Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation
Abstract
:1. Introduction
- A pneumatically actuated soft exoskeleton that combines both hand and wrist joints for assistive rehabilitation.
- Assistance in a variety of task-specific exercises involving coordinated movements of finger and wrist joints.
- A partial assistance mode that adapts the level of assistance according to the patient’s stage of recovery.
2. System Description
2.1. Hand and Wrist Exoskeleton
2.2. Fabrication
2.3. Pneumatic Control Unit Architecture
3. Hand and Wrist Exoskeleton Control Algorithm
4. Experimental Setup
4.1. Exercises for Experimental Tests
4.1.1. Flexion/Extension Exercise
4.1.2. Dumbbell Exercise
4.1.3. Object Pick and Place
5. Experimental Results
5.1. Flexion/Extension Exercise
5.2. Dumbbell Exercise
5.3. Object Pick and Place
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Proportional derivative |
CPM | Continuous passive motion |
HWE | Hand and wrist exoskeleton |
PWM | Pulse width modulation |
References
- Askim, T.; Bernhardt, J.; Salvesen, Ø.; Indredavik, B. Physical activity early after stroke and its association to functional outcome 3 months later. J. Stroke Cerebrovasc. Dis. 2014, 23, e305–e312. [Google Scholar] [CrossRef] [PubMed]
- Bardi, E.; Gandolla, M.; Braghin, F.; Resta, F.; Pedrocchi, A.L.; Ambrosini, E. Upper limb soft robotic wearable devices: A systematic review. J. Neuroeng. Rehabil. 2022, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- Longatelli, V.; Antonietti, A.; Biffi, E.; Diella, E.; D’Angelo, M.G.; Rossini, M.; Molteni, F.; Bocciolone, M.; Pedrocchi, A.; Gandolla, M. User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL): A randomized controlled study. J. Neuroeng. Rehabil. 2021, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Molteni, F.; Gasperini, G.; Cannaviello, G.; Guanziroli, E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PM R 2018, 10, S174–S188. [Google Scholar] [CrossRef] [PubMed]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: Systematic review and meta-analysis. Top. Stroke Rehabil. 2022, 29, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Reissner, L.; Fischer, G.; List, R.; Giovanoli, P.; Calcagni, M. Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 764–783. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Klein, J.; Burdet, E. Robot-assisted rehabilitation of hand function. Curr. Opin. Neurol. 2019, 23, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Heo, P.; Gu, G.M.; Lee, S.J.; Rhee, K.; Kim, J. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 2012, 13, 807–824. [Google Scholar] [CrossRef]
- Lum, P.S.; Godfrey, S.B.; Brokaw, E.B.; Holley, R.J.; Nichols, D. Robotic approaches for rehabilitation of hand function after stroke. Am. J. Phys. Med. Rehabil. 2012, 91, S242–S254. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas-Jaryani, M.; Manvar, M.; Wijesundara, M.B. Torque characterization of a novel pneumatic soft-and-rigid hybrid actuator. In Dynamic Systems and Control Conference; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 58271, p. V001T30A007. [Google Scholar]
- Fulton, P.V.; Löhlein, S.; Paredes-Acuña, N.; Berberich, N.; Cheng, G. Wrist Exoskeleton Design for Pronation and Supination using Mirrored Movement Control. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; IEEE: Piscateville, NJ, USA, 2021; pp. 575–580. [Google Scholar]
- Greco, C.; Weerakkody, T.H.; Cichella, V.; Pagnotta, L.; Lamuta, C. Lightweight Bioinspired Exoskeleton for Wrist Rehabilitation Powered by Twisted and Coiled Artificial Muscles. Robotics 2023, 12, 27. [Google Scholar] [CrossRef]
- Singh, I.; Erel, V.; Gu, Y.; Lindsay, A.R.; Patterson, R.M.; Swank, C.; Wijesundara, M.B. Development of Soft Pneumatic Actuator Based Wrist Exoskeleton for Assistive Motion. In Proceedings of the 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Seattle, WA, USA, 28–30 June 2023; IEEE: Piscateville, NJ, USA, 2023; pp. 359–366. [Google Scholar]
- Ates, S.; Haarman, C.J.; Stienen, A.H. SCRIPT passive orthosis: Design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton. Robot. 2017, 41, 711–723. [Google Scholar] [CrossRef]
- Troncossi, M.; Mozaffari Foumashi, M.; Mazzotti, C.; Zannoli, D.; Parenti-Castelli, V. Design and manufacturing of a hand-and-wrist exoskeleton prototype for the rehabilitation of post-stroke patients. Quaderni del DIEM–GMA. In Atti della Sesta Giornata di Studio Ettore Funaioli; 2012; pp. 111–120. Available online: https://www.researchgate.net/publication/258278331_Design_and_Manufacturing_of_a_Hand-and-Wrist_Exoskeleton_Prototype_for_the_Rehabilitation_of_Post-Stroke_Patients (accessed on 5 January 2024).
- Pezent, E.; Rose, C.G.; Deshpande, A.D.; O’Malley, M.K. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; IEEE: Piscateville, NJ, USA, 2017; pp. 720–725. [Google Scholar]
- Amirabdollahian, F.; Ates, S.; Basteris, A.; Cesario, A.; Buurke, J.; Hermens, H.; Hofs, D.; Johansson, E.; Mountain, G.; Nasr, N.; et al. Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke-SCRIPT project. Robotica 2014, 32, 1331–1346. [Google Scholar] [CrossRef]
- Rose, C.G.; Sergi, F.; Yun, Y.; Madden, K.; Deshpande, A.D.; O’Malley, M.K. Characterization of a hand-wrist exoskeleton, READAPT, via kinematic analysis of redundant pointing tasks. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; IEEE: Piscateville, NJ, USA, 2015; pp. 205–210. [Google Scholar]
- Shahid, T.; Gouwanda, D.; Nurzaman, S.G.; Gopalai, A.A. Moving toward soft robotics: A decade review of the design of hand exoskeletons. Biomimetics 2018, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Pérez Vidal, A.F.; Rumbo Morales, J.Y.; Ortiz Torres, G.; Sorcia Vázquez, F.D.J.; Cruz Rojas, A.; Brizuela Mendoza, J.A.; Rodríguez Cerda, J.C. Soft exoskeletons: Development, requirements, and challenges of the last decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Wijesundara, M.B.J.; Carrigan, W.; Haghshenas Jaryani, M. Fluid-Driven Actuators and Related Methods. U.S. Patent 1,091,2701, 9 February 2021. [Google Scholar]
- Bosch, J.; O’Donnell, M.J.; Barreca, S.; Thabane, L.; Wishart, L. Does task-oriented practice improve upper extremity motor recovery after stroke? A systematic review. ISRN Stroke 2014, 2014, 504910. [Google Scholar] [CrossRef]
- Winstein, C.J.; Wolf, S.L.; Dromerick, A.W.; Lane, C.J.; Nelsen, M.A.; Lewthwaite, R.; Cen, S.Y.; Azen, S.P. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: The ICARE randomized clinical trial. JAMA 2016, 315, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Alsubiheen, A.M.; Choi, W.; Yu, W.; Lee, H. The effect of task-oriented activities training on upper-limb function, daily activities, and quality of life in chronic stroke patients: A randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 14125. [Google Scholar] [CrossRef] [PubMed]
- Mikova, L.; Gmiterko, A.; Hroncova, D. State space representation of dynamical systems. Am. J. Mech. Eng. 2016, 4, 385–389. [Google Scholar]
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Component Name | Model | Dimensions (L × W × H) mm | Weight (grams) |
---|---|---|---|
Pump | Parker D1020-23-01 | 85 × 30 × 75 | 257.48 |
Solenoid Valve | Clippard E210H | 45 × 15 × 20 | 9.91 |
Proportional Valve | Parker 910-000045-030 | 30 × 10 × 20 | 47.00 |
Pressure Sensor | Honeywell ABPMANN004BGAA5 | 7.3 × 6.3 × 18.6 | 7.08 |
Vacuum Sensor | NXP MPXV6115V | 18.01 × 10.54 × 5.38 | 1.30 |
Microcontroller | ESP-32 | 50 × 25 × 10 | 10.46 |
Thumb Actuator | 5.5 | 4 |
Index Actuator | 4.5 | 3.4 |
Middle Actuator | 5.8 | 4.6 |
Ring Actuator | 4.5 | 3.4 |
Little Actuator | 5.2 | 4.1 |
Wrist Actuator | 8.1 | 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridremont, T.; Singh, I.; Bruzek, B.; Jamieson, A.; Gu, Y.; Merzouki, R.; Wijesundara, M.B.J. Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation. Actuators 2024, 13, 180. https://doi.org/10.3390/act13050180
Ridremont T, Singh I, Bruzek B, Jamieson A, Gu Y, Merzouki R, Wijesundara MBJ. Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation. Actuators. 2024; 13(5):180. https://doi.org/10.3390/act13050180
Chicago/Turabian StyleRidremont, Tanguy, Inderjeet Singh, Baptiste Bruzek, Alexandra Jamieson, Yixin Gu, Rochdi Merzouki, and Muthu B. J. Wijesundara. 2024. "Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation" Actuators 13, no. 5: 180. https://doi.org/10.3390/act13050180
APA StyleRidremont, T., Singh, I., Bruzek, B., Jamieson, A., Gu, Y., Merzouki, R., & Wijesundara, M. B. J. (2024). Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation. Actuators, 13(5), 180. https://doi.org/10.3390/act13050180