case study: Influence of backrest position, crank length and crank height on muscular activity and upper body kinematics. Sport. Eng. 2016, 19, 201–211. [Google Scholar] [CrossRef]
- Faupin, A.; Gorce, P. The effects of crank adjustments on handbike propulsion: A kinematic model approach. Int. J. Ind. Ergon. 2008, 38, 577–583. [Google Scholar] [CrossRef]
- Stone, B.; Mason, B.; Warner, M.; Goosey-Tolfrey, V. Horizontal Crank Position Affects Economy and Upper Limb Kinematics of Recumbent Handcyclists. Med. Sci. Sport. Exerc. 2019, 51, 2265–2273. [Google Scholar] [CrossRef]
- Litzenberger, S.; Mally, F.; Sabo, A. Influence of different seating and crank positions on muscular activity in elite handcycling—A case study. Procedia Eng. 2015, 112, 355–360. [Google Scholar] [CrossRef]
- Quittmann, O.; Abel, T.; Albracht, K.; Meskemper, J.; Foitschik, T.; Strüder, H. Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants. Eur. J. Appl. Physiol. 2020, 120, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.; Stone, B.; Warner, M.; Goosey-Tolfrey, V. Crank length alters kinematics and kinetics, yet not the economy of recumbent handcyclists at constant handgrip speeds. Scand. J. Med. Sci. Sport. 2021, 31, 388–397. [Google Scholar] [CrossRef]
- Antunes, D.; Borszcz, F.; Nascimento, E.; Cavalheiro, G.; Fischer, G.; Brickley, G.; De Lucas, R. Physiological and Perceptual Responses in Spinal Cord Injury Handcyclists during an Endurance Interval Training: The Role of Critical Speed. Am. J. Phys. Med. Rehabil. 2022, 101, 977–982. [Google Scholar] [CrossRef]
- Stone, B.; Mason, B.; Stephenson, B.; Goosey-Tolfrey, V. Physiological responses during simulated 16 km recumbent handcycling time trial and determinants of performance in trained handcyclists. Eur. J. Appl. Physiol. 2020, 120, 1621–1628. [Google Scholar] [CrossRef]
- Koontz, A.; Garfunkel, C.; Crytzer, T.; Anthony, S.; Nindl, B. Feasibility, acceptability, and preliminary efficacy of a handcycling high-intensity interval training program for individuals with spinal cord injury. Spinal Cord 2021, 59, 34–43. [Google Scholar] [CrossRef]
- Felsner, E.M.; Litzenberger, S.; Mally, F.; Sabo, A. Musculoskeletal Modelling of Elite Handcycling Motion: Evaluation of Muscular On-and Offset. Procedia Eng. 2016, 147, 168–174. [Google Scholar] [CrossRef]
- Mazzola, M.; Andreoni, G.; Campanardi, G.; Costa, F.; Gibertini, G.; Grassi, D.; Romero, M. Effects of Seat and Handgrips Adjustments on a Hand Bike Vehicle. An Ergonomic and Aerodynamic Study for a Quantitative Assessment of Paralympics Athlete’s Performance; CRC Press: Boca Raton, FL, USA, 2012; pp. 569–576. [Google Scholar]
- Quittmann, O.; Abel, T.; Vafa, R.; Mester, J.; Schwarz, Y.; Strüder, H. Maximal lactate accumulation rate and post-exercise lactate kinetics in handcycling and cycling. Eur. J. Sport Sci. 2021, 21, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.; Meskemper, J.; Albracht, K.; Abel, T.; Foitschik, T.; Strüder, H. Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs. J. Electromyogr. Kinesiol. 2020, 51, 102402. [Google Scholar] [CrossRef] [PubMed]
- Arnet, U.; van Drongelen, S.; Veeger, D.; van der Woude, L. Are the force characteristics of synchronous handcycling affected by speed and the method to impose power? Med. Eng. Phys. 2012, 34, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Van Drongelen, S.; Schlüssel, M.; Arnet, U.; Veeger, D. The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion. Clin. Biomech. 2013, 28, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Groen, W.; Van Der Woude, L.; De Koning, J. A power balance model for handcycling. Disabil. Rehabil. 2010, 32, 2165–2171. [Google Scholar] [CrossRef]
- Groen, W.; Van Der Woude, L.; De Koning, J. The Power Balance Model: Useful in the Study of Elite Handcycling Performance; IOS Press: Amsterdam, The Netherlands, 2010; Volume 26, pp. 85–87. [Google Scholar] [CrossRef]
- Kouwijzer, I.; Valent, L.; Osterthun, R.; van der Woude, L.; de Groot, S. Peak power output in handcycling of individuals with a chronic spinal cord injury: Predictive modeling, validation and reference values. Disabil. Rehabil. 2020, 42, 400–409. [Google Scholar] [CrossRef]
- Antunes, D.; Nascimento, E.; Brickley, G.; Fischer, G.; de Lucas, R. Determination of the speed-time relationship during handcycling in spinal cord injured athletes. Res. Sport. Med. 2022, 30, 256–263. [Google Scholar] [CrossRef]
- Muchaxo, R.; de Groot, S.; Kouwijzer, I.; Van Der Woude, L.; Janssen, T.; Nooijen, C. A Role for Trunk Function in Elite Recumbent Handcycling Performance? J. Sport. Sci. 2021, 39, 2312–2321. [Google Scholar] [CrossRef]
- Oviedo, G.; Alamo, J.; Niño-Mendez, O.; Travier, N.; Ventura, J.; Soto-Montañez, C.; Vidal, J.; Medina, J.; Javierre, C. Physiological responses in males with and without spinal cord injury to recumbent synchronous versus seated asynchronous arm crank stress tests|Respuestas fisiológicas en hombres con y sin lesión medular al realizar pruebas de esfuerzo con ergómetros de. Retos 2021, 39, 565–571. [Google Scholar] [CrossRef]
- Muratov, V. Wikimedia Commons. 2011. Available online: https://commons.wikimedia.org/wiki/File:Faffler_carriage.jpg (accessed on 15 January 2024).
- Belloli, M.; Cheli, F.; Bayati, I.; Giappino, S.; Robustelli, F. Handbike aerodynamics: Wind tunnel versus track tests. Procedia Eng. 2014, 72, 750–755. [Google Scholar] [CrossRef]
- Jeang, A.; Liang, F.; Huang, H. Handcycle design & development process for the disabled. In Proceedings of the 2015 IFToMM World Congress Proceedings, Taipei, Taiwan, 25–30 October 2015. [Google Scholar] [CrossRef]
- Fischer, G.; Figueiredo, P.; Ardigò, L. Bioenergetics and Biomechanics of Handcycling at Submaximal Speeds in Athletes with a Spinal Cord Injury. Sports 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Meyns, P.; Van De Walle, P.; Hoogkamer, W.; Kiekens, C.; Desloovere, K.; Duysens, J. Coordinating arms and legs on a hybrid rehabilitation tricycle: The metabolic benefit of asymmetrical compared to symmetrical arm movements. Eur. J. Appl. Physiol. 2014, 114, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Bakkum, A.; Paulson, T.; Bishop, N.; Goosey-Tolfrey, V.; Stolwijk-Swüste, J.; Van Kuppevelt, D.; de Groot, S.; Janssen, T. Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: A randomized controlled trial. J. Rehabil. Med. 2015, 47, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.; de Groot, S.; Smit, C.; Thijssen, D.; TE Hopman, M.; Janssen, T. Vascular adaptations in nonstimulated areas during hybrid cycling or handcycling in people with a spinal cord injury: A pilot study of 10 cases. Spinal Cord Ser. Cases 2021, 7, 54. [Google Scholar] [CrossRef]
- Cavallone, P.; Vieira, T.; Quaglia, G.; Gazzoni, M. Electomyographic activities of shoulder muscles during Handwheelchair.Q vs pushrim wheelchair propulsion. Med. Eng. Phys. 2022, 106, 103833. [Google Scholar] [CrossRef]
- Verellen, J.; Janssens, L.; Meyer, C.; Vanlandewijck, Y. Development and application of a handbike ergometer to measure the 3D force generation pattern during arm crank propulsion in realistic handcycling conditions. Sport. Technol. 2012, 5, 65–73. [Google Scholar] [CrossRef]
- Hiremath, S.; Ding, D.; Cooper, R. Development and evaluation of a gyroscopebased wheel rotation monitor for manual wheelchair users. J. Spinal Cord Med. 2013, 36, 347–356. [Google Scholar] [CrossRef]
- Solazzi, L.; Schinetti, G.; Adamini, R. Developed an Innovative Handbike Fork Made of Composite Material; IOS Press: Amsterdam, The Netherlands, 2022; Volume 297, pp. 359–366. [Google Scholar] [CrossRef]
- Florio, J.; Arnet, U.; Gemperli, A.; Hinrichs, T. Need and use of assistive devices for personal mobility by individuals with spinal cord injury. J. Spinal Cord Med. 2016, 39, 461–470. [Google Scholar] [CrossRef]
- Schwandt, D. Design Development of a Tandem Bicycle for Individuals with and without Lower Limb Disability; SAE International: Troy, MI, USA, 1984; pp. 213–214. [Google Scholar]
- Fuglsang, T.; Padulo, J.; Spoladore, M.; Dalla Piazza, M.; Ardigò, L. Development and testing of a novel arm cranking-powered watercraft. Front. Physiol. 2017, 8, 635. [Google Scholar] [CrossRef]
- Janssen, T.; Dallmeijer, A.; Van Der Woude, L. Physical capacity and race performance of handcycle users. J. Rehabil. Res. Dev. 2001, 38, 33–40. [Google Scholar]
- Moreno, B.; Peris-Fajarnés, G.; Lengua, I.; Moncho-Santonja, M. Wheelchair Mobility Aid Through the Adaptation of Electric Scooters; Springer: Berlin, Germany, 2020; pp. 184–190. [Google Scholar] [CrossRef]
- Maki, K.; Langbein, W.; Reid-Lokos, C. Energy cost and locomotive economy of handbike and rowcycle propulsion by persons with spinal cord injury. J. Rehabil. Res. Dev. 1995, 32, 170–178. [Google Scholar] [PubMed]
- Abel, T.; Vega, S.; Bleicher, I.; Platen, P. Handbiking: Physiological responses to synchronous and asynchronous crank montage. Eur. J. Sport Sci. 2003, 3, 1–9. [Google Scholar] [CrossRef]
- Faupin, A.; Campillo, P.; Rémy-Néris, O.; Bouilland, S.; Thevenon, A.; Gorce, P. A kinematic study of the upper-limb motion of handcycle propulsion. Arch. Physiol. Biochem. 2003, 111, 38. [Google Scholar]
- Knechtle, B.; Mülle, G.; Knech, H. Optimal exercise intensities for fat metabolism in handbike cycling and cycling. Spinal Cord 2004, 42, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Postma, K.; Berg-Emons Van Den, H.; Bussmann, J.; Sluis, T.; Bergen, M.; Stam, H. Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Spinal Cord 2005, 43, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Faupin, A.; Gorce, P.; Campillo, P.; Thevenon, A.; Rémy-Néris, O. Kinematic analysis of handbike propulsion in various gear ratios: Implications for joint pain. Clin. Biomech. 2006, 21, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Faupin, A.; Gorce, P.; Rémy-Néris, O.; Thevenon, A. Ergonomie assessment of the handcycling propulsion. Model. Meas. Control. C 2006, 146–155. [Google Scholar]
- Verellen, J.; Meyer, C.; Reynders, S.; Van Biesen, D.; Vanlandewijck, Y. Consistency of within-cycle torque distribution pattern in hand cycling. J. Rehabil. Res. Dev. 2008, 45, 1295–1302. [Google Scholar] [CrossRef]
- Meyer, C.; Weissland, T.; Watelain, E.; Ribadeau Dumas, S.; Baudinet, M.C.; Faupin, A. Physiological responses in handcycling. Preliminary study. Ann. Phys. Rehabil. Med. 2009, 52, 311–318. [Google Scholar] [CrossRef]
- Abel, T.; Burkett, B.; Schneider, S.; Lindschulten, R.; Strüder, H. The exercise profile of an ultra-long handcycling race: The Styrkeprøven experience. Spinal Cord 2010, 48, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Bollini, M. The Figure Eight Drive: A Two-Speed Drivetrain for Handcycles in the Developing World; IOS Press: Amsterdam, The Netherlands, 2010; Volume 26, pp. 91–93. [Google Scholar] [CrossRef]
- Goosey-Tolfrey, V.; Lenton, J.; Goddard, J.; Oldfield, V.; Tolfrey, K.; Eston, R. Regulating intensity using perceived exertion in spinal cord-injured participants. Med. Sci. Sport. Exerc. 2010, 42, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Rice, I.; Hettinga, F.; Laferrier, J.; Sporner, M.; Heiner, C.; Burkett, B.; Cooper, R. Biomechanics; Wiley: Hoboken, NJ, USA, 2010; pp. 31–50. [Google Scholar] [CrossRef]
- Van Drongelen, S.; Arnet, U.; Van Der Woude, L.; Veeger, H. Propulsion Effectiveness of Synchronous Handcycling; IOS Press: Amsterdam, The Netherlands, 2010; Volume 26, pp. 82–84. [Google Scholar] [CrossRef]
- Hettinga, F.; Valent, L.; Van Der Woude, L. Optimal Upper Body Exercise Training: Handcycling; IOS Press: Amsterdam, The Netherlands, 2011; Volume 29, pp. 751–757. [Google Scholar] [CrossRef]
- Allgrove, J.; Chapman, M.; Christides, T.; Smith, P. Immunoendocrine responses of male spinal cord injured athletes to 1-h self-paced exercise: Pilot study. J. Rehabil. Res. Dev. 2012, 49, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Koopman, A.; Eken, M.; Van Bezeij, T.; Valent, L.; Houdijk, H. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness. J. Rehabil. Med. 2013, 45, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Tarperi, C.; George, K.; Ardigò, L. An exploratory study of respiratory muscle endurance training in high lesion level paraplegic handbike athletes. Clin. J. Sport Med. 2014, 24, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Nooijen, C.; Vogels, S.; Bongers-Janssen, H.; Bergen, M.; Stam, H.; Van Den Berg-Emons, H. Fatigue in persons with subacute spinal cord injury who are dependent on a manual wheelchair. Spinal Cord 2015, 53, 758–762. [Google Scholar] [CrossRef]
- Simmelink, E.; Borgesius, E.; Hettinga, F.; Geertzen, J.; Dekker, R.; Van Der Woude, L. Gross mechanical efficiency of the combined armleg (Cruiser) ergometer: A comparison with the bicycle ergometer and handbike. Int. J. Rehabil. Res. 2015, 38, 61–67. [Google Scholar] [CrossRef]
- Abreu, E.; Alves, R.; Borges, A.; Lima, F.; de Paula Júnior, A.; Lima, M. Autonomic cardiovascular control recovery in quadriplegics after handcycle training. J. Phys. Ther. Sci. 2016, 28, 2063–2068. [Google Scholar] [CrossRef]
- Arnet, U.; Hinrichs, T.; Lay, V.; Bertschy, S.; Frei, H.; Brinkhof, M. Determinants of handbike use in persons with spinal cord injury: Results of a community survey in Switzerland. Disabil. Rehabil. 2016, 38, 81–86. [Google Scholar] [CrossRef]
- Azizpour, G.; Ousdad, A.; Legnani, G.; Incerti, G.; Lancini, M.; Gaffurini, P. Dynamic Analysis of Handcycling: Mathematical Modelling and Experimental Tests; Springer: Berlin, Germany, 2017; Volume 47, pp. 33–40. [Google Scholar] [CrossRef]
- Hoekstra, S.; Valent, L.; Gobets, D.; van der Woude, L.; de Groot, S. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users. Disabil. Rehabil. 2017, 39, 1581–1588. [Google Scholar] [CrossRef]
- Zeller, S.; Abel, T.; Strueder, H. Monitoring training load in handcycling: A case study. J. Strength Cond. Res. 2017, 31, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Azizpour, G.; Lancini, M.; Incerti, G.; Gaffurini, P.; Legnani, G. An experimental method to estimate upper limbs inertial parameters during handcycling. J. Appl. Biomech. 2018, 34, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kouwijzer, I.; Nooijen, C.; Van Breukelen, K.; Janssen, T.; de Groot, S. Effects of push-off ability and handcycle type on handcycling performance in able-bodied participants. J. Rehabil. Med. 2018, 50, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Legnani, G.; Incerti, G.; Lancini, M.; Azizpour, G. An identification procedure for evaluating the dynamic parameters of the upper limbs during handcycling. In Proceedings of the ASME Design Engineering Technical Conference, Quebec City, QU, Canada, 26–29 August 2018; Volume 5A. [Google Scholar] [CrossRef]
- Morse, C.; Bostock, E.; Twiss, H.; Kapp, L.; Orme, P.; Jacques, M. The cardiorespiratory response and physiological determinants of the assisted 6-minute handbike cycle test in adult males with muscular dystrophy. Muscle Nerve 2018, 58, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.; Meskemper, J.; Abel, T.; Albracht, K.; Foitschik, T.; Rojas-Vega, S.; Strüder, H. Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects. Sport. Eng. 2018, 21, 283–294. [Google Scholar] [CrossRef]
- Cudicio, A.; Girardello, A.; Negro, F.; Orizio, C.; Arenghi, A.; Legnani, G.; Serpelloni, M. Topographical and physiological data collection for urban handbike tracks design. In Proceedings of the Pedestrians, Urban Spaces and Health—Proccedings of the 24th International Conference on Living and Walking in Cities, LWC 2019, Brescia, Italy, 12–13 September 2019; pp. 225–229. [Google Scholar]
- Stangier, C.; Abel, T.; Zeller, S.; Quittmann, O.; Perret, C.; Strüder, H. Comparison of different blood lactate threshold concepts for constant load performance prediction in spinal cord injured handcyclists. Front. Physiol. 2019, 10, 1054. [Google Scholar] [CrossRef]
- Stone, B.; Mason, B.; Bundon, A.; Goosey-Tolfrey, V. Elite handcycling: A qualitative analysis of recumbent handbike configuration for optimal sports performance. Ergonomics 2019, 62, 449–458. [Google Scholar] [CrossRef]
- Stone, B.; Mason, B.; Warner, M.; Goosey-Tolfrey, V. Shoulder and thorax kinematics contribute to increased power output of competitive handcyclists. Scand. J. Med. Sci. Sport. 2019, 29, 843–853. [Google Scholar] [CrossRef]
- Chaikhot, D.; Reed, K.; Petroongrad, W.; Athanasiou, F.; Van Kooten, D.; Hettinga, F. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. J. Strength Cond. Res. 2020, 34, 2267–2275. [Google Scholar] [CrossRef]
- Himarosa, R.; Sunardi. Design, Frame Analysis and Manufacture of Handcycle Prototype. J. Phys. Conf. Ser. 2020, 1471, 012058. [Google Scholar] [CrossRef]
- Kouwijzer, I.; de Groot, S.; van Leeuwen, C.; Valent, L.; van Koppenhagen, C.; Grandjean Perrenod Comtesse, P.; Helmantel, E.; Dekker, M.; Zwinkels, M.; Metsaars, M.; et al. Changes in Quality of Life During Training for the HandbikeBattle and Associations With Cardiorespiratory Fitness. Arch. Phys. Med. Rehabil. 2020, 101, 1017–1024. [Google Scholar] [CrossRef]
- Turoń-Skrzypińska, A.; Pawlukowska, W.; Szylińska, A.; Tomska, N.; Mikołajczyk-Kociȩcka, A.; Ptak, M.; Dutkiewicz, G.; Rotter, I. Assessment of the relationship between selected factors and stress-coping strategies in handcyclists—A preliminary study. Medicina 2020, 56, 211. [Google Scholar] [CrossRef]
- Nevin, J.; Smith, P. The Effectiveness of a 30-Week Concurrent Strength and Endurance Training Program in Preparation for an Ultra-Endurance Handcycling Challenge: A Case Study. Int. J. Sport. Physiol. Perform. 2021, 16, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.; Abel, T.; Albracht, K.; Strüder, H. Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants. Sport. Biomech. 2021, 20, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, B.; Stone, B.; Mason, B.; Goosey-Tolfrey, V. Physiology of handcycling: A current sports perspective. Scand. J. Med. Sci. Sport. 2021, 31, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Abonie, U.; Albada, T.; Morrien, F.; Van Der Woude, L.; Hettinga, F. Effects of 7-week Resistance Training on Handcycle Performance in Able-bodied Males. Int. J. Sport. Med. 2022, 43, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.; Goosey-Tolfrey, V. Rethinking aerobic exercise intensity prescription in adults with spinal cord injury: Time to end the use of “moderate to vigorous” intensity? Spinal Cord 2022, 60, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Pasko, W.; Dydek, J.; Zielinski, J.; Hulewicz, T.; Sliz, M.; Dziadek, B.; Przednowek, K. Assessing Psychomotor Abilities in Handcyclists using Computerized Tests: An Initial Study. In Proceedings of the International Conference on Sport Sciences Research and Technology Support, icSPORTS—Proceedings, Valletta, Malta, 27–28 October 2022; Volume 2022, pp. 137–142. [Google Scholar]
- Quittmann, O.; Abel, T.; Albracht, K.; Strüder, H. Biomechanics of all-out handcycling exercise: Kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants. Sport. Biomech. 2022, 21, 1200–1223. [Google Scholar] [CrossRef] [PubMed]
- Soo Hoo, J.; Kim, H.; Fram, J.; Lin, Y.S.; Page, C.; Easthausen, I.; Jayabalan, P. Shoulder pain and ultrasound findings: A comparison study of wheelchair athletes, nonathletic wheelchair users, and nonwheelchair users. PM R 2022, 14, 551–560. [Google Scholar] [CrossRef]
Document ID | Subject | Instrumentation | Experimental Conditions | Environment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
with | without | HB | Wheelchair | RPE | %HRR | Fixed | Fixed | Exhaustion | Indoor | Race | Train | Therapy | |
Disability | Power | Lactate | |||||||||||
Abel_2003 [17] | x | x | x | ||||||||||
Dallmeijer_2004 [5] | x | x | x | x 1 | |||||||||
Lovell_2012 [18] | x | x | x 2 | x | |||||||||
Verellen_ [19] | x | x | x | x 3 | |||||||||
Hettinga_2013 [20] | x | x | x | x | |||||||||
Abel_2015 [21] | x | x | x 4 | ||||||||||
Bakkum_2015 [22] | |||||||||||||
Fischer_2015 [23] | x | x | |||||||||||
Hettinga_2016 [24] | x | x | x | ||||||||||
Schoenmakers_2016 [25] | x | x | |||||||||||
Hutchinson_2017 [26] | x | x | x | ||||||||||
Kraaijenbrink_2017 [27] | x | x 5 | |||||||||||
Quittmann_2018 [28] | x | x | x | ||||||||||
Rappelt_2022 [29] | x | x | x | x | |||||||||
Kouwijzer_2022 [30] | x | x | x | ||||||||||
Abonie_2021 [31] | x | x | x | ||||||||||
Hutchinson_2021 [32] | x | x | x | x | x | ||||||||
Kouwijzer_2021 [33] | x | x 6 | |||||||||||
Hall_2022 [34] | x | x | x | ||||||||||
Muchaxo_2022 [35] | x | x | x |
Clinical Tests: Highlights |
---|
General remarks |
|
VO2 |
Peak functional performance (W/kg) |
|
RER |
|
FEF |
|
Vla |
|
Device: Highlights |
---|
General remarks |
|
Prototype |
|
Forces: Highlights |
---|
General remarks |
|
Shoulder |
Upper Limb |
Handle |
|
Geometry: Highlights |
---|
Backrest |
|
Crank |
|
Handle |
|
Sensors: Highlights |
---|
General remarks |
|
Parameter | Synchronous | Asynchronous | ||
---|---|---|---|---|
Tangential forces | ↑ | (10 N) | ↑↑ | (16 N) |
max in lift-push up phase | max in press-down phase | |||
Radial forces | ↑ | ([−10 N; 10 N]) | ↑↑ | ([−10 N; 20 N]) |
FEF | ↑↑ | (50%) | ↑ | (25%) |
less efficient in lift-pull up phase | ||||
Power Production | variable | ([∼0 W; 40 W]) | ∼constant | (12 W) |
push phase–pull phase | ||||
EE | = | = | ||
ME | ↑↑ | (6.5%) | ↑ | (5%) |
HR | = | = |
Actuation: Highlights |
---|
Biomechanical Models |
|
Crank mode |
|
Steering |
|
Parameter | Scrambler RS | #Elba4All | E-Handbike * |
---|---|---|---|
Motor & Transmission | |||
Motor | OliEds Sport 85 Nm 250 W | Polini E-P3 70 Nm 250 W | by G5Mobility |
Max Velocity | 25 km/h | ||
Battery | single (540 W), double (2· 540 W) | single (500 W), double (2·500 W) | |
Roundtrip (km) | 220 (single battery) | >100 | |
Wheels & Brakes | |||
Front wheel | 27.5′′ boost 148′′ | 27.5′′ | |
Rear wheel | 27.5′′ boost 110/15′′ | 27.5′′ | |
Brakes | anterior hydraulic 203 mm, posterior hydraulic 180 mm mono-pump | ||
Frame & Measures | |||
Frame | alluminium | ||
Width (cm) | 80 | 80 | |
Length With wheels (cm) | 220 | 220 | |
Length without wheels (cm) | 180 | ||
Span from the ground (cm) | 20 | ||
Maximum high with wheels (cm) | 60 | 80 | |
Maximum load (kg) | 100 | 110 | |
Pilot height (cm) | 160–210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanguinetta, M.; Incerti, G.; Amici, C.; Legnani, G. Handbike for Daily Use, Sport, and Rehabilitation Purposes: A Literature Review of Actuation and Technical Characteristics. Actuators 2024, 13, 50. https://doi.org/10.3390/act13020050
Sanguinetta M, Incerti G, Amici C, Legnani G. Handbike for Daily Use, Sport, and Rehabilitation Purposes: A Literature Review of Actuation and Technical Characteristics. Actuators. 2024; 13(2):50. https://doi.org/10.3390/act13020050
Chicago/Turabian StyleSanguinetta, Michele, Giovanni Incerti, Cinzia Amici, and Giovanni Legnani. 2024. "Handbike for Daily Use, Sport, and Rehabilitation Purposes: A Literature Review of Actuation and Technical Characteristics" Actuators 13, no. 2: 50. https://doi.org/10.3390/act13020050
APA StyleSanguinetta, M., Incerti, G., Amici, C., & Legnani, G. (2024). Handbike for Daily Use, Sport, and Rehabilitation Purposes: A Literature Review of Actuation and Technical Characteristics. Actuators, 13(2), 50. https://doi.org/10.3390/act13020050