Numerical Simulation of the Performance of a Combustion-Driven SparkJet Actuator a with Laval Outlet Configuration
Abstract
:1. Introduction
2. Mathematical–Physical Model
2.1. Computational Model
2.2. Mesh Independency Test and Model Validation
3. Results and Discussion
3.1. Influence of Actuator Outlet Configuration
3.2. Influence of the Equivalence Ratio on the Performance of the Laval-Configured Actuator
3.3. Influence of Atmospheric Pressure on the Performance of the Laval-Configured Actuator
3.4. Influence of Ignition Position on the Performance of the Laval-Configured Actuator
4. Conclusions
- The maximum jet velocity of the Laval-configured actuator is 100 m/s and 350 m/s higher than that of the straight outlet combustion-driven actuator with outlet diameters of 2 mm and 2.8 mm, respectively. The maximum outlet Mach number of the Laval-structured combustion-driven actuator is 1.53, which is higher than that of straight outlet combustion-driven actuators with outlet diameters of 2 mm and 2.8 mm. The peak time decrease by about 50% and 12% compared with the straight outlet actuator with outlet diameters of 2 mm and 2.8 mm, respectively. The work frequency of the Laval-structured combustion-driven actuator is 1333 Hz, which is higher than the 1176 Hz of the straight-tube-structured combustion-driven actuator with an outlet diameter of 2 mm. The Laval configuration effectively improves the working performance of the actuator, while simulation results needs to be verified in future experiments.
- As the equivalence ratio increased from 0.6 to 1, the actuator’s maximum jet velocity increased by approximately 65 m/s and 311 m/s, respectively, and the outlet Mach number increased by about 0.16 and 0.09. The maximum combustion temperature rose from 2700 K to 3000 K, and the saturation work frequency remained nearly the same. The actuator has better performances as the equivalence ratio equals 1. While excessive temperature may exceed the material’s bearing capacity. Hence the equivalent ratio of the actuator must be selected in accordance with the working conditions considering the performance and material’s bearing capacity.
- The pressure and jet mass flow rate of the actuator drop as the atmospheric pressure declines, while the combustion-driven actuator still exhibits high working performance as the atmospheric pressure is low.
- The maximum outlet velocity, maximum Mach number, maximum pressure, and maximum temperature increased by about 20%, 13%, 25%, and 6%, while the peak time raise by about 40% as the ignition position moved from the middle position to a 2.8 mm displacement toward the outlet.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frischmuth, T.; Schneider, M.; Maurer, D.; Grille, T.; Schmid, U. Inductively-coupled plasma-enhanced chemical vapour deposition of hydrogenated amorphous silicon carbide thin films for MEMS. Sens. Actuators A Phys. 2016, 247, 647–655. [Google Scholar] [CrossRef]
- Popov, N.A. Kinetics of plasma-assisted combustion: Effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci. Technol. 2016, 25, 043002. [Google Scholar] [CrossRef]
- Kelley, C.L.; Corke, T.C.; Thomas, F.O.; Patel, M.; Cain, A.B. Design and Scaling of Plasma Streamwise Vortex Generators for Flow Sep-aration Control. AIAA J. 2016, 54, 3397–3408. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.X.; Huang, Y.; Wang, W.B. Wing Flow Separation Control Using Asymmetrical and Symmetrical Plasma Actuator. J. Aircr. 2016, 54, 301–309. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.; Xia, Z.; Liu, B.; Deng, X. Review of actuators for high speed active flow control. Sci. China (Technol. Sci.) 2012, 55, 2225–2240. [Google Scholar] [CrossRef]
- Grossman, K.R.; Cybyk, B.Z.; VanWie, D.M. SparkJet Actuators for Flow Control; AIAA Paper. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 2003. [Google Scholar]
- Narayanaswamy, V.; Raja, L.L.; Clemens, N.T. Characterization of a High-frequency Pulsed-plasma Jet Actuator for Su-personic Flow Control. AIAA J. 2010, 48, 297–305. [Google Scholar] [CrossRef]
- Huang, H.X.; Tan, H.J.; Sun, S.; Zhang, Y.C.; Cheng, L. Transient Interaction Between Plasma Jet and Supersonic Compression Ramp Blow. Phys. Fluids 2018, 30, 041703. [Google Scholar] [CrossRef]
- Li, J.F.; Zhang, X.B. Active Flow Control for Surpersonic Aircraft: A Novel Hybird Synthetic Jet Actuator. Sens. Actuators A Phys. 2020, 302, 111770. [Google Scholar] [CrossRef]
- Liu, R.B.; Wang, M.M.; Hao, M.; Lin, Q.; Wang, X.G. Experimental research on air supplementing type plasma synthetic jet generator. Acta Aeronaut. Astronaut. Sin. 2016, 37, 1713–1721. [Google Scholar]
- Hardy, P.; Barricau, P.; Belinger, A.; Caruana, D.; Cambronne, J.P.; Gleyzes, C. Plasma Synthetic Jet for Flow Control. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010. AIAA Paper. [Google Scholar]
- Tang, M.X.; Wu, Y.; Wang, H.Y.; Jin, D.; Guo, S.G.; Gan, T. Effects of Capacitance on a Plasma Synthetic Jet Actuator with a Conical Cavity. Sens. Actuators A Phys. 2018, 276, 284–295. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Wu, Y.; Sun, Z.Z.; Song, H.M.; Jia, M.; Zong, H.H.; Li, Y.H. Experimental Research on Multichannel Discharge Cir-cuit and Multi-Electrode Plasma Synthetic Jet Actuator. J. Phys. D Appl. Phys. 2017, 50, 165205. [Google Scholar] [CrossRef]
- Jin, D.; Li, Y.H.; Jia, M.; Song, H.H.; Cui, W.; Sun, Q.; Li, F.Y. Experimental Characterization of the Plasma Synthetic Jet Actuator. Plasma Sci. Technol. 2013, 15, 1034–1040. [Google Scholar] [CrossRef]
- Wang, L.; Xia, Z.X.; Luo, Z.B.; Chen, J. Three-Electrode Plasma Synthetic Jet Actuator for High-Speed Flow Control. AIAA J. 2014, 52, 879–882. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, Z.X.; Luo, Z.B.; Wang, L. Effect of Three-Electrode Plasma Synthetic Jet Actuator on Shock Wave Control. Sci. China Technol. Sci. 2017, 60, 146–152. [Google Scholar] [CrossRef]
- Su, W.Y.; Chen, L.H.; Zhang, X.Y. Investigation of magnetohydrodynamic control on turbulent boundary layer separation induced by shock wave. J. Propuls. Technol. 2010, 31, 18–23. [Google Scholar]
- Zhou, Y.; Liu, B.; Wang, L.; Luo, Z.; Xia, Z. Numerical simulation of performance characteristics of two-electrode plasma synthetic jet and the influence of different actuator orifice shapes. Acta Aerodyn. Sin. 2015, 33, 799–805. [Google Scholar]
- Kim, H.J.; Shin, J.Y.; Chae, J.; Ahn, S.; Kim, K.H. Numerical investigation on jet characteristics and performance of SparkJet actuator based on pressure wave behavior inside a cavity. AIP Adv. 2020, 035024, 1–22. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Q.; Zhao, T.; Song, G.; Chen, Q. Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator. Plasma Sci. Technol. 2023, 25, 025503. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Shin, J. Jet Characteristics of Pulsed Arc SparkJet Actuator and Performance Improvement with Dual-Spark Pulses. Int. J. Aeronaut. Space Sci. 2023, 24, 411–418. [Google Scholar] [CrossRef]
- Laurendeau, F.; Chedevergne, F.; Casalis, G. Transient ejection phase modeling of a Plasma Synthetic Jet actuator. Phys. Fluids 2014, 26, 10–2335. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Huang, G.; Liu, C.; Bian, W.; Zhang, C. Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet. Plasma Sci. Technol. 2019, 21, 60–68. [Google Scholar] [CrossRef]
- Zhang, W.; Geng, X.; Shi, Z.; Jin, S. Study on Inner Characteristics of Plasma Synthetic Jet Actuator and Geometric Effects. Aerosp. Sci. Technol. 2020, 105, 106044. [Google Scholar] [CrossRef]
- Hua, J.; Meng, W.; Kumar, K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers. Part I: Fundamental study. Chem. Eng. Sci. 2005, 60, 3497–3506. [Google Scholar]
- Chen, H.; Liu, W.Q. Numerical study of effect of front cavity on hydrogen/air premixed combustion in a micro-combustion chamber. J. Cent. South Univ. 2019, 26, 2259–2271. [Google Scholar] [CrossRef]
- Chen, H.; Liu, W.Q. Numerical Investigation of the Combustion in an Improved Micro combustion Chamber with Rib. J. Chem. 2019, 2019, 8354541. [Google Scholar] [CrossRef]
- Kim, W.H.; Park, T.S. Flame characteristics depending on recirculating flows in a non-premixed micro combustor with varying baffles. Appl. Therm. Eng. 2019, 148, 591–608. [Google Scholar] [CrossRef]
- Li, L.; Yuan, Z.; Xiang, Y.; Fan, A. Numerical investigation on mixing performance and diffusion combustion characteristics of H2 and air in planar micro-combustor. Int. J. Hydrogen Energy 2018, 43, 12491–12498. [Google Scholar] [CrossRef]
- Crittenden, T.; Glezer, A.; Funk, R.; Parekh, D. Combustion-Driven Jet Actuators for Flow Control. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001. AIAA Paper. [Google Scholar]
- Srinivasan, S.; Girgis, B.; Menon, S. Large-Eddy Simulation of a Combustion Powered Actuator; AIAA Paper. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 21–23 July 2008. [Google Scholar]
- Rajendar, A.; Crittenden, T.; Glezer, A. Effect of Inlet Flow Configuration on Combustion Powered Actuators; AIAA Paper. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar]
- Crittenden, T.M.; Warta, B.J.; Glezer, A. Characterization of Combustion Powered Actuators for Flow Control. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Crittenden, T. Environmental Testing of Combustion Powered Actuators for Flow Control. In Proceedings of the 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, USA, 25–28 June 2007. AIAA Paper. [Google Scholar]
- Jee, S.; Bowles, P.O.; Matalanis, C.G.; Min, B.Y.; Wake, B.E.; Crittenden, T.; Glezer, A. Computations of Combustion-Powered Actuation for Dynamic Stall Suppression. In Proceedings of the American Helicopter Society (AHS) Annual Forum, West Palm Beach, FL, USA, 15 July 2016. [Google Scholar]
- Chen, H.; Zhou, Y.; Luo, Z.; Cheng, P. Numerical Investigation of Effect of Structural Parameters on the Performance of a Combustion-Driven Sparkjet Actuator. Actuators 2023, 12, 250. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhao, T.; Feng, S.; Li, X.; Zhang, L. Heat Transfer Enhancement and Exergy Efficiency Improvement of a Micro Combustor with Internal Spiral Fins for Thermophotovoltaic Systems. Appl. Therm. Eng. 2021, 189, 116723. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.B.; Xia, Z.X.; Liu, B. Energy efficiency and performance characteristics of plasma synthetic jet. Acta Phys. Sin. 2013, 62, 125207. [Google Scholar] [CrossRef]
- Smooke, D.M.; Miller, J.A.; Kee, R.J. Determination of Adiabatic Flame Speeds by Boundary Value Methods. Combust. Sci. Technol. 1983, 34, 79–90. [Google Scholar] [CrossRef]
- Akhtar, S.; Kurnia, J.C.; Shamim, T. A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application. Appl. Energy 2015, 152, 47–57. [Google Scholar] [CrossRef]
- Wang, Z. Design for Thrust Chamber of Liquid Propellant Rocket Engines; National Defense Industry Press: Beijing, China, 2014. [Google Scholar]
Experimental Results | Numerical Results | |
---|---|---|
Temperature (K) | 2382 | 2392 |
Mass fraction of H2O | 0.323 | 0.317 |
Mass fraction of O2 | 0.005 | 0.007 |
Mass fraction of H2 | 0.015 | 0.018 |
Mass fraction of OH | 0.007 | 0.009 |
Mass fraction of H | 0.002 | 0.003 |
Mass fraction of O | 0.001 | 0.0012 |
Mass fraction of NO | 0.003 | - |
Mass fraction of N2 | 0.644 | 0.63 |
Cases | Actuator Type | Equivalent Ratio | Atmosphere Pressure |
---|---|---|---|
1 | Laval-shaped outlet, combustion-driven SparkJet actuator | 1 | 1 atm |
2 | Straight-shaped outlet, combustion-driven SparkJet actuator with an outlet diameter equal to 2 mm | 1 | 1 atm |
3 | Straight-shaped outlet, combustion-driven SparkJet actuator with an outlet diameter equal to 2.8 mm | 1 | 1 atm |
4 | Laval-shaped outlet, combustion-driven SparkJet actuator | 0.8 | 1 atm |
5 | Laval-shaped outlet, combustion-driven SparkJet actuator | 0.6 | 1 atm |
6 | Laval-shaped outlet, combustion-driven SparkJet actuator | 1 | 0.8 atm |
7 | Laval-shaped outlet, combustion-driven SparkJet actuator | 1 | 0.6 atm |
8 | Laval-shaped outlet, SparkJet actuator | - | 1 atm |
9 | Laval-shaped outlet, SparkJet actuator | - | 0.8 atm |
10 | Laval-shaped outlet, SparkJet actuator | - | 0.6 atm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zuo, H.; Jia, G. Numerical Simulation of the Performance of a Combustion-Driven SparkJet Actuator a with Laval Outlet Configuration. Actuators 2025, 14, 145. https://doi.org/10.3390/act14030145
Chen H, Zuo H, Jia G. Numerical Simulation of the Performance of a Combustion-Driven SparkJet Actuator a with Laval Outlet Configuration. Actuators. 2025; 14(3):145. https://doi.org/10.3390/act14030145
Chicago/Turabian StyleChen, Hai, Hongyan Zuo, and Guohai Jia. 2025. "Numerical Simulation of the Performance of a Combustion-Driven SparkJet Actuator a with Laval Outlet Configuration" Actuators 14, no. 3: 145. https://doi.org/10.3390/act14030145
APA StyleChen, H., Zuo, H., & Jia, G. (2025). Numerical Simulation of the Performance of a Combustion-Driven SparkJet Actuator a with Laval Outlet Configuration. Actuators, 14(3), 145. https://doi.org/10.3390/act14030145